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1 Notation

� Let G = (V (G), E(G)) be a simple undirected graph. For any x ∈ V (G),
we define the neighborhood of x as N(x) := {y ∈ V (G) : {x, y} ∈ E(G)}.
Note that since our graph has no self-loops, x ̸∈ N(x). Further, for any
subset A ⊆ V (G), define G[A] to be the subgraph induced by the vertices
in A.

� We call a mapping c : V (G) 7→ C a coloring of G if for any edge {v1, v2} ∈
E(G), c(v1) ̸= c(v2).

� The chromatic number of a graph G, denoted χ(G), is said to be the
minimum possible number of colors needed to color it, ie:- the minimum
possible size of the co-domain of a coloring.

� We define the k-coloring problem to be finding out if χ(G) ≤ k.

� We can similarly define the k-list coloring problem as follows: Suppose we
have a set of colors C, and a map list : V (G) 7→ 2C such that |list(v)| ≤ k
for every v ∈ V (G). Then, does there exist a coloring c : V (G) 7→ C such
that c(v) ∈ list(v) for every v ∈ V (G)? Note that |C| may be as large as
k|V (G)| in the context of the k-list coloring problem.

� A subsetR ⊆ V (G) is called dominating if every vertex not inR is adjacent
to some vertex in R.

� For a given α ∈ (0, 1),∆ ∈ N, we say that a graph G = (V (G), E(G)) is
(α,∆)-bounded if it contains ≥ α|V (G)| vertices with degree at most ∆.

� For any natural number n ∈ N, we shall denote by [n] the set {1, 2, . . . , n}.

� For any function f : N 7→ R, we writeO∗(f(n)) to denoteO(f(n)·poly(n)).

� We shall abuse notation to write o∗(cn) to denote O∗((c − ε)n) for some
ε > 0.

� We denote P(A) := 2A for any set A.

� For any set X, with some X1, . . . ,Xn ⊆ P(X), we define X1 ⊕ · · · ⊕Xn :=
{
⋃n

i=1 Xi : Xi ∈ Xi, i ∈ [n]}.

� It can be shown that recurrences of the form T (n) =
∑

T (n−ri)+poly(n)
are satisfied by functions T (n) = O∗(λn), where λ = λ(r1, r2, . . .) is the
largest root of the equation

∑
x−ri = 1. λ is also known as the work

factor of this recurrence. We shall speak more on this later.
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2 An Introduction to Exact Exponential Algo-
rithms

Algorithms are a central object of study in Computer Science, and have been
intensively studied since the 1950s. Computer scientists are usually interested
in algorithms which run in polynomial time, or more precisely, given an input
instance of size n, a polynomial-time algorithm runs some predicate on the in-
put, and provably terminates in time T (n), where T (n) is a function which is
bounded above by some polynomial function of n.
However, many natural problems, a few of which we will discuss in this thesis, do
not have any known polynomial time algorithm despite intensive research over
the decades. This inherent difficulty is captured in the notion of NP-complete
problems, which are, informally, the “hardest” problems whose solutions are
nevertheless easy to “verify”.
Now, since the 1970s, when the idea of NP-completeness was first articulated
(primarily through the Cook-Levin theorem), many natural problems in com-
binatorial optimization were proven to be NP-complete. The way a problem is
typically proven to be NP-complete is if every instance of the problem, of size n,
can be reduced to a SAT instance with poly(n) variables and clauses, and con-
versely, every SAT instance with n variables can be reduced to an poly(n)-sized
instance of our problem.
Furthermore, a widely believed conjecture, known as the Exponential Time Hy-
pothesis (first proposed by Impagliazzo, and Paturi in [4]), says that there do
not exist algorithms 1 which can decide the satisfiability of every SAT 2 instance
with n variables and poly(n) clauses in O∗ (2(1−ε)n

)
time for any ε > 0. In other

words, it is believed that, not only are there no polynomial time algorithms for
SAT, there is no algorithm which performs better than a vanilla brute force
search which takes 2n time in the worst case.
Now, consider a NP-complete problem P which has a linear-sized reduction
to SAT, i.e. n-sized instances of P can be reduced to c1n-sized instances of
SAT, and n-sized instances of SAT can be reduced to c2n-sized instances of P,
for some constants c1, c2 > 0. Then, under the Exponential Time Hypothesis
(ETH), any algorithm for P necessarily takes O∗(cn) time to run, where c > 1
is some constant.
Herein we enter into the field of Exact Exponential Algorithms. The basic philos-
ophy of exact exponential algorithms goes as follows: Given a problem P which
takes O∗(cn) time to run under the ETH, how small can we make c? Note that
if we can get c very close to 1, then even though our algorithm will remain
exponential, it will still be feasible for moderate values of n. For example, if
c < 1.14, then cn ≤ n3 for n ≤ 100. In other words, a 1.14n algorithm might
actually be better than a polynomial time n3-algorithm for small to moderate
input sizes.
With the above introduction, we can finally begin discussing the main object

1including randomized algorithms
2we consider all SAT instances, not necessarily just 3-SAT instances
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of study of the thesis, namely exact exponential algorithms for the k-coloring
problem.
Given some k ≥ 3, the k-coloring problem asks if a given graph can be colored
using k colors. Intensive research has been undertaken to find optimal algo-
rithms for this problem, and some significant milestones have been Lawler’s al-
gorithm [6], which established that one can decide k-colorability in O∗(cn) time
for c = 1+ 3

√
3 ≈ 2.44. Further improvements were obtained by Björklund, Hus-

feldt, and Koivisto [5, 2], who showed, through the use of Inclusion-Exclusion
and Yates’ Algorithm (see Lemma 5.2), that k-colorability can actually be de-
cided in O∗(2n) time. A very good exposition of these algorithms can be found
in Fomin and Kratsch’s book [3].
Further developments took place for specific k: For example, it was shown by
Beigel and Eppstein in [1], that 3-colorability can be decided in O∗(1.3289n)
time, and 4-colorability can be decided in O∗(1.8072n) time. Furthermore, they
showed that even 4-list colorability can be decided in O∗(1.8072n) time.
Then for a long period of time (nearly two decades), it remained unknown if we
can decide k-colorability faster than 2n time for k ≥ 5.
Towards this end, Zamir ([7]) finally showed in 2021, that 5-colorability can be
decided faster than 2n time, and 6-colorability can also be decided by a ran-
domized algorithm faster than 2n time.
In this thesis, we shall explore the results by Zamir and Beigel-Eppstein outlin-
ing o∗(2n) algorithms for the k-colorability problem for k = 3, 4, 5. Note that
this is currently the state-of-art: No deterministic o∗(2n) algorithm is known
for deciding ≥ 6-colorability. No randomized o∗(2n) algorithm is known for
deciding ≥ 7-colorability.

3 Structure of the Thesis

In an anachronistic fashion, we shall first discuss Zamir’s breakthrough in the
5-colorability problem. We would like to point out that Zamir uses Beigel-
Eppstein’s results about 3 and 4-colorability; despite that, the reason we discuss
Zamir’s result first is because they highlight many important aspects of exact
exponential algorithms, while Beigel-Eppstein’s proof is relatively less illumi-
nating.
After presenting both arguments, we conclude by summarizing the state of the
art, and obstructions in existing arguments which prevent their generalization.

