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Notation

Let n ∈ N = {1, 2, . . .}. Then we refer to the set {1, 2, . . . , n} as [n].
Given two sets S, T ⊆ [n], we use S△T or S⊕T to denote the symmetric difference of S and T , i.e. (S \T )∪ (T \S).
We shall canonically identify Fn

2 with {−1, 1}n, with (x1, . . . , xn)mapping to ((−1)x1 , . . . , (−1)xn). Note that 1 ∈ F2

maps to −1 ∈ {−1, 1}, i.e. −1 is the “true” bit according to our scheme.

Acknowledgements

All the material in these notes is from Ryan O’Donnell’s CMU Lecture series [O’D12], and his notes [O’D21]. The
order, and the depth in which topics have been covered, though, is our own prerogative.

�1. Boolean Function Analysis: Introduction and Preliminaries

Theorem 1.1 (Fourier Analysis on the Boolean hypercube). Let n be a natural number. Consider any function
f : {−1, 1}n 7→ R. Then there exists a unique function f̂ : 2[n] 7→ R such that

f(x) =
∑
S⊆[n]

f̂(S)xS

for every x = (x1, . . . , xn) ∈ {−1, 1}n.
The function f̂ is also known as the Fourier transform of f .

Proof. We prove this statement by induction on n. For n = 1, note that any function f : {−1, 1} 7→ R can be written
as f(x) =

(
f(1)+f(−1)

2

)
+
(

f(1)−f(−1)
2

)
· x, and further note that this representation is the unique representation of

the form f̂(∅) + f̂({1}) · x.
Thus the base case of our induction hypothesis is verified. Now, suppose the statement is true for some n = k−1, k ≥
2. Then note that any function f : {−1, 1}k 7→ R can be written as

f(x1, x2, . . . , xk) =

(
f(1, x2, . . . , xk) + f(−1, x2, . . . , xk)

2

)
+

(
f(1, x2, . . . , xk)− f(−1, x2, . . . , xk)

2

)
· x1

But g(x2, . . . , xk) := f(1,x2,...,xk)+f(−1,x2,...,xk)
2 and h(x2, . . . , xk) := f(1,x2,...,xk)−f(−1,x2,...,xk)

2 are functions on the
(k − 1)-dimensional Boolean hypercube and thus by the induction hypothesis possess a unique Fourier transform.
Then combining the Fourier transforms for those two functions yields a Fourier transform for f , and it is not too
difficult to see that the Fourier transform is unique too. ■

Definition 1.1 (Multilinear Polynomials). A multivariate polynomial is called multilinear if it is linear (affine) in
each of its variables. For example, 3x− 4xy + 5z − 2 is a multilinear polynomial in x, y, z, but x2 + 4xy is not.

Corollary 1.2. Any function on the Boolean hypercube is equivalent to a multilinear polynomial of degree at most
n.
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Proposition 1. Every polynomial of degree d over the Boolean hypercube is equivalent to a multilinear polynomial
of degree at most d. Furthermore, because of the uniqueness of the Fourier transform, this multilinear polynomial
is also the Fourier transform of our polynomial.

Proof. Note that over the Boolean hypercube, every polynomial is equivalent to a multilinear polynomial of lower
degree: One can see this even without invoking the Fourier expansion of the polynomial. Indeed, note that if xi ∈
{−1, 1}, then x2i = 1. Consequently, every term

∏n
i=1 x

ki
i in the polynomial can be replaced by the multilinear term∏n

i=1 x
ki mod 2
i , and thus we get an equivalent multilinear polynomial with a degree at most the original polynomial,

as desired. ■

Corollary 1.3. Multilinear polynomials are their own Fourier decompositions.

The material covered upto here can also be found, verbatim, in my notes on the SoS hierarchy.
We now define the character functions.

Definition 1.2. For every S ⊆ [n], we define χS := xS , i.e. χS : {−1, 1}n 7→ {−1, 1} ⊆ R is a function.

Then note that every function on the Boolean hypercube can be written as f =
∑

S⊆[n] f̂(S)χS , i.e. {χS}S⊆[n] span
R{−1,1}n . Now, we shall quickly define the notion of a dot product in our vector space R{−1,1}n :

Definition 1.3 (Dot Product). Given f, g ∈ R{−1,1}n , we define ⟨f, g⟩ := 2−n
∑

x∈{−1,1}n f(x)g(x) = Ex∼{−1,1}n [fg],
where x is sampled uniformly from {−1, 1}n.

