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Introduction

We will talk about exact exponential algorithms (EEA): Consider a
NP-complete problem P, for which there exists a cn time solution,
where n is the input size.
We want to minimize c.
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Motivation and Background

• If P is a NP-complete problem with a linear-sized reduction to
SAT, then under Exponential Time Hypothesis, we can’t do better
than cn for some c > 1.

• Small c might actually make algorithm feasible for moderately
large input sizes! For example, cn ≤ n3 for n ≤ 100 if c ≤ 1.14.

• See [3] for further details.
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EEA for Coloring: Literature Review

We’ll see exact exponential algorithms for coloring in this presentation.
• Lawler’s Algorithm [4]: k -coloring can be decided in (1 + 3

√
3)n

time, where n is the number of vertices of the graph.
Brief sketch of algorithm: Note that

χ(N) = 1 + min
S⊆N

S independent

χ(N \ S)

We now use fact that a r -vertex graph can have atmost 3
√

3
r

maximal
independent sets. Thus runtime of algorithm
∼

∑n
r=0

(n
r

) 3
√

3
r
= (1 + 3

√
3)n, as desired.
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Literature Review Contd.

Björklund, Husfeldt, and Koivisto [2] showed that k -colorability can be
decided in 2n time, using Yates’ algorithm, which we shall see later.
Open Question: Can k -colorability be decided faster than 2n?
Beigel and Eppstein [1] showed that 3-colorability and 4-colorability
can be decided in 1.3289n and 1.8072n time respectively.
We shall see this later.
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Zamir’s Algorithm

The decidability of k -colorability for k ≥ 5, in time cn, for c < 2 was
open for a long time.
Zamir finally resolved it (partially) in 2021 [5], when he showed that
5-colorability can be decided faster than 2n time, and 6-colorability can
also be decided by a randomized algorithm faster than 2n time.
Problem still open for k ≥ 7.
We shall explore Zamir’s algorithm, and Beigel and Eppstein’s
algorithm in this presentation, and see some standard tools in the field
of EEAs en route.
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Basic Skeleton of Zamir’s Argument

• Graphs are divided into 2 categories: (α,∆) bounded graphs, and
graphs which are not (α,∆) bounded.

• A graph is called (α,∆) bounded, if ≥ α fraction of vertices have
degree ≤ ∆.

These two classes of graphs are then dealt with separately.
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Unbounded Graphs

• If G is not (α,∆) bounded, then it is “very dense”. In particular, G
has a small dominating set.

• A set S ⊆ V (G) is called dominating if for every v ∈ V (G) \ S, v is
adjacent to some vertex in S.

• In other words, one BFS iteration from a dominating set covers the
whole graph.

• A small dominating set allows us to brute-force over all colorings
in faster than 2n time.

• This brute force requires (k − 1)-list colorability results.
• More details later.
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Bounded Graphs and concluding the argument

• For bounded graphs, we use Yates’ algorithm, alluded to earlier.
• The k -colorability of bounded graphs follows without any

dependence on results about (k − 1)-list colorability.
• Finally, we choose the parameters α,∆ suitably, so that both the

algorithms, for the bounded and the unbounded case, terminate
faster than 2n time.
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Colorability of Unbounded Graphs

We first deal with unbounded graphs, for they are easier to reason
about.
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Small Dominating Sets

Theorem
Let G be a graph such that there exists a subset V ′ ⊆ V (G),
|V ′| ≥ (1 − α)|V (G)|, where for every v ∈ V ′ we have deg(v) ≥ ∆− 1.
Then G has a dominating set R of size atmost
((1 − α) · 1+ln(1+∆)

1+∆ + α) · |V (G)|. Furthermore, R can be found in
deterministic polynomial time.

Proof Sketch.
Let R0 be a random subset of V (G), where each vertex is chosen with
probability p. Let R1 ⊆ V ′ \ R0 be the set of vertices which don’t have
any neighbor in R0. Let R2 ⊆ (V (G) \ V ′) \ R0 be the set of vertices
which don’t have any neighbor in R0.
Then R := R0 ∪ R1 ∪ R2 is a dominating set. Also,
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Proof.

E [|R|] = E [|R0|] + E [|R1|] + E [|R2|]

≤ p · |V (G)|+ (1 − p)∆ · |V ′|+ (1 − p)δ(G)+1 · |V ′|

≤
(

p + (1 − α) · (1 − p)∆ + α · (1 − p)2
)
· |V (G)|

Putting p = ln∆
∆ in the above expression yields the desired result.