4 An Introduction to Zamir’s 5-colorability ar-
gument

At a broad level, Zamir’s argument highlights a very important technique in ex-
act exponential algorithms: Namely, the clever algorithmic use of the inclusion-
exclusion principle. A prototypical application of this method is through the
Yates’ zeta transform, which we shall see in some detail now.
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Coming to a more detailed account of Zamir’s arguments, Zamir shows that if
(k − 1)-list colorability can be decided in O∗((2 − ε1)

n) time for some ε1 > 0,
then k-coloring can be decided in O∗((2− ε2)

n) time, for some ε2 > 0. The way
it is accomplished is as follows:

1. For a special class of graphs called (α,∆)-bounded graphs, in addition
to inclusion-exclusion and Yates’ algorithm, a combinatorial “removal
lemma” (see Theorem 5.3) is used to unconditionally 3 obtain that k-
coloring can be decided in o∗(2n) time.

2. For graphs that are not (α,∆)-bounded, if we assume that (k − 1)-list
coloring takes o∗(2n) time to decide, then we can show that k-coloring
can also be decided in o∗(2n) time: It is due to these graphs that the
assumption on the time complexity of (k − 1)-list colorability is needed.

At the risk of repeating myself, I state again: The assumption that (k − 1)-list
coloring can be done in o∗(2n) time is needed only to show that k-colorability can
be decided in o∗(2n) time for graphs which are not (α,∆)-bounded. For graphs
which are (α,∆)-bounded for some given α,∆, one can show that k-colorability
can be decided on those graphs in O∗((2− εk,∆,α)

n) time, without any assump-
tions on the time complexity of (k − 1)-list coloring.
Finally, since 4-list colorability can be decided in O∗(1.81n) time, by the reduc-
tion described above, 5-list colorability can also be decided in o∗(2n) time.
Of the two cases, the (α,∆)-bounded case will need a significant amount of
machinery to be developed, while the unbounded case follows relatively more
easily.
With this outline, let’s begin!

5 Our Toolbox

Lemma 5.1. Let S1 ⊆ S2 be finite sets. Then

∑
S1⊆S⊆S2

(−1)|S| =

{
0, if S1 ̸= S2

(−1)|S2|, otherwise

Definition 1. Consider a function f : 2[n] 7→ R. We define it’s “zeta-transform”
f̂ : 2[n] 7→ R to be the function defined as

f̂(X) :=
∑
Y⊆X

f(Y )

for every X ⊆ [n].

Lemma 5.2 (Yates’ Fast Zeta Transform). Given a function f : 2[n] 7→ R,
f̂ : 2[n] 7→ R can be computed in O(n2n) = O∗(2n) time.

3ie:- without any assumptions on (k − 1)-list colorability
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Remark:-We will be effectively elucidating this algorithm in Theorem 6.5, which
is why we don’t present a proof here.

Theorem 5.3 (Removal Lemma). Let U be a finite set and let F ⊆ 2U be such
that for every F ∈ F , we have |F | ≤ ∆. Let A > 0 be any constant. Then there
exist subsets F ′ ⊆ F , U ′ ⊆ U such that

1. |F ′| > ρ(∆, A) · |F|+A · |U ′|, where ρ(∆, A) > 0 is a constant dependent
only on ∆ and A.

2. For every F1, F2 ∈ F ′ we have F1 ∩ F2 ⊆ U ′.

Furthermore, such a F ′, U ′ can be found out in O(|F|) time.

Remark:- We use this lemma directly, without proof, since the proof of this
lemma is not particularly important to the rest of the structure.

Lemma 5.4. Let G be a graph, let α ∈ (0, 1), and let ∆ ∈ N be given such
that there exists a subset V ′ ⊆ V (G), |V ′| ≥ (1− α)|V (G)|, such that for every
v ∈ V ′ we have deg(v) ≥ ∆. Then G has a dominating set R of size atmost

((1 − α) · 1+ln(1+∆)
1+∆ + α) · |V (G)|. Furthermore, such an R can be found in

poly (|V (G)|) time.

Remark:- This lemma will be used later on to show that graphs that are not
(α,∆)-bounded, have small dominating sets: That allows us to “brute-force”
over every coloring of the said dominating set, and then use a list coloring
reduction to decide if the rest of the graph is also colorable with k colors.

6 k-colorability of (α,∆)-bounded Graphs

Let G = (V (G), E(G)) be our simple undirected graph, and let k ∈ N be a fixed
natural number. We are interested in finding out if χ(G) ≤ k.
Furthermore, let V0 ⊆ V (G) be any subset of vertices such that for V := V (G)\
V0, we have a subset S ⊆ V , which is an independent set of G.
The reader might want to note that V ̸= V (G), and avoid confusing
these two sets.
Let c : V0 7→ [k] be a coloring of V0. For every j ∈ [k], define V j

0 := c−1(j) =
{v ∈ V0 : c(v) = j} to be the set of vertices colored with the color j. Note that

V0 =
⊔k

j=1 V
j
0 .

6.1 Some definitions and combinatorial identities

We shall now make some definitions to facilitate the application of the inlcuion-
exclusion theorem. As a result, as the reader might notice, the following defini-
tions are very “set-theoretic”, and involve cumbersome predicates, of the kind
that typically arise in the inclusion-exclusion principle.
Consider the definitions
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Definition 2. Fix a subset S′ ⊆ S. For any color j ∈ [k], we call a set I ⊆ V \S
“(j, S′)-nice” if I ∪ V j

0 is an independent set in G and (I ∪ V j
0 )∩N(s′) ̸= ∅ for

every s′ ∈ S′.

Definition 3. We denote by the indicator function βj,µ : 2V \S × 2S 7→ {0, 1} if
I is (j, S′)-nice or not, ie:- βj,µ(I, S

′) = 1 if and only if I is (j, S′)-nice.
We denote by βj(V

′, S′) the number of (j, S′)-nice sets I, such that I ⊆ V ′.

We also define

h(G,S′) :=
∑

V ′⊆V \S

(−1)|V \S|−|V ′|
k∏

j=1

βj(V
′, S′)

Lemma 6.1. h(G,S′) denotes the number of tuples (I1, I2, . . . , Ik) such that⋃k
i=1 Ii = V \ S, and Ii is (i, S′)-nice, for every i ∈ [k].

Proof. Consider any tuple I = (I1, I2, . . . , Ik) such that Ii is (i, S′)-nice for

every i ∈ [k]. Furthermore, let A :=
⋃k

i=1 Ii. Then I appears in the expression
for h(G,S′) for every V ′ such that A ⊆ V ′. Consequently, the coefficient of I in
the expression is

∑
A⊆V ′⊆V \S(−1)|V \S|−|V ′| = (−1)|V \S|∑

A⊆V ′⊆V \S(−1)|V
′|,

which is non-zero only if A = V \ S, by Lemma 5.1. Furthermore, when A =
V \S,

∑
A⊆V ′⊆V \S(−1)|V

′| = (−1)|V \S|, and consequently, we have our desired
result.