This dot product is just the rescaled version of the usual dot product on R-vector spaces. In the case that f, g are
themselves Boolean-valued functions, the dot product measures “similarity” between them, i.e. if f, g : {−1, 1}n 7→
{−1, 1} are two functions, then

Ex [fg] = Pr
x
(f(x) = g(x))− Pr

x
(f(x) ̸= g(x)) = 1− 2Pr

x
(f(x) ̸= g(x)) = 1− 2 dist(f, g)

where dist(f, g) is the fractional Hamming distance between f and g.
We now lay the basis (no pun intended) for Boolean function analysis.

Theorem 1.4. {χS}S⊆[n] form an orthonormal basis of R{−1,1}n under the aforementioned dot product, i.e.
⟨χS , χT ⟩ = 1S=T .

Proof. Note that ⟨χS , χT ⟩ = Ex [xS · xT ] = Ex [xS⊕T ]. If S ̸= T , then xS⊕T is not identically equal to 1 and thus will
vanish when we take expectations. ■

Corollary 1.5. For any f ∈ R{−1,1}n , we have f̂(S) = ⟨f, χS⟩.

https://drive.google.com/file/d/1hwomvZVkW_2IdMP4RU0CpBxqalCGozHh/view
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Corollary 1.6 (Plancherel’s theorem). For any f, g ∈ R{−1,1}n , we have ⟨f, g⟩ =
∑

S⊆[n] f̂(S)ĝ(S).

Corollary 1.7 (Parseval’s Theorem). For any f ∈ R{−1,1}n , we have ∥f∥22 := ⟨f, f⟩ =
∑

S⊆[n] f̂(S)
2. In particular, if

f : {−1, 1}n 7→ {−1, 1} is a Boolean valued function, then
∑

S⊆[n] f̂(S)
2 = 1.

Remark. For any p ≥ 1, we can similarly define ∥f∥p := E
[
|f |p

]1/p, and ∥·∥p is a norm on R{−1,1}n . Recall from
analysis, that if a > b ≥ 1, then ∥f∥a ≥ ∥f∥b with equality holding iff f is a constant function. Also recall Hölder’s
inequality, which says that ∥f∥p · ∥g∥q ≥ ∥fg∥1 for any p, q ≥ 1 such that 1

p + 1
q = 1.

Definition 1.4. For any f ∈ R{−1,1}n , we define the weight of f at S to be f̂(S)2. Given any 0 ≤ k ≤ n, we also define
W k[f ] :=

∑
|S|=k f̂(S)

2,W≤k[f ] :=
∑

|S|≤k f̂(S)
2,W>k[f ] :=

∑
|S|>k f̂(S)

2.

Remark. As our intuition about Boolean functions develops further, we shall see that “complicated” Boolean func-
tions have a non-negligible fraction of their total weight in their high-frequency components. Conversely, functions
for whichW≤k/W≤n ratio is close to 1 for some “small” k, are easy to deal with, and more easily understood and
characterized.

Proposition 2. For any f ∈ R{−1,1}n , E [f ] = f̂(∅).

Proof. Note that E [f ] = E [f · χ∅], since χ∅ is identically equal to 1. The proposition follows. ■

Proposition 3. For any f ∈ R{−1,1}n , Var(f) = E
[
f2
]
− E [f ]

2
=
∑

S⊆[n],S ̸=∅ f̂(S)
2 =W>0[f ].

Proof. Note that E
[
f2
]
= ∥f∥22, and thus, by Corollary 1.7, E

[
f2
]
=
∑

S⊆[n] f̂(S)
2. We are then done by Proposi-

tion 2. ■

We end by proving a short identity about the variance of a Boolean function.

Lemma 1.8. Let f : {−1, 1}n 7→ {−1, 1} be a Boolean-valued function. Then Var(f) = 4Pr(f(x) = 1) · Pr(f(x) ̸= 1).

Proof. Write α = Pr(f(x) = 1). Note thatE [f ] = α−(1−α) = 2α−1. ThusVar(f) = E
[
f2
]
−E [f ]

2
= 1−(2α−1)2 =

4α(1− α), as desired. ■

We now recast the basic notions of probability in our language. This will be useful later on, when we have to deal
with the Fourier transforms of the convolutions of PDFs.
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Definition 1.5 (Probability Density Functions). A function φ : Fn
2 7→ R≥0 is a PDF if Ex∼Fn

2

[
φ(x)

]
= 1, i.e.

2−n
∑

x∈Fn
2
φ(x) = 1. Equivalently, the probability mass function corresponding to φ is: Pr(x) = 2−nφ(x).

Evidently, the uniform distribution is φ ≡ 1. The dirac delta concentrated on (0, . . . , 0) ∈ Fn
2 is φ{0}(x) = 2n1x=0n .

We now prove that sampling and taking inner products are the same operations.