Note that even though the dominating set was constructed randomly, it
can be derandomized completely through the method of conditional
expectations.
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Brute Force Coloring

• Suppose we are given a k -coloring c of a dominating set R. Then
for every vertex v ∈ V (G) \ R, the list of available colors at v is
listc(v) := [k ] \ {c(r) : r ∈ R, r ∼ v}.

• Thus, checking if c can be extended to V (G) is equivalent to
solving a (k − 1)-list coloring problem on V (G) \ R.

• Thus, checking if G is k -colorable or not takes time
k |R| · (time taken to check (k − 1)− list colorability of V (G) \ R)

• Along with list colorability results of Beigel-Eppstein, the constants
in the above theorem ensure that checking 5-colorability of dense
graphs can be done faster than 2n.
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Coloring Bounded Graphs: Toolkit

Before we present results on how to color (α,∆)-bounded graphs, we
first introduce Yates’ algorithm, as promised earlier.

Definition (Zeta Transform)

Consider a function f : 2[n] 7→ R. We define it’s “zeta-transform”
f̂ : 2[n] 7→ R to be the function defined as

f̂ (X ) :=
∑
Y⊆X

f (Y )

for every X ⊆ [n].
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Yates’ Algorithm

Note that a naı̈ve way of computing the zeta transform takes∑n
r=0

(n
r

)
2r = 3n time. However, in Yates’ algorithm, we use dynamic

programming to reduce the time taken to 2n. Indeed, we define the
functions f = f0, f1, . . . , fn = f̂ , where

fi(X ) :=

{
fi−1(X ) + fi−1(X \ i), if i ∈ X
fi−1(X ),otherwise

One can show by induction that fi(X ) :=
∑

Y∈Si (X) f (Y ), where

Si(X ) := {Y ⊆ X : {j ∈ Y : j > i} = {j ∈ X : j > i}}. Clearly, fn = f̂ .
Furthermore, (assuming we store the functions f1, . . . , fn−1 in memory),
fn(X ) can be calculated in polynomial time through the recursion
above, and thus calculating f̂ takes 2n time.
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Connecting Yates’ to Independent Sets

• Write i(H) to be the number of independent sets in some graph H.
• Observe that i(G[V ′]) = i(G[V ′ \ {v}]) + i(G[V ′ \ N[v ]]), where

N[v ] := N(v) ∪ {v}.
• Thus, exactly as in Yates’, we can calculate i(G[V ′]) for all

V ′ ⊆ V (G) in 2n time.
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Inclusion-Exclusion Principle

• Note that a graph is k -colorable iff it can be covered by k
independent sets.

• Thus, a graph is k -colorable if F (G) > 0, where

F (G) :=

∣∣∣∣∣
{
(I0, . . . , Ik−1) : I∗’s are independent,

k−1⋃
i=0

Ii = V (G)

}∣∣∣∣∣
• Note that F (G) is computable in 2n time.
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Theorem (Inclusion-Exclusion)

F (G) =
∑

V ′⊆V (G)

(−1)|V (G)|−|V ′| · i(G[V ′])k

Proof.
i(G[V ′])k counts the number of k -tuples of independent sets contained
in G[V ′]. Now, note that a particular tuple (I0, . . . , Ik−1) occurs in the
above summation for all supersets of I, where I =

⋃k−1
i=0 Ii .

It is easy to see that if I ̸= V (G), then the minus signs cancel of the
contribution of that tuple, and the result follows.
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So far

• The argument described above, calculates F (G) in 2n time, and
thus determines if G is k -colorable. (This is exactly the argument
in [2]). Note that we haven’t used (α,∆)-boundedness so far.

• Note that if graph is (α,∆)-bounded, then it has an independent
set of size ≥ αn

1+∆ (standard greedy argument).
• Thus, let S be a large independent set in our graph.
• Let c be a coloring of V (G) \ S. c is extendable to S iff

|c(N(s))| < k for every s ∈ S.
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So far (Contd.)

• We then apply a variant of the inclusion-exclusion argument
outlined above to V (G) \ S to check if some particular coloring of
V (G) \ S is extendable to S.

• Managing constants appropriately, checking colorability of G can
be done faster than 2n.

• The essence of the proof is similar to the proof in [2]. The
inclusion-exclusion predicate though, is considerably more
complicated here.

• Check out my thesis, or Zamir’s paper [5] for further details.
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Interlude

• We have thus seen a very brief sketch of Zamir’s proof that
5-colorability can be decided faster than 2n time.

• The proof crucially relies on the fact that 4-list colorability can be
decided faster than 2n. Recall that this dependence arises in the
“dense”, unbounded régime 1.