We now define
H(G,S) :=

∑
S′⊆S

(−1)|S
′|h(G,S′)

Lemma 6.2. H(G,S) counts the number of tuples (I1, I2, . . . , Ik) such that

1.
⋃k

i=1 Ii = V \ S.

2. Ii ∪ V i
0 is an independent set in G for every i ∈ [k].

3. For every s ∈ S, there exists is ∈ [k] such that (Iis ∪ V is
0 ) ∩N(s) = ∅.

Proof. Note that by Lemma 6.1, h(G,S′) counts all tuples I = (I1, I2, . . . , Ik)
such that

1.
⋃k

i=1 Ii = V \ S.

2. Ii ∪ V i
0 is an independent set in G for every i ∈ [k].

3. For every s′ ∈ S′, (Ii ∪ V i
0 ) ∩N(s′) = ∅, for every i ∈ [k].

Thus, consider any such tuple I satisfying the aforementioned conditions. Fur-
thermore, let B := {s ∈ S : ∀i ∈ [k] (Ii ∪ V i

0 ) ∩ N(s) ̸= ∅}. Note that the
tuple I appears in the summation for H for all those S′ such that S′ ⊆ B.
Consequently the coefficient of I is

∑
S′⊆B(−1)|S

′| =
∑

∅⊆S′⊆B(−1)|S
′|, which

is non-zero only if B = ∅. The desired conclusion then follows.
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Note:- H(G,S) is just the “inclusion-exclusion version” of g(G,S′).
Finally, we arrive at the purpose of defining H(G,S). For the convenience of
the reader, we restate all the symbols defined along the way.

Theorem 6.3. Let G be a graph, V0 ⊆ V (G) be a subset of its vertices, and let
c : V0 7→ [k] be a coloring of G[V0]. Denote by V := V (G) \ V0, and let S ⊆ V
be an independent set in G. Then H(G,S) > 0 if and only if c can be extended
to a k-coloring of G, ie:- if there exists a coloring d : V (G) 7→ [k] such that
d(x) = c(x) for every x ∈ V0.

Proof. Assume H(G,S) > 0: Then there exists a tuple I = (I1, I2, . . . , Ik) such
that Ii ∪ V i

0 is an independent set in G for every i ∈ [k]: Consequently, we can
safely assign the color i to (every vertex in) Ii without any conflicts. Assigning
colors to every Ii, i ∈ [k] results in an extension of (the domain of) c from V0 to
V0 ∪ (V \ S) 4. Now, from Lemma 6.2, we also know that for every s ∈ S, there
exists is ∈ [k] such that (Iis ∪ V is

0 ) ∩N(s) = ∅. Consequently, the vertex s can
be assigned the color is safely without any conflicts. Assigning colors to every
vertex in S then produces our desired extension d.
Conversely, assume c : V0 7→ [k] can be extended to d : V (G) 7→ [k]. Define

Ii := {v ∈ V \ S : d(v) = i}

Clearly
⋃k

i=1 Ii = V \S, and (Ii ∪V i
0 )

5 is an independent set in G for every i ∈
[k], since all of them were (consistently) assigned the same color. Furthermore,

for every s ∈ S, (Id(s) ∪ V
d(s)
0 ) ∩N(s) = ∅ due to the consistency of d.

But then the tuple I = (I1, I2, . . . , Ik) satisfies all the conditions of Lemma 6.2,
thus implying that H(G,S) > 0, as desired.

6.2 Towards an algorithm

Definition 4. For every j ∈ [k], define

Sj := {s ∈ S : V j
0 ∩N(s) ̸= ∅}

to be the set of vertices in s that are adjacent to some vertex with the color j.

Observation 1. For any j ∈ [k], S′ ⊆ S, V ′ ⊆ V , we have

βj(V
′, S′) = βj(V

′, S′ ∪ Sj) = βj(V
′, S′ \ Sj)

Consequently, we can focus our attention on computing βj(V
′, S′) only for S′ ⊆

S \ Sj .
We now define

Definition 5. For any S′ ⊆ S, define

B(S′) := {V ′ ⊆ V \ S : ∀s′ ∈ S′.V ′ ∩N(s′) ̸= ∅}

In other words, A ∈ B(S′) only if A is a subset of V \ S, and A is adjacent to
every vertex in S′.

4since
⋃k

i=1 Ii = V \ S
5V i

0 := c−1(i), i ∈ [k]
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Lemma 6.4. Let S′ ⊆ S \ Sj , V
′ ⊆ V \ S. If V ′ ̸∈ B(S′), then βj(V

′, S′) = 0.

Proof. Note that if s ∈ S \ Sj , then N(s) ∩ V j
0 = ∅. Consequently (I ∪ V j

0 ) ∩
N(s) = I ∩ N(s), which is non-empty only if I ∈ B(S′). In other words, for
every V ′ ⊆ V \ S such that V ′ ̸∈ B(S′), we have βj(V

′, S′) = 0.

Theorem 6.5. Fix some S′ ⊆ S\Sj. One can compute all the values βj(V
′, S′),

for every V ′ ∈ B(S′), in O∗(|B(S′)|) time.

Proof. Note that

B(S′) = P

(
V \

(
S ∪

⋃
s′∈S′

N(s′)

))
⊕
⊕
s′∈S′

(P(N(s′)) \ {∅})

The above representation allows us to enumerate B(S′) efficiently, ie:- we can
now enumerate B(S′) in O(|B(S′)|) units of time: Indeed, we can run 1 + |S′|
nested for loops, with the first for loop looping over P

(
V \

(
S ∪

⋃
s′∈S′ N(s′)

))
,

and the remaining for loops looping over P(N(s′)) \ {∅} for every s′ ∈ S′.
Call the above iteration procedure sampler, which gives us a new element of
B(S′) at every invocation.
At this point, initialize a zero-filled hashmap 6 arr of size |B(S′)|. The indices
of the hashmap correspond to the elements V ′ of B(S′), and at the end of the
algorithm, each of them will store the corresponding values of βj(V

′, S′).
Suppose the element of B(S′) we have at the current moment is V ′. Check
(in polynomial time) if V ′ is (j, S′)-nice: If so, set arr[V ′] = 1. Otherwise let
arr[V ′] remain 0. Note that arr[V ′] = βj,µ(V

′, S′) at this stage.
Perform the above step for every V ′ ∈ B(S′), ie:- run through the entire sampler
once 7.
After this, start iterating over the elements of V \ S: For every e ∈ V \ S, we
run through the entire sampler once: Suppose the sampler outputs V ′ at some
point. We check, in polynomial time, if V ′ \{e} ∈ B(S′) or not. If V ′ \{e} does
belong to B(S′), we update arr[V ′] += arr[V ′ \ {e}].
We claim that when we are done iterating over every element of V ′ \S this way,
arr[V ′] will equal βj(V

′, S′).
Indeed, note that our algorithm above calculates fn, where {v1, v2, . . . , vn} is
the enumeration of V ′ \ S, and we have

fi(V
′) =

{
fi−1(V

′) + fi−1(V
′ \ {vi}), if V ′ \ {vi} ∈ B(S′)

fi−1(V
′), otherwise

f0(V
′) = βj(V

′, S′)

6We assume that for any t = ω(1), it takes us O∗(t) time to perform t updates on the
hashmap. Indeed, note that V ′ ⊆ 2V \S . Consequently there exists an easy-to-calculate hash
from B(S′) to [2|V \S|], ie:- we can access arr[V ′] in O(|V \ S|) = O(poly(|V (G)|)) time

7and then “reset” the sampler
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Note that the above equations are just the dynamic programming method of

calculating ̂βj,µ(·, S′). But ̂βj,µ(·, S′) = βj(·, S′), and consequently, our algo-
rithm is correct and runs in O∗(|B(S′)|) time.