Proposition 4. Let φ be a PDF. Then Ey∼φ

[
f(y)

]
= ⟨φ, f⟩, where f : Fn

2 7→ R is any Boolean function.

Proof. Note that Ey∼φ

[
f(y)

]
= 2−n

∑
y∈Fn

2
φ(y)f(y) = ⟨φ, f⟩. ■

The reason why probability densities arise in the study of Boolean Function Analysis is that Fourier coefficients mul-
tiply under the convolution of PDFs.
Before that, let’s recall what convolutions were: Let φ,ψ be probability distributions. Sample y ∼ φ, z ∼ ψ (inde-
pendently), and set x := y + z. Now, note that the PDF of x is given by Ey∼φ

[
ψ(x− y)

]
. But Ey∼φ

[
ψ(x− y)

]
=

Ey∼Fn
2

[
φ(y)ψ(x− y)

]
. We thus define the convolution of φ,ψ to be:

(φ ∗ ψ)(x) := Ey∼Fn
2

[
φ(y)ψ(x− y)

]
Standard probability theory tells us that ∗ is commutative and associative. We can now state the connection between
convolutions and Fourier coefficients:

Theorem 1.9. Let f, g be PDFs. Then f̂ ∗ g(S) := f̂(S)ĝ(S).

Proof. Note that

f̂ ∗ g(S) = ⟨f ∗ g, χS⟩ = Ex∼Fn
2

[
(f ∗ g)(x) · χS(x)

]
= Ex∼Fn

2

[
Ey∼Fn

2

[
f(y)g(x− y)

]
· χS(x)

]
= E

y,z
i.i.d∼Fn

2

[
f(y)g(z)χS(y + z)

]
Note that χS(y + z) = χS(y)χS(z). Thus

f̂ ∗ g(S) = E
y,z

i.i.d∼Fn
2

[
f(y)χS(y)g(z)χS(z)

]
= Ey∼Fn

2

[
f(y)χS(y)

]
Ez∼Fn

2

[
g(z)χS(z)

]
= f̂(S)ĝ(S)

as desired. ■

1.1. Linearity Testing

Note that if a function f : Fn
2 7→ F2 is linear, then:

1. f(x+ y) = f(x) + f(y) for all x, y.

2. f(x) =
∑n

i=1 aixi where ai ∈ F2 = {0, 1} for all i ∈ [n], i.e. f = χS , where S := {i : ai = 1}.

Thus, we say that a function f : Fn
2 7→ F2 is approximately linear if dist(f, χS) = ε for some S ⊆ [n], i.e. f is close to a

character.
The notion of approximate linearity lends itself well to the setting of property testing, which we describe below:
Suppose we have a function f : Fn

2 7→ F2, and suppose we have oracle access to f , i.e. we can query the value of f(x),
given some x ∈ Fn

2 . Using as few oracle queries as possible, we want to determine if f is approximately linear.
The very famous Blum-Luby-Rubinfeld (BLR) test [BLR90] provides a rather surprising resolution to this question.
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Theorem 1.10 (BLR Linearity Test). Given f : Fn
2 7→ F2, choose x, y from Fn

2 in an i.i.d manner. Declare f to be linear
if f(x+ y) = f(x) + f(y).
If the above test declares f to be linear with probability 1− ε, then f is ε-close to some χS .

Remark. We repeat the above testM times to obtain an estimator for ε.

Proof. View f as a map from Fn
2 to {−1, 1}, and thus the BLR test is f(x)f(y)==f(x+y), or equivalently, we accept

iff 1
2 + 1

2f(x)f(y)f(x+ y) = 1, and reject if the expression is 0. Thus,

1− ε = Pr(BLR accepts f) = Ex,y

[
1

2
+

1

2
f(x)f(y)f(x+ y)

]
=

1

2
+

1

2
Ex,y

[
f(x)f(y)f(x+ y)

]
=

1

2
+

1

2
Ex

[
f(x) · (f ∗ f)(x)

]
=

1

2
+

1

2
⟨f, f ∗ f⟩ = 1

2
+

1

2

∑
S⊆[n]

f̂(S)f̂ ∗ f(S) = 1

2
+

1

2

∑
S⊆[n]

f̂(S)3

Thus, ∑
S⊆[n]

f̂(S)3 = 1− 2ε

However,

1− 2ε =
∑
S⊆[n]

f̂(S)3 ≤

(
max
S⊆[n]

f̂(S)