• We shall thus spend some time analyzing Beigel-Eppstein’s 4-list
colorability algorithm.

1It is not surprising that deciding chromatic number of (α,∆)-unbounded graphs
should be harder than their sparser counterparts: We have lots of edges, but not
enough to rule out low chromatic numbers either.
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Work Factor: Master theorem for EEAs

Consider the recursion

T (n) = T (n − r1) + T (n − r2) + . . .+ T (n − rℓ) + poly(n)

The solution to this recursion is O(λn · poly(n)) = O∗(λn), where
λ = λ(r1, . . . , rℓ) is known as the work factor of the algorithm. λ is in
fact the smallest positive root of the equation

∑
x−ri = 1.

The above connection implies r1 ≥ r ′1, . . . , rℓ ≥ r ′ℓ, then
λ(r1, . . . , rℓ) ≤ λ(r ′1, . . . , r

′
ℓ).
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CSPs

Definition ((a,b)-Constraint Satisfaction Problems)
Suppose we have n variables x1, . . . , xn, each of which can be
assigned a color from the set of colors C, where |C| = a. We also have
m = poly(n) constraints, where each constraint involves r ≤ b
variables, say xℓ1 , . . . , xℓr , and that constraint dictates that
(xℓ1 , . . . , xℓr ) ̸= (c1, . . . , cr ), for some c1, . . . , cr ∈ C.
The constraint satisfaction problem (CSP) then asks if all of these
constraints can be satisfied simultaneously.
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An Alternative Viewpoint of (a,2)-CSPs

• We present a “graphical” presentation of (a,2)-CSPs.
• Any constraint of size 2 in a (a,2)-CSP is of the form
{(xi , ci), (xj , cj)}, where ci , cj ∈ C.

• Consequently, we can create a graph with n vertices, with the i th

vertex representing a “bag of colors” corresponding to the
possible assignments of xi .

• To represent the constraint {(xi , ci), (xj , cj)}, we construct an edge
between the color ci in the i th vertex and the color cj in the j th

vertex.
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Preliminaries

• We can express k -list-colorability as a (k ,2)-CSP.
• We will thus focus on (3,2), and (4,2)-CSPs.
• In fact, we will “reduce” (4,2)-CSPs to (3,2)-CSPs, i.e. a

(4,2)-CSP of input size n will become a (3,2)-CSP of input size
n′ ≥ n.

• Thus, WLOG lets focus on (3,2)-CSPs.
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Preliminaries (Contd.)

We first “pre-process” our CSP so that it becomes amenable to later
analysis. Some examples of this pre-processing are as follows:

Lemma

Let v be a variable in an (a,2)-CSP, and suppose only two of the a
colors are allowed at v. Then we can obtain an equivalent (a,2)-CSP
with one fewer variable.

Lemma
Consider a (3,2)-CSP instance, and let (v ,d) be a variable-color pair
such that there exists another variable w for which we have all 3
constraints {(v ,d), (w , c)}, {(v ,d), (w ,d)}, {(v ,d), (w ,e)}, where the
color set is {c,d ,e}. Then we can find an equivalent (3,2)-CSP with
one fewer variable.
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The proofs are routine, so we skip them. Now, before we jump into
Beigel-Eppstein’s algorithm for deciding (3,2)-CSPs, lets see a
randomized algorithm for the same.
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Randomized Algorithm to decide (3,2)-CSPs

Theorem
Given a satisfiable (3,2)-CSP instance, there exists a randomized
algorithm that finds the solution to the instance in expected time
O∗

(√
2

n
)

.

Figure: Reduction of a (3,2)-CSP
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Proof.
Consider any constraint of the form {(xi , ci), (xj , cj)}. WLOG assume
ci = cj , as shown in Fig. 1. Note that any valid coloring of the two
vertices shown in the figure is retained in exactly two of the four small
configurations drawn on the right-hand side of Fig. 1.
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Proof.
Thus, our randomized algorithm is as follows: Given a (3,2)-CSP
instance, pick any constraint (which consists of two variables, both of
which are 3-color), and randomly choose one of the 4 reduced
configurations as depicted in Fig. 1. In the reduced configuration, both
variables become 2-color and thus can be eliminated by Theorem 5.
Thus, in every reduction, we can remove two variables. Furthermore,
the probability that satisfiability is maintained in any reduction is ≥ 1

2 .
Consequently, after n/2 reductions, with probability 2−n/2 we’ll be left
with a satisfying assignment.
Thus, if we’re given a satisfiable (3,2)-instance, we will need to carry
out the above reduction process 2n/2 times to find a satisfying
assignment.
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Although this randomized algorithm is quite slick, it is possible to do
even better deterministically. We shall see the deterministic algorithm
now.
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Conversion of (4,2)-CSPs to (3,2)-CSPs