Note:- The “dynamic programming method” described above for calculating the
zeta-transform of βj,µ is just Yates’ algorithm for fast zeta transform.
At this juncture we make two crucial assumptions: We assume that the degree
in G[V ] of every vertex in S is ≤ ∆, where ∆ is some constant. Further, we
also assume that the distance in G[V ] between any two vertices of S is at least
3, ie:- the neighborhoods in G[V ] of any two vertices in S are disjoint.

Lemma 6.6.
∑

S′⊆S |B(S′)| ≤ 2|V \S|(2− 2−∆)|S\Sj | = O(2|V \S| · (2− 2−∆)|S|)

Proof. Denote by n(s) := |N(s)|. Further, define N :=
⋃

s∈S N(s), N c :=
(V \ S) \N . Then(

V \

(
S ∪

⋃
s′∈S′

N(s′)

))
=

(
V \

(
S ∪

⋃
s∈S

N(s)

))
∪

⋃
s∈S\S′

N(s)

= N c ∪
⋃

s∈S\S′

N(s) = N c ⊔
⊔

s∈S\S′

N(s)

where the last equality follows due to the fact that N(s1) ∩ N(s2) = ∅ for
s1, s2 ∈ S, s1 ̸= s2.
Consequently,

|B(S′)| = 2|N
c|
∏

s∈S\S′

2|N(s)|
∏
s∈S′

(2|N(s)| − 1)

= 2|N
c|
∏
s∈S

2|N(s)|
∏
s∈S′

(1− 2−|N(s)|) ≤ 2|N
c|+

∑
s∈S |N(s)|(1− 2−∆)|S

′|

= 2|V \S|(1− 2−∆)|S
′|

Consequently

∑
S′⊆S\Sj

|B(S′)| ≤ 2|V \S|
∑

S′⊆S\Sj

(1−2−∆)|S
′| = 2|V \S|

|S\Sj |∑
i=0

(
|S \ Sj |

i

)
(1−2−∆)i

= 2|V \S|(2− 2−∆)|S\Sj |

We finally state two more lemmata to finish our proof.

Lemma 6.7. If
⋂k

j=1 Sj ̸= ∅, then our coloring c : V0 7→ [k] can’t be extended
to V (G).

10



Proof. Note that s ∈
⋂k

j=1 Sj implies that s has a neighbor of every possible
color in [k]. Consequently, s can’t be assigned any color in [k] without conflicts.

Henceforth we will assume that
⋂k

j=1 Sj = ∅.

Lemma 6.8. For any S′ ⊆ S, V ′ ⊆ V , V ′ ̸∈ B(S′), we have
∏k

j=1 βj(V
′, S′) =

0.

Proof. V ′ ̸∈ B(S′) implies that there is some s′0 ∈ S′ such that V ′ ∩N(s′0) = ∅.
Furthermore, since

⋂k
j=1 Sj = ∅, for every s ∈ S there exists some js ∈ [k]

such that V js
0 ∩ N(s) = ∅. But then (V ′ ∪ V

js′0
0 ) ∩ N(s′0) = ∅, implying that

βjs′0
(V ′, S′) = 0 by Definition 3, as desired.

Consequently, by Lemma 6.8 and Observation 1 we have

h(G,S′) =
∑

V ′∈B(S′)

(−1)|V \S|−|V ′|
k∏

j=1

βj(V
′, S′ \ Sj)

But then, by Theorem 6.5, h(G,S′) can be calculated in O∗(|B(S′)|) time, and
consequently, by Lemma 6.6, H(G,S) can be calculated in O∗(2|V \S| · (2 −
2−∆)|S|) = O∗(2|V |−|S| · (2−2−∆)|S|) time, which implies, by Theorem 6.3, that
we can decide, in O∗(2|V |−|S| · (2 − 2−∆)|S|) time, whether or not our coloring
c : V0 7→ [k] can be consistently extended to V (G).
Summarizing the above as a theorem,

Theorem 6.9. Let G be a graph, V0 ⊆ V (G) be a subset of its vertices, and let
c : V0 7→ [k] be any coloring of G[V0]. Denote by V := V (G) \V0, and let S ⊆ V
be an independent set in G such that the degree in G[V ] of every vertex in S is
≤ ∆, where ∆ is some constant. Further, we also assume that the distance in
G[V ] between any two vertices of S is at least 3, ie:- the neighborhoods in G[V ]
of any two vertices in S are disjoint. Then for any k ∈ N we can decide if c can
be extended to V (G) in O∗(2|V |−|S| · (2 − 2−∆)|S|) = O∗(2|V |γ|S|) time, where
γ < 1.

Note:- The time taken to check if a coloring can be extended to the whole graph
depends only on the uncolored vertices, V .

6.3 Finishing Touches

Theorem 6.10. Let G be a graph and let S ⊆ V (G) be an independent set in
G such that the degree of every vertex in S is ≤ ∆, where ∆ is some constant.
Then we can solve k-coloring, ie:- tell if χ(G) ≤ k, in O∗(2|V (G)|(1 − εk,∆)

|S|)
time, for some constant εk,∆ > 0 dependent only on k and ∆.

11



Proof. We apply Theorem 5.3 with U = V (G) \ S, F = {N(s)}s∈S and A =
log k

− log(1−2−(1+∆))
to obtain a sub-universe V0 ⊆ U , and a sub-collection F ′ =

{N(s) : s ∈ S′}, where S′ ⊆ S. Then we have

|S′| ≥ ρ(∆, A) · |S|+A · |V0|

Furthermore, for every s′1, s
′
2 ∈ S′, N(s′1) ∩ N(s′2) ⊆ V0. Denote by V :=

V (G) \ (S′ ∪ V0).
Now, we enumerate over all k|V0| mappings c : V0 7→ [k]. If c also happens to be
a coloring (which can be checked in polynomial time), we apply Theorem 6.9 to
check if c can be extended to V (G) in O∗(2|V |−|S′| · (2− 2−∆)|S

′|) time. If any
such c is indeed extensible, then G is k-colorable, otherwise not.
The runtime of this algorithm is O∗(k|V0|2|V |−|S′|(2− 2−∆)|S

′|). But

k|V0|2|V |−|S′|(2− 2−∆)|S
′| = k|V0|2|V |(1− 2−(1+∆))|S

′|

≤ k|V0|2|V |(1− 2−(1+∆))ρ(∆,A)·|S|+A·|V0| = 2|V |(1− 2−(1+∆))ρ(∆,A)·|S|

≤ 2|V (G)|(1− 2−(1+∆))ρ(∆,A)·|S| = 2|V (G)|(1− εk,∆)
|S|

as desired.