)
·
∑
S⊆[n]

f̂(S)2

Since f is a Boolean-valued function, by Parseval’s theorem,
∑

S⊆[n] f̂(S)
2 = 1, and thusmaxS⊆[n] f̂(S) ≥ 1−2ε, and

thus there exists someS∗ ⊆ [n] such that f̂(S∗) ≥ 1−2ε. But that implies f̂(S∗) = ⟨f, χS∗⟩ = 1−2 dist(f, χS∗) ≥ 1−2ε,
and we’re done. ■

Note that even though we can determine if f is close to some linear function in O(1) queries, actually determining
the linear function will take us ≥ n queries.
This naturally leads us to the next question: Suppose f is ε-close to some χS∗ , but we don’t know what S∗. Can we
nevertheless evaluate the output of χS∗ on some given input x? Note that directly querying f may not work, as x
may be one of those inputs where f gives the wrong output.
Thus, consider the following algorithm:
For this algorithm, we are assured that there is some S∗ ⊆ [n] such that dist(f, χS∗) ≤ ε. Note that this algorithm

Algorithm 1: Local-Correct
Data: f ∈ {−1, 1}Fn

2 , x ∈ Fn
2

Result: χS∗(x), correct with probability ≥ 1− 2ε
1 Pick y uniformly from Fn

2 ;
2 return f(x)f(x+ y)

returns the correct value of χS∗(x) (with high probability) for every x, while if we directly queried f(x), then for
some x, wewould bewrongwith probability 1. Thus, while averaged over Fn

2 , the success probability of Algorithm 1
and f(x) is the same, Algorithm 1 gives us a pointwise guarantee which direct querying doesn’t.

Proof of correctness of Algorithm 1. Since y, x + y are uniformly distributed (though not independent), except with
probability ≤ 2ε, f(y) = χS∗(y), f(x+ y) = χS∗(x+ y), and thus f(y)f(x+ y) = χS∗(y)χS∗(x+ y) = χS∗(x+ 2y) =
χS∗(x), as desired. ■
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�2. Social Choice Theory

Observe that a function f : {−1, 1}n 7→ {−1, 1} can be seen as a voting scheme of an election between two candidates,
1 and −1. For every possible voting instance in {−1, 1}n, f selects an output for that instance.
To quickly see some voting rules, we have:

1. Majority (Majn): Assume n is odd. Then Majn simply selects the majority vote. In other words, for any
x ∈ {−1, 1}n,Majn(x) := sign(x1 + · · ·+ xn).

2. Weighted Majority: The weighted majority rule, also known as the linear thresholding rule, is defined as
sign(a0 + a1x1 + · · ·+ anxn), where a0, . . . , an ∈ R.

3. Dictator: Boolean functions of the form χ{i} =: χi are called dictators since their entire output depends upon
a single bit xi.

4. k-juntas: Boolean functions whose output depends upon ≤ k input bits. For example, the number of 1-juntas
is 2n+ 2 (2 constant functions, n dictators, and n anti-dictators (of the form −χi)).

5. ORn : {−1, 1}n 7→ {−1, 1}: The OR function is −1 if and only if the input is (−1, . . . ,−1).

6. ANDn : {−1, 1}n 7→ {−1, 1}: The AND function is 1 if and only if the input is (1, . . . , 1).

7. Tribes: We define Tribesw,s : {−1, 1}sw 7→ {−1, 1} as follows:

Tribesw,s(x1,1, . . . , x1,w, . . . , xs,1, . . . , xs,w) := OR(AND(x1,1, . . . , x1,w), . . . ,AND(xs,1, . . . , xs,w))

Note that E
[
Tribesw,s

]
= 1− 2(1− 2−w)s. Thus, if s ∼ 2w ln 2, then E

[
Tribesw,s

]
≈ 0.

We say that a voting rule is unbiased if E [f ] = 0 (this is assuming that the co-domain of f is {−1, 1}): Majn and χi

are unbiased. Tribesw,s, where s ∼ 2w ln 2, is also approximately unbiased.
A function f : {−1, 1}n 7→ {−1, 1} is called symmetric if f(σ(x)) = f(x) for every permutation σ ∈ Sn, x ∈ {−1, 1}n.
Majn is symmetric.
A function f : {−1, 1}n 7→ {−1, 1} is called transitive if for any i, j ∈ [n], there exists a permutation π ∈ Sn such
that π(i) = j, and f(π(x)) = f(x) for every x ∈ {−1, 1}n. Symmetric functions are obviously transitive. Tribes is
transitive but not symmetric.
We also define the very important notion of influence:

Definition 2.1 (Influence). For any i ∈ [n], and any Boolean function on Fn
2 , we define the influence of i on f ,

denoted Infi(f), to be Prx∼Fn
2

(
f(x) ̸= f(x⊕ i)

)
, where x⊕ i is just x, with the ith bit flipped. Interpreted differently,

the influence of a bit i is the probability that it flips the result with its vote.