We shall now not only elucidate a deterministic algorithm for
(3,2)-CSPs, but also show how a (4,2)-CSP instance can be reduced
to a (3,2)-CSP instance.
We first estimate the “size” of a (4,2)-CSPs.
Firstly, let our (4,2)-CSP instance have ni i-color variables, where
i ∈ {3,4}. In order to obtain a fast algorithm, we shall perform a
book-keeping trick: We shall instead declare the “size” of a (4,2)-CSP
instance to be n = n3 + (2 − ε)n4, where ε < 1

2 is a small constant we
shall optimize to obtain a low work factor for our algorithm.
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To solve CSPs we make structural cases on the underlying graph, and
for each structural case we calculate the work factor.
The final work factor of the algorithm is the maximum of all the cases.
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Structural Lemmata

We present some examples of “structural lemmata” below.

Proposition
Let η = {(v ,R), (w ,R)} be an isolated constraint in a (4,2)-CSP
instance. Then the instance can be reduced to smaller instances with
work factor ≤ λ(2 − ε,3 − ε).

Proposition
Let η = {(v ,R), (w ,R)} be an dangling constraint (we assume (w ,R)
is present in other constraints too, while (v ,R) is only present in η) in a
(4,2)-CSP instance. Then the instance can be reduced to smaller
instances with work factor ≤ λ(2 − ε,3 − ε).
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Structural Lemmata (Contd.)

Proposition
Suppose we have a (4,2)-CSP instance that has a variable v and a
color R such that at least one of the following conditions is satisfied:

1 (v ,R) is involved in ≥ 3 constraints, and v is a 4-color variable.
2 (v ,R) is involved in ≥ 4 constraints, and v is a 3-color variable.

Then the instance can be reduced with a work factor ≤ λ(1− ε,5− 4ε).
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Conclusions

In the original Beigel-Eppstein paper [1], even more lemmata of the
above nature were proved. We don’t include those lemmata here as
they don’t add any significantly new idea to the problem: Indeed,
Beigel and Eppstein make increasingly fine-grained structural
assumptions, and calculate the corresponding work factors, until the
structural assumptions exhaust all possibilities for a (4,2)-CSP.
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Conclusions

Thus, after applying all the relevant lemmata, the work factor of the
entire algorithm is of the form
f (ε) := max(λ(1 − ε,5 − 4ε), λ(2 − ε,3 − 2ε), λ(2 − ε,3 − ε), . . .). We
optimize f (ε) to obtain that f (ε) attains its minima at ε ≈ 0.095543, and
the minimum value of f (ε) equals Λ := λ(4,4,5,5) ≈ 1.36443, which
becomes the work factor for our algorithm. As promised, this is better
than the O∗

(√
2

n
)

randomized algorithm for (3,2)-CSPs.
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Conclusions

Some immediate consequences of the above result are as follows:

Corollary
3-coloring and 3-list coloring on a graph with n vertices and m edges
can be solved in O∗(Λn) time, and 3-edge coloring can be solved in
O∗(Λm) time.

Proof.
All of the problems mentioned here can be translated to
(3,2)-CSPs.

Another corollary goes as follows:

Corollary
There exists a randomized algorithm that finds the solution to any
solvable (d ,2)-CSP in expected time O∗ ((0.4518d)n), where d ≥ 4.
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Conclusions

• The SOTA today is that we can decide, faster than 2n,
≤ 5-colorability.

• We can even decide 6-colorability faster than 2n if we’re allowed to
use randomization.

• The primary obstruction in Zamir’s argument, which doesn’t allow
us to extend it to 7-colorability and beyond, is the fact that we
proved that 5-colorability was o∗(2n) decidable using that fact that
4-list-colorability was o∗(2n) decidable. Since we don’t know
anything about 5-list-colorability for example, Zamir’s arguments
don’t work, as it is.

Arpon Basu (IITB) Exact Exponential Algorithms for Coloring November 26, 2023 39 / 43



Conclusions

• The obstruction in Beigel-Eppstein’s arguments which prevent
extension to 5-list-colorability, is that the case-work in their
arguments is very specific to (4,2)-CSPs. Once again, it seems
that significantly new ideas will be needed to extend their work for
higher CSPs.

• Extending Zamir’s and Beigel-Eppstein’s arguments to answer
whether k -colorability is o∗(2n) decidable for every k ∈ N is a
natural avenue to pursue.
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