Lemma 6.11. Let G be a (α,∆)-bounded graph with n vertices. Then G has
an independent set S of size atleast αn

1+∆ .

Proof. Let X ⊆ V (G) be the promised subset of V (G) which contains ≥ αn
vertices, each of degree atmost ∆ (in G). For every vertex x under consideration
8, delete all its neighbors in G, add x to our independent set S, and then
remove x too from the vertices under consideration. Since deg(x) ≤ ∆, at every
step, we remove at most 1 + ∆ vertices (we remove x and discard ≤ ∆ of its
neighbors), and consequently we are left with an independent set S of size at

least |X|
1+∆ ≥ αn

1+∆ .

Note:- The degree of every vertex in S is atmost ∆. Furthermore, S can be
found in polynomial time.

Theorem 6.12. We can decide k-coloring for (α,∆)-bounded graphs in O∗((2−
εk,∆,α))

n time, where n is the number of vertices of our graph.

Proof. Let S be the independent set promised by Lemma 6.11. Note that S
satisfies all the hypotheses of Theorem 6.10, and consequently the k-colorability

of G can be checked in 2|V (G)|(1− εk,∆)
|S| ≤ 2|V (G)|(1− εk,∆)

α·|V (G)|
1+∆ = (2(1−

εk,∆)
α

1+∆ )|V (G)| = (2− εk,∆,α)
|V (G)|, as desired.

8initially all vertices in X are under consideration
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7 k-colorability of graphs that aren’t (α,∆)-bounded

Before we prove the final theorem, we outline how the reduction works for graphs
that are not (α,∆)-bounded, and consequently have small dominating sets.

Lemma 7.1. Let G be a graph with a dominating set R. We can solve k-
coloring for G by solving atmost k|R| instances of (k−1)-list-coloring on graphs
with |V (G)| − |R| vertices.

Proof. Take any coloring c : R 7→ [k]. We then have a list function listc :
V (G) \R 7→ 2[k], where listc(v) := [k] \ {c(r) : r ∈ R, r is adjacent to v}. Since
R is dominating, |listc(v)| ≤ k−1 for every v ∈ V (G)\R. Clearly, c is extensible
to G if and only if G[V (G)\R] is list colorable by listc. The lemma then follows
immediately.

8 k-coloring to (k − 1)-list coloring reduction

Theorem 8.1. If we can decide (k − 1)-list coloring in O∗((2− ε1)
n) time for

some ε1 > 0, then we can decide k-coloring in O∗((2 − ε2)
n) time for some

ε2 > 0, where n denotes the number of vertices of our graph G.

Proof. Let α,∆ be constants such that
(

k
2−ε1

)η(α,∆)

· (2 − ε1) < 2, where

η(α,∆) :=
(

1+ln(1+∆)
1+∆ + α

)
is the constant of Lemma 5.4. Note that this is

possible since η(α,∆) can be made arbitrarily small by choosing a small enough
α and a large enough ∆.
Thus, once we have fixed α,∆, we can check in polynomial time if our graph is
(α,∆)-bounded. If it is not, then by Lemma 7.1 and Lemma 5.4, we can decide
k-coloring in o∗(2n) time for G. If G is (α,∆)-bounded, then also we can decide
k-coloring in o∗(2n) time by virtue of Theorem 6.12, and so, we are done.

9 Interlude

Thus, we have managed to establish Zamir’s result that 5-colorability can be
decided in faster than 2n time. As we saw earlier, to make Zamir’s argument
work, we need Beigel-Eppstein’s 4-list-colorability result.
We shall now dive into Beigel-Eppstein’s arguments. But before that, we cover
a quick recursion technique in exponential algorithms.
Let P be a problem, and suppose our algorithm takes time T (n) to solve in-
stances of size n. As is typical in many exact exponential algorithms, we usually
reduce an instance of size n into instances of size n − r1, . . . , n − rℓ, and thus
the run-time T (n) satisfies the recursion T (n) = T (n− r1) + T (n− r2) + . . .+
T (n− rℓ) + poly(n).
The above recursion has the solution T (n) = O∗(λn), where λ = λ(r1, . . . , rℓ)
is known as the work factor of the algorithm. The analysis used to derive
this solution yields that λ is in fact the smallest positive root of the equation

13



∑
x−ri = 1. This leads us to some easy facts such as if r1 ≥ r′1, . . . , rℓ ≥ r′ℓ,

then λ(r1, . . . , rℓ) ≤ λ(r′1, . . . , r
′
ℓ). We shall use this heavily in the following

arguments.

10 An Introduction to Beigel-Eppstein’s Argu-
ments

We begin by describing the very general notion of constraint satisfaction prob-
lems, which, among other things, encompasses the 3-SAT problem, thus captur-
ing the entire gamut of NP-complete problems.

Definition 6 ((a, b)-Constraint Satisfaction Problems). Suppose we have n
variables x1, . . . , xn, each of which can be assigned a color from the set of colors
C, where |C| = a. We also have m = poly(n) constraints, where each con-
straint involves r ≤ b variables, say xℓ1 , . . . , xℓr , and that constraint dictates
that (xℓ1 , . . . , xℓr ) ̸= (c1, . . . , cr), for some c1, . . . , cr ∈ C.
The constraint satisfaction problem (CSP) then asks if all of these constraints
can be satisfied simultaneously.

For example, consider a (3, 4)-CSP, with the set of colors C = {1, 2, 3}, variables
x1, . . . , x5, and constraints, which go as follows: (x1, x3, x4, x5) ̸= (1, 2, 2, 3), (x1, x2, x3) ̸=
(1, 1, 1), (x2, x3, x4, x5) ̸= (1, 3, 2, 3), (x1, x5) ̸= (3, 1), (x2) ̸= (1), (x1, x3, x5) ̸=
(3, 2, 1). It is easy to see that the assignment (x1, x2, x3, x4, x5) = (2, 2, 2, 2, 2) 9

satisfies all of these constraints, and thus this particular instance of a (3, 4)-CSP
is satisfiable.
We sometimes express the constraint (xℓ1 , . . . , xℓr ) ̸= (c1, . . . , cr) as {(xℓ1 , c1), . . . , (xℓr , cr)}.
It is also easy to see that 3-SAT is equivalent to (2, 3)-CSPs: Indeed, for any
clause in our 3-SAT instance (in CNF), say xi ∨¬xj ∨ xk, we translate it to the
constraint {(xi, 0), (xj , 1), (xk, 0)}, and similarly any constraint from a (2, 3)-
CSP can be encoded as a disjunctive clause.
Similarly, the 3-colorability of a graph can be expressed as a (3, 2)-CSP, and the
k-colorability of a graph as a (k, 2)-CSP.
Consequently, given the expressive power of CSPs, algorithms to decide if some
given CSP is satisfiable, or to search for a solution if a CSP is satisfiable, are
very important. So let’s dive straight in!