Example. We shall work out some examples of influence:

1. Infi(ANDn): Note that the only time the ith bit has the power to flip the result is if all the other bits have the
same value. Thus Infi(ANDn) = 2−(n−1).

2. It is easy to see that Infi(χj) = 1i=j , and Infi(χ[n]) = 1.

3. Note that

Infi(Majn) =

(
n−1

(n−1)/2

)
2n−1

= Θ

(
1√
n

)
Indeed, the ith bit flips the vote if and only if the other votes are evenly split between 1 and −1.
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4. The tribes function: Since Tribes is transitive, the influence of all variables on the tribe function is the same.
Calculating the influence yields

Infi(Tribesw,s) =
2(2w − 1)s−1

2ws

Puttingn = ws, s ∼ 2w ln 2 (tomakeTribesw,s approximately unbiased), and simplifying yields Infi(Tribesw,s) =
Θ( lnn

n ).

The influence of the Tribes function is essentially as low as it gets, thanks to the famous Kahn-Kalai-Linial theorem:

Theorem 2.1 (Kahn-Kalai-Linial Theorem ([KKL88])). For every f : {−1, 1}n 7→ {−1, 1}, there exists an i ∈ [n],
such that

Infi(f) ≥ Ω

(
lnn

n

)
·Var(f)

Remark. The Var(f) factor is just a ‘normalizing factor’. Note that if f is unbiased, i.e. E [f ] = 0, then Var(f) = 1
(since f is Boolean valued).
An even stronger version of the KKL theorem holds, thanks to Talagrand:

Theorem 2.2 (Talagrand’s Theorem ([Tal94])). For every f : {−1, 1}n 7→ {−1, 1},

n∑
i=1

Infi(f)

ln
(

1
Infi(f)

) ≥ Ω(Var(f))

Remark. Talagrand’s theorem shows that the total amount of influence can’t be too small, i.e. if the maximum influ-
ence of any variable is small, then lots of variables must have that influence.
The notion of influence is so important that it deserves a definition even in the case the co-domain of our Boolean
function is R.

Definition 2.2 (Derivative operator). Let f : {−1, 1}n 7→ R be a function, and let i ∈ [n] be some bit. Then the
derivative w.r.t i, Di(f) : {−1, 1}n 7→ R, is defined as

(
Di(f)

)
(x) :=

f(xi7→1)− f(xi 7→−1)

2

where xi 7→b := (x1, . . . , xi−1, b, xi+1, . . . , xn), for b ∈ {−1, 1}.

Note that when the co-domain of f is {−1, 1}, the range ofDi(f) is a subset of {−1, 0, 1}. Furthermore,
(
Di(f)

)
(x) ̸=

0 only when the ith bit is pivotal for x, i.e. flipping the ith bit changes the output of the function. Thus, an indicator
variable for whether the ith bit is pivotal at x is given by

(
Di(f)

)
(x)2.

Now, when the co-domain of f is R,
(
Di(f)

)
(x)2 is not an indicator variable in general, but it continues to indicate

the extent to which i is pivotal, i.e. if i is not pivotal, then
(
Di(f)

)
(x) = 0, while if i is pivotal, then

(
Di(f)

)
(x)2

measures the “magnitude of the flip”. Thus, we define,
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Definition 2.3 (Influence for general Boolean functions). Let f : {−1, 1}n 7→ R be a function. We define the influence
of the ith bit as

Infi(f) := Ex

[(
Di(f)

)
(x)2

]

Remark. Note that
Infi(f) := Ex

[(
Di(f)

)
(x)2

]
= ⟨Di(f), Di(f)⟩ = ∥Di(f)∥22

Definition 2.4 (Monotonicity). We call a function f : {−1, 1}n 7→ R monotone if f(x′1, x′2, . . . , x′n) ≥ f(x1, x2, . . . , xn)
whenever x′1 ≥ x1, x

′
2 ≥ x2, . . . , x

′
n ≥ xn.

If f is monotone, thenDi(f) ≥ 0, which conforms to our intuition of derivative from real analysis. Also note that all
of the voting rules we have seen so far ((weighted) Majority, AND,OR,Tribes), are monotone.
We prove another very useful property of derivatives.

Proposition 5. Let f =
∑

S⊆[n] f̂(S)χS be the Fourier decomposition of f . Then Di(f) =
∑

i∈S f̂(S)χS\{i}.

Proof. Since Di is a linear operator, we’re done by observing that Di(χS) = 1i∈S · χS\{i}. ■

Corollary 2.3. Let f : {−1, 1}n 7→ R be a function. Then Infi(f) =
∑

i∈S f̂(S)
2.

For monotone Boolean-valued functions, we have a remarkable characterization of influence.

Lemma 2.4. Let f : {−1, 1}n 7→ {−1, 1} be a monotone function. Then Infi(f) = f̂({i}) = f̂(i).

Proof. Since f is a monotone Boolean valued function, Di(f) ≥ 0, and thus the range of Di(f) is a subset of {0, 1}.
Consequently, Di(f)

2 = Di(f), and thus E
[
Di(f)

2
]
= E

[
Di(f)

]
= D̂i(f)(∅) = f̂(i), as desired. ■

Under some symmetry assumptions, we can prove even more.

Lemma 2.5. Let f : {−1, 1}n 7→ {−1, 1} be a monotone and transitive function. Then Infi(f) ≤ 1√
n
for every i ∈ [n].

Proof. Since f is transitive, f̂(i) = f̂(j) for all i, j ∈ [n]. Now, applying Parseval’s theorem yields:

1 =
∑
S⊆[n]

f̂(S)2 ≥
n∑

i=1

f̂(i)2 = nf̂(1)2

as desired. ■
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We now define the total influence of a function.

Definition 2.5 (Total Influence). Let f : {−1, 1}n 7→ R be a function. We define the total influence of f to be:

I[f ] :=
n∑

i=1

Infi(f)

Remark. Some remarks are as follows:

1. Note that I[χ[n]] = n, I[χ∅] = I[1] = 0. It’s easy to see that these are extremal among Boolean-valued functions,
i.e. if f : {−1, 1}n 7→ {−1, 1} is some function, then 0 ≤ I[f ] ≤ n.

2. If f : {−1, 1}n 7→ {−1, 1} is a monotone function, then I[f ] =
∑n

i=1 f̂(i).

3. I[Majn] = Θ(
√
n).

4. Let f : {−1, 1}n 7→ R be any function. Note that

I[f ] =
n∑

i=1

Infi(f)
Corollary 2.3

=

n∑
i=1

∑
i∈S

f̂(S)2 =
∑
S⊆[n]

|S| · f̂(S)2

Furthermore, I[f ] =
∑

S⊆[n] |S| · f̂(S)2 ≥
∑

S ̸=∅ f̂(S)
2 Proposition 3

= Var(f). We have thus proven what is known
as Poincaré’s inequality, and we state our conclusions below.

Theorem 2.6 (Fourier Characterization of Total Influence). For any function f : {−1, 1}n 7→ R,

I[f ] =
∑
S⊆[n]

|S| · f̂(S)2 =

n∑
k=0

k ·W k[f ]

Theorem 2.7 (Poincaré’s Inequality). For any function f : {−1, 1}n 7→ R, I[f ] ≥ Var(f). Equality holds iff f̂(S) = 0

for all |S| ≥ 2, i.e. f = f̂(∅) +
∑n

i=1 f̂(i)xi, i.e. f − f̂(∅) is linear.

Remark. Recall from Lemma 1.8 that if f : {−1, 1}n 7→ {−1, 1} is a function, thenVar(f) = 4Pr(f(x) = 1) ·Pr(f(x) ̸=
1). Now, WLOG assume E [f ] ≥ 0, and write S := f−1(1).
Note that f can be viewed as a 2-coloring of the Boolean hypercube, with vertices in S being “colored” 1, and the
other vertices being colored −1. Also, we call an edge (of the Boolean hypercube) “i-directed” if the endpoints of
that edge differ in their ith coordinate. Then observe that Infi(f) = Pr(f(x) ̸= f(x⊕ i)) is the fraction of i-directed
edges whose endpoints have different colors. Along similar lines, 1

n I[f ] =
1
n

∑n
i=1 Infi(f) is the fraction of edges

whose endpoints have different colors. In other words, 1
n I[f ] is a (normalized) measure of the surface area of S

since the edges with differently colored endpoints are precisely the edges emanating from S .
Thus an inequality between I[f ], which measures the surface area of S, and Var(f), which is linked to |S| = vol(S),
is an isoperimetric inequality associated to the Boolean function f . This is why Poincaré’s inequality is sometimes
also referred to as an isoperimetric inequality. We shall explore this connection in greater detail later.
We finish our discussion with a nice social-scientific perspective on total influence.
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Lemma 2.8. Let f : {−1, 1}n 7→ {−1, 1} be a function. Then

Ex

[
Number of voters who agreed with the outcome

]
=
n

2
+

1

2

n∑
i=1

f̂(i)

Proof. Note that

Ex

[
Number of voters who agreed with the outcome

]
= Ex

 n∑
i=1

(
1

2
+

1

2
xif(x)

)
=
n

2
+

1

2

n∑
i=1

Ex

[
xif(x)

]
=
n

2
+

1

2

n∑
i=1

⟨χi, f⟩ =
n

2
+

1

2

n∑
i=1

f̂(i)

■

Remark. In social choice theory, one of the objectives while designing a voting mechanism is to ensure that as many
people agree with the outcome as possible, in expectation. Thus, achieving this goal is equivalent to maximizing∑n

i=1 f̂(i). Furthermore, if f is monotone (as most voting schemes are), then maximizing
∑n

i=1 f̂(i) is equivalent to
maximizing I[f ].