10.1 An Alternative Viewpoint of (a, 2)-CSPs

Before we begin our analysis of CSPs, we present a “graphical” presentation
of (a, 2)-CSPs, which helps us think better about them. Firstly, note that
any constraint of size 2 in a (a, 2)-CSP is of the form {(xi, ci), (xj , cj)}, where
ci, cj ∈ C. Consequently, we can create a graph with n vertices, with the ith

vertex representing a “bag of colors” corresponding to the possible assignments
of xi. Finally, to represent the constraint {(xi, ci), (xj , cj)}, we construct an

9formally, an assignment ν is a mapping from the set of variables to the set of colors
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edge between the color ci in the ith vertex and the color cj in the jth vertex.
Note that there can be multiple edges connecting the ith and the jth vertices,
each edge corresponding to a different constraint involving xi and xj . Moreover,
constraints of size 1, of the form {(xi, c)} can be easily accommodated: Indeed,
we exclude the color c from the bag of colors of the ith vertex. Thus, from now
on we will assume that our (a, 2)-CSPs don’t contain any constraint of size 1.
To illustrate our graphical construction, the (4, 2)-CSP instance given by C =
{R,G,B, Y }, {(x1, R), (x2, G)}, {(x1, G), (x2, B)}, {(x2, R), (x3, G)}, {(x2, Y ), (x4, R)},
{(x3, Y ), (x4, B)}, {(x1, B)}, {(x1, Y )} is represented by the graph shown in
Fig. 1.

Figure 1: Graphical Representation of a (4, 2)-CSP

10.2 CSP Reductions

In this section, we shall “clean” up general CSPs so that they become more
amenable to further analysis.

Proposition 10.1. Let v be a variable in an (a, 2)-CSP, and suppose only two
of the a colors are allowed at v. Then we can obtain an equivalent (a, 2)-CSP
with one fewer variable.

Proof. Let our color set be C, and let g, h be the two colors allowed on v. Now,
for any color c ∈ C, define Sc := {(u, d) : {(u, d), (v, c)} is a constraint}. Now,
for every (x, e) ∈ Sg and (y, f) ∈ Sh (where x, y are variables and e, f are colors),
introduce a new constraint {(x, e), (y, f)} into the CSP. Finally, delete all the
constraints containing v, and delete the variable v itself. If the original CSP
was satisfiable, then there existed a satisfying assignment ‘ν’, which given any
(x, e) ∈ Sg and (y, f) ∈ Sh, did not assign x to e and y to f , since that would
exhaust both g and h as possible colors for v. Then ν satisfies the constraint
{(x, e), (y, f)}, and consequently ν satisfies the new CSP too. Conversely, if
the original CSP was not satisfiable, then for any assignment ν there existed
(x, e) ∈ Sg, (y, f) ∈ Sh such that ν(x) = e, ν(y) = f , and then this ν would fail
to satisfy the new CSP too.
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We make a small definition at this point: Suppose we have a (k, 2)-instance,
and suppose we also know that some variable xi can be assigned only r colors
among the k available (the k − r colors which are not allowed on xi were ruled
out due to various constraints). Then we call xi a “r-color variable”. Clearly, we
can remove 1-color variables from any instance. Moreover, by Proposition 10.1,
without loss of generality, we can assume that our (a, 2)-CSP instances only
contain r-color variables for r ≥ 3.

Proposition 10.2. Let (v, d), (w, e) be two variable-color pairs (i.e. v, w are
variables and d, e are colors) in an (a, 2)-CSP instance such that the only con-
straints involving both v, w are of the form {(v, d), (w, e′)} or {(v, d′), (w, e)}
where d′ ̸= d, e′ ̸= e. Furthermore, assume there are no constraints of the form
{(v, d)} or {(w, e)}. Then there exists an equivalent (a, 2)-CSP instance with
two fewer variables.

Proof. The assignment of v to d, and w to e, doesn’t change the satisfiability of
the instance.

Proposition 10.3. Consider a (3, 2)-CSP instance, and let (v, d) be a variable-
color pair such that there exists another variable w for which we have all 3
constraints {(v, d), (w, c)}, {(v, d), (w, d)}, {(v, d), (w, e)}, where the color set is
{c, d, e}. Then we can find an equivalent (3, 2)-CSP with one fewer variable.

Proof. We can’t assign v to d. Thus there are only 2 colors left for v, and we
can then invoke Proposition 10.1.

Proposition 10.4. Let (v, d) be a variable-color pair that doesn’t occur in any
constraint of a CSP. Then we can obtain an equivalent CSP with one fewer
variable.

Proof. We can simply assign v to d without changing the satisfiability of the
instance.

Proposition 10.5. Let (v, c) and (v, d), c ̸= d, be variable-color pairs in
an (3, 2)-CSP instance, such that whenever the instance contains a constraint
((v, c), (w, e)) it also contains a constraint ((v, d), (w, e)), where e is some ar-
bitrary color, not necessarily distinct to c, d. Then we can find an equivalent
(3, 2)-CSP instance with one fewer variable.

Proof. If any satisfying assignment ν assigns v to d, then we can change that
ν(v) from d to c, and ν will continue to satisfy our instance. Thus, without loss
of generality, v is never assigned to d. Equivalently, v only has 2 color choices,
and we finish by invoking Proposition 10.1.

Whenever we receive any CSP instance, we apply all of the above propositions
and remove any variables/colors as necessary. Thus WLOG we always assume
that none of the above propositions applies to a CSP instance.
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11 Algorithms for CSPs

We are finally in a position to begin elucidating algorithms for our instances. As
mentioned above, since (3, 2)-CSPs already capture 3-SAT, our primary focus
will be on algorithms for (3, 2)-CSPs. Furthermore, we’ll show later that (4, 2)-
CSPs can be “reduced” to (3, 2)-CSPs, thus making (3, 2)-CSP algorithms even
more important.

11.1 A Randomized Algorithm for (3, 2)-CSPs

Theorem 11.1. Given a satisfiable (3, 2)-CSP instance, there exists a random-

ized algorithm that finds the solution to the instance in expected time O∗
(√

2
n
)
.

Proof. If there are no constraints in our instance, or if every constraint involves
only one variable, then deciding satisfiability can be done in poly(n) time.
Now, consider any constraint of the form {(xi, ci), (xj , cj)}. Without loss of
generality, assume ci = cj (the argument for other cases is the same, with the
names of relevant colors changed), as shown in Fig. 2. Note that any valid
coloring of the two vertices shown in the figure is retained in exactly two of the
four small configurations drawn on the right-hand side of Fig. 2.
Thus, our randomized algorithm is as follows: Given a (3, 2)-CSP instance,
pick any constraint (which consists of two variables, both of which are 3-color),
and randomly choose one of the 4 reduced configurations as depicted in Fig. 2.
In the reduced configuration, both variables become 2-color and thus can be
eliminated by Proposition 10.1. Thus, in every reduction, we can remove two
variables. Furthermore, the probability that satisfiability is maintained in any
reduction is ≥ 1

2 . Consequently, after n/2 reductions (note that these reduc-

tions can be carried out in polynomial time), with probability 2−n/2 we’ll be
left with a satisfying assignment (provided a satisfying assignment existed in
the first place).
Thus, if we’re given a satisfiable (3, 2)-instance, we will need to carry out the
above reduction process 2n/2 times (in expectation) to find a satisfying assign-
ment.