We shall now prove that among all Boolean valued functions,
∑n

i=1 f̂(i) is maximized by Majn. Thus, according to
the social objective desired above,Majn is the “optimal” voting mechanism.

Theorem 2.9. Among all f : {−1, 1}n 7→ {−1, 1},
∑n

i=1 f̂(i) is maximized byMajn.

Proof. Note that
n∑

i=1

f̂(i) =

n∑
i=1

Ex

[
xif(x)

]
= Ex

[
f(x) · (x1 + · · ·+ xn)

]
Clearly this expression is maximized when f(x) = sign(x1 + · · ·+ xn) = Majn(x), as desired. ■

Corollary 2.10. For all monotone f : {−1, 1}n 7→ {−1, 1}, I[f ] ≤ I[Majn] = Θ(
√
n).
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�3. Noise Stability and Arrow's Theorem

We will investigate how stable a Boolean function is to perturbations in its input. To do that, we first define a model
of perturbation.

Definition 3.1 (ρ-perturbation). Let x ∈ {−1, 1}n, and let ρ ∈ [−1, 1] be a parameter. Construct a random string
y ∈ {−1, 1}n, as follows:

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

We write y ∼ Nρ(x) to denote that y was generated through the above process.

Remark. Some remarks are as follows:

1. y should be viewed as a “noisy” version of x.

2. If ρ = 1 (resp. −1), then y is always equal to x (resp. −x). If ρ = 0, y is a uniformly random string in {−1, 1}n.

3. We call (x, y) a ρ-correlated random pair if x is uniformly random in {−1, 1}n, and y ∼ Nρ(x). If (x, y) is a
ρ-correlated random pair, then E [xi] = E [yi] = 0, but E [xiyi] = ρ.

4. Let x be arbitrary (x is not random), and let y ∼ Nρ(x). Then yi and yj are independent, for every i ̸= j.

We can now define the main notion of interest, namely noise stability:

Definition 3.2. For f ∈ R{−1,1}n

, ρ ∈ [−1, 1], the noise stability of f , denoted Stabρ[f ], is defined as:

Stabρ[f ] := E(x,y) ρ-correlated random pair
[
f(x)f(y)

]

Remark. Note that Stabρ[χS ] = E(x,y) ρ-correlated random pair
[
χS(x)χS(y)

]
= E(x,y) ρ-correlated random pair

[∏
i∈S xiyi

]
=∏

i∈S E [xiyi] = ρ|S|, i.e. Stabρ[χS ] = ρ|S|.
Note that for any f : {−1, 1}n 7→ {−1, 1}, and any distribution D on {−1, 1}n × {−1, 1}n, we have

E(x,y)∼D
[
f(x)f(y)

]
= Pr(f(x) = f(y))− Pr(f(x) ̸= f(y)) = 1− 2Pr(f(x) ̸= f(y))

We thus define the noise sensitivity of f as follows:

Definition 3.3. For f : {−1, 1}n 7→ {−1, 1}, and a parameter δ ∈ (0, 1], we define the noise sensitivity of f to be:

NSδ[f ] := Pr
(x,y) (1−2δ)-correlated random pair

(f(x) ̸= f(y))

In other words, if every bit of x is flipped with probability δ, then noise sensitivity measures the probability that the
output changes.

Remark. Note that NSδ[f ] =
1
2

(
1− Stab1−2δ[f ]

)
.
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We can prove, using the Central Limit Theorem, that,

Stabρ[Majn]
n→∞−→ 2

π
arcsin(ρ) =⇒ NSδ[Majn]

n→∞−→ 2

π

√
δ +O(δ3/2)

We now make the process of adding noise an “operator”.