Although this randomized algorithm is quite slick, it is possible to do even better
deterministically. We shall see the deterministic algorithm now.

11.2 A deterministic algorithm for (4, 2)-CSPs

In this section, we shall not only elucidate a deterministic algorithm for (3, 2)-
CSPs, but we shall also show how a (4, 2)-CSP instance can be reduced to a
(3, 2)-CSP instance. Consequently, our algorithm for (3, 2)-CSPs transfers over
to (4, 2)-CSPs.
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Figure 2: Reduction of a (3, 2)-CSP

11.2.1 Reduction of (4, 2)-CSPs to (3, 2)-CSPs

Before we describe the reduction of (4, 2)-CSPs to (3, 2)-CSPs, we first describe
how we estimate the “size” of a (4, 2)-CSPs.
Firstly, let our (4, 2)-CSP instance have ni i-color variables, where i ∈ {3, 4}.
Now, note that a 4-color variable can be reduced to two 3-color variables as
shown in Fig. 3. Thus, a natural measure of size might be n = n3+2n4. However,
in order to obtain a fast algorithm, we shall perform a book-keeping trick: We
shall instead declare the “size” of a (4, 2)-CSP instance to be n = n3+(2−ε)n4,
where ε < 1

2 is a small constant we shall optimize to obtain a low work factor
for our algorithm.
Given a (4, 2)-CSP instance, consider a constraint η := {(v,R), (w,R)} 10,

Figure 3: 4-color to 3-color transformation

10as in the proof of Theorem 11.1, the exact identity of the colors in a constraint doesn’t
matter. One can give the same arguments, making replacements wherever necessary
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which is the only constraint containing (v,R). If η is also the only constraint
containing (w,R), then η is called an isolated constraint. Otherwise, η is known
as a dangling constraint.

Proposition 11.1. Let η = {(v,R), (w,R)} be an isolated constraint in a (4, 2)-
CSP instance. Then the instance can be reduced to smaller instances with work
factor ≤ λ(2− ε, 3− ε).

Proof. Note that for isolated constraints, without loss of generality, we may
assume that exactly one of v or w is assigned R since this assignment doesn’t
violate η, and neither does it violate any other constraint since η is isolated.
We make cases:

1. If v, w are both 3-color variables, then we “merge” v and w into a 4-color
variable, as in Fig. 3. This reduces the size of the problem by ε (we go
from n3 = 2, n4 = 0 to n3 = 0, n4 = 1) without any additional work.

2. If v is a 3-color variable and w is a 4-color variable: Then we reduce the
problem into 2 cases. If w is assigned R, then w is removed from the
instance. Furthermore, since w gets R, v is forbidden from using R, and
thus v becomes a 2-color variable, and can also be eliminated, due to
Proposition 10.1. Consequently, the problem size reduces by 1+ (2− ε) =
3− ε in this case. Otherwise, if v is assigned R, then v gets removed from
the instance and w becomes a 3-color variable, and the size of the instance
reduces by 1 + (1 − ε) = 2 − ε. Thus, in this case, we get a recurrence
11 of the form T (n) = T (n − (3 − ε)) + T (n − (2 − ε)) + poly(n), and
consequently the work factor is λ(2− ε, 3− ε).

3. If both v and w are 4-color variables, and if we assign R to any one of
them, then we lose a 4-color variable and convert a 4-color variable into a
3-color variable, thus leading to a reduction in size of (2− ε) + (1− ε) =
3 − 2ε, which leads to a work factor of λ(3 − 2ε, 3 − 2ε). Since ε < 1

2 ,
λ(3− 2ε, 3− 2ε) ≤ λ(3− ε, 2− ε).

Proposition 11.2. Let η = {(v,R), (w,R)} be an dangling constraint (we as-
sume (w,R) is present in other constraints too, while (v,R) is only present in η)
in a (4, 2)-CSP instance. Then the instance can be reduced to smaller instances
with work factor ≤ λ(2− ε, 3− ε).

Proof. Suppose:

1. w gets R: Note that (w,R) is associated to some (x,C), where x ̸= v,
since otherwise we could invoke Proposition 10.5. Thus, since w gets R,
we eliminate (v,R) and another color choice of x.

11note that if the original (4, 2)-instance is satisfiable, then at least one of the two cases
that we made must also lead to a satisfiable instance. Thus we solve the smaller instances to
determine whether the original instance was satisfiable or not
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2. w doesn’t get R: Then we may safely assign v to R.

Once again, we make cases:

1. Both v, w are 3-color variables: In that case, not assigning w to R, and
assigning v to R leads to a loss of 2. Assigning w to R leads to loss of
1 + 1 + (1− ε) = 3− ε: Indeed, we can eliminate w, v becomes a 2-color
variable and gets eliminated, and one neighbor of w loses a color, leading
to a loss ≥ 1− ε. Thus we have a work factor of λ(2, 3− ε).

2. Both v, w are 4-color variables: In that case, not assigning w to R, and
assigning v to R leads to a loss of (1 − ε) + (2 − ε) = 3 − 2ε. Assigning
w to R leads to loss of (2 − ε) + (1 − ε) + (1 − ε) = 4 − 3ε: Indeed,
we can eliminate w, v becomes a 3-color variable, and one neighbor of w
loses a color, leading to a loss ≥ 1 − ε. Thus we have a work factor of
λ(3− 2ε, 4− 3ε).

3. v is 3-color, while w is 4-color: In that case, not assigning w to R, and
assigning v to R leads to a loss of (1 − ε) + 1 = 2 − ε. Assigning w to R
leads to loss of (2 − ε) + 1 + (1 − ε) = 4 − 2ε: Indeed, we can eliminate
w, v becomes a 2-color variable and gets eliminated, and one neighbor of
w loses a color, leading to a loss ≥ 1 − ε. Thus we have a work factor of
λ(2− ε, 4− 2ε).

4. v is 4-color, while w is 3-color: In that case, not assigning w to R, and
assigning v to R leads to a loss of 1 + 2 − ε = 3 − ε. Assigning w to R
leads to loss of 1+ (1− ε) + (1− ε) = 3− 2ε: Indeed, we can eliminate w,
v becomes a 3-color variable, and one neighbor of w loses a color, leading
to a loss ≥ 1− ε. Thus we have a work factor of λ(3− ε, 3− 2ε).

All the work factors obtained above are smaller than the work factor in the
lemma statement.

Before the next proposition, we make a small definition: We say that (v,R)
implies (w,R) if there are edges between (v,R) and (w, c) for every permissible
color c ̸= R on w. In other words, (v,R) implies (w,R), if v assumes the color
R, then w is forced to choose R.

Proposition 11.3. Suppose we have a (4, 2)-CSP instance that has two con-
straints {(v,R), (w,B)}, and {(v,R), (w,G)}, for variables v, w and colors R,B,G.
Let ε ≤ 0.4. Then the instance can be replaced by smaller instances with work
factor at most λ(2− ε, 3− 2ε).

Proof. We assume that there are no variable color pairs (v, c) which occur in
exactly one constraint, as otherwise we’ll apply Proposition 11.1 or Proposi-
tion 11.2 to reduce our instance first before applying the current lemma.
Also, set C = {R,G,B, Y }.
Suppose (v,R) does not imply (w, c) for some c (WLOG put c = R): Then w
must be a 4-color variable. Indeed, if w is a 3-color variable, then since (v,R) is
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already adjacent to 2 of those colors, it would imply the third one (if it wasn’t
adjacent to it), and if (v,R) was adjacent to all 3 colors in w, then R wouldn’t
be a permissible color for v. Thus, w is a 4-color variable, with (v,R) being
incident to exactly two colors (B,G) in w. Thus, if we restrict w to B,G, then
w becomes a 2-color variable and can be eliminated, and v also loses the color R.
It can be seen that there is a size reduction of at least 3−2ε in this case. In the
other case, if w is restricted to R, Y , then w can once again be eliminated lead-
ing to a size reduction of 2−ε, thus leading to a work factor of ≤ λ(2−ε, 3−2ε).
Otherwise, assume (v,R) implies (w,R). Suppose (w,R) doesn’t imply anything
else. Then if we don’t assign w to R, then we have to avoid assigning v to R. If
we assign w to R, then we eliminate w, and at least two other colors from the
neighbors of w (apart from v). Analyzing the work factors similarly as above
yields that if w is a 3-color variable, then we get a work factor of λ(2−ε, 3−2ε),
and if w is 4-color, we have a work factor of λ(2− 2ε, 4− 3ε).
The remaining case is that the target of every implication is the source of an-
other. In this case, we can find a cycle of implications. If no other constraints
involve the colors in the cycle, then we can assign each variable the respective
color involved in the cycle, and reduce the size of our instance by ℓ, where ℓ was
the length of the cycle. Otherwise, suppose (v,R) in the cycle is involved in
some external constraint. If we assign v to R, then the colors for every variable
in the cycle are fixed. If v is not assigned to R, then we must also avoid all the
colors in the cycle. In all of these cases, the work factor is ≤ λ(2, 3− ε), which
is obtained when our cycle has only two 3-color variables.

Proposition 11.4. Suppose we have a (4, 2)-CSP instance that has a variable
v and a color R such that at least one of the following conditions is satisfied:

1. (v,R) is involved in ≥ 3 constraints, and v is a 4-color variable.

2. (v,R) is involved in ≥ 4 constraints, and v is a 3-color variable.

Then the instance can be reduced with a work factor ≤ λ(1− ε, 5− 4ε).

Proof. By Proposition 11.3, we assume that in each constraint, (v,R) is con-
nected to a different variable. Thus if we assign v to R, then we eliminate v
and reduce a color from the choices of each of the ≥ 3 neighbors of (v,R). If we
don’t assign v to R, then we eliminate one color choice for v.
Thus, if v had 4 choices, and if we assigned v to R, we would lose ≥ (2 − ε) +
3(1− ε) = 5− 4ε. If we didn’t assign v to R, then we’d lose ≥ 1− ε, leading to
a work factor of λ(1− ε, 5− 4ε).
If v had 3 choices, and if we assigned v to R, we would lose ≥ 1+4(1−ε) = 5−4ε.
If we didn’t assign v to R, then we’d lose ≥ 1, leading to a work factor of
λ(1, 5− 4ε). The lemma follows.

In the original Beigel-Eppstein paper [1], even more lemmata of the above na-
ture were proved. We don’t include those lemmata here as they don’t add
any significantly new idea to the problem: Indeed, Beigel and Eppstein make
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increasingly fine-grained structural assumptions, and calculate the correspond-
ing work factors, until the structural assumptions exhaust all possibilities for a
(4, 2)-CSP.
Thus, after applying all the relevant lemmata, the work factor of the entire algo-
rithm is of the form f(ε) := max(λ(1−ε, 5−4ε), λ(2−ε, 3−2ε), λ(2−ε, 3−ε), . . .).
We optimize f(ε) to obtain that f(ε) attains its minima at ε ≈ 0.095543, and the
minimum value of f(ε) equals Λ := λ(4, 4, 5, 5) ≈ 1.36443, which becomes the

work factor for our algorithm. As promised, this is better than the O∗
(√

2
n
)

randomized algorithm for (3, 2)-CSPs.
Some immediate consequences of the above result are as follows:

Corollary 11.1.1. 3-coloring and 3-list coloring on a graph with n vertices
and m edges can be solved in O∗(Λn) time, and 3-edge coloring can be solved in
O∗(Λm) time.

Proof. All of the problems mentioned here can be translated to (3, 2)-CSPs.

As it turns out, we can improve the runtimes for vertex coloring further up to
O∗(1.3289n) using similar structural techniques as we have seen so far.
Another corollary goes as follows:

Corollary 11.1.2. There exists a randomized algorithm that finds the solution
to any solvable (d, 2)-CSP in expected time O∗ ((0.4518d)n), where d ≥ 4.

Proof. Randomly choose 4 colors for every vertex and solve the resulting (4, 2)-
CSP. The probability that our random choice contains the solution is

(
4
d

)n
, and

thus we expect to run our algorithm
(
d
4

)n
times. Each run takes O∗((Λ2−ε)n)

time, and thus total time taken is O∗((Λ2−ε)n(d/4)n). On putting ε = 0.095543
and simplifying, we obtain the desired answer.

12 Conclusion

Thus, in this thesis we saw two of the big breakthroughs made in the field of
exact exponential algorithms, namely Zamir’s algorithm and Beigel-Eppstein’s
algorithm. Through these algorithms, we illustrated the inclusion-exclusion
principle, and the divide and conquer paradigm in the context of exact expo-
nential algorithms.
Finally, the state of the art today is that we can decide, faster than 2n, ≤ 5-
colorability. We can even decide 6-colorability faster than 2n if we’re allowed
to use randomization. The primary obstruction in Zamir’s argument, which
doesn’t allow us to extend it to 7-colorability and beyond, is the fact that Za-
mir’s argument is a list-coloring to normal-coloring “inductive” argument. Re-
call that we proved that 5-colorability was o∗(2n) decidable using that fact that
4-list-colorability was o∗(2n) decidable. Since we don’t know anything about
5-list-colorability for example, Zamir’s arguments don’t work, as it is.
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The obstruction in Beigel-Eppstein’s arguments which prevent extension to 5-
list-colorability, is that the case-work in their arguments is very specific to (4, 2)-
CSPs. Once again, it seems that significantly new ideas will be needed to extend
their work for higher CSPs.
Thus, extending Zamir’s and Beigel-Eppstein’s arguments to answer whether
k-colorability is o∗(2n) decidable for every k ∈ N is a natural avenue to pursue.
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