Definition 3.4 (Noise Operator). Given a parameter ρ ∈ [−1, 1], we have an operator Tρ : R{−1,1}n 7→ R{−1,1}n , such
that (

Tρ(f)
)
(x) := Ey∼Nρ(x)

[
f(y)

]

Proposition 6. For any f ∈ R{−1,1}n , where f =
∑

S⊆[n] f̂(S)χS ,

Tρ(f) =
∑
S⊆[n]

ρ|S|f̂(S)χS

Proof. Note that Tρ is linear, so it suffices to show that Tρ(χS) = ρ|S|χS . Now,

Tρ(χS) = Ey∼Nρ(x)

[
χS(y)

]
= Ey∼Nρ(x)

∏
i∈S

yi

 =
∏
i∈S

E [yi] = ρ|S|

■

Remark. A few remarks are in order:

1. Note that Tρ is a “smoothening” operator: It replaces f(x) by some weighted average of f(y), where the y’s
“closer” to x are given more weightage.

2. Another way to look at the smoothening effect of Tρ is to notice that the “high-frequency” components, namely
f̂(S)xS , where |S| is large, are dampened more.

3. Note that Tρ is a self-adjoint operator (i.e. the matrix representing Tρ in the {χS}S⊆[n] basis is symmetric), i.e.
⟨Tρf, g⟩ = ⟨f, Tρg⟩ for any f, g.

4. By Parseval’s theorem, it is easy to see that ∥Tρf∥2 ≤ ∥f∥2. Tρ is thus a contractivemap. Later on, we will prove

a vast generalization of this fact, namely ∥Tρf∥q ≤ ∥f∥p for all ρ ∈
[
0,
√

p−1
q−1

]
, i.e. provided ρ is small enough,

not only is Tρ is contractive in the ∥·∥p norm, but it is also contractive in the ∥·∥q norm (recall that ∥f∥a ≥ ∥f∥b
if a > b for any f ∈ R{−1,1}n), i.e. it is “hyper”-contractive.

We shall now establish a connection between noise stability and the noise operator.

Lemma 3.1. For any f ∈ R{−1,1}n , Stabρ[f ] = ⟨f, Tρ(f)⟩.

Proof. Note that

Stabρ[f ] = E(x,y) ρ-correlated random pair
[
f(x)f(y)

]
= Ex∼{−1,1}n

[
f(x) · Ey∼Nρ(x)

[
f(y)

]]
= Ex

[
f(x) · (Tρf)(x)

]
= ⟨f, Tρ(f)⟩

■
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Corollary 3.2. For any f ∈ R{−1,1}n , Stabρ[f ] =
∑

S⊆[n] ρ
|S|f̂(S)2 =

∑n
k=0 ρ

kW k[f ].

Proof. Follows by applying Corollary 1.6 on Lemma 3.1. ■

We would now like to characterize the most stable functions in terms of noise stability.

Theorem 3.3. Let f : {−1, 1}n 7→ {−1, 1} be an unbiased Boolean function, i.e. E [f ] = 0. Then Stabρ[f ] ≤
Stabρ[χi] = ρ for any ρ ∈ [0, 1], i ∈ [n], i.e. dictators have the maximum noise stability among all unbiased Boolean-valued
functions.

Proof. Note that

Stabρ[f ] =

n∑
k=0

ρkW k[f ]

Since E [f ] = f̂(∅) = 0,
∑n

k=0 ρ
kW k[f ] =

∑n
k=1 ρ

kW k[f ], and furthermore,

n∑
k=1

ρkW k[f ] ≤ ρ

n∑
k=1

W k[f ]︸ ︷︷ ︸
=1 by Corollary 1.7

= ρ

Since Stabρ[χi] = ρ for any i ∈ [n], we’re done. ■

Remark. Note that the noise stability of anti-dictators, i.e. −χi, is also ρ. Thus a more inclusive phrasing of the above
theorem would say 1-juntas instead of dictators.

3.1. Arrow's Theorem

We shall now present Kalai’s proof [Kal02] of Arrow’s theorem, one of the crown jewels of modern social choice
theory, using Boolean Function Analysis.
We first lay down some basic definitions: Suppose we have candidates a, b, c standing in an election, and suppose n
voters give their (strict) preference orders over a, b, c.
The Condorcet winner of this election, is decided as follows: Fix some voting scheme f : {−1, 1}n 7→ {−1, 1}. Fix a
pair, say {a, c}, and decide a winner among a, c by restricting all preference orders to {a, c}, and then applying f .
Suppose the winner is a, so we say c ≺ a. Do the same for the pairs {a, b}, and {b, c}.
To give an example, suppose we have 3 candidates, a, b, c, and n = 5 voters, with preference orders a ≺ c ≺ b, b ≺
c ≺ a, b ≺ a ≺ c, c ≺ a ≺ b, c ≺ b ≺ a. Further, let our voting rule f simply beMaj5. Then, restricted to the pair {a, c},
we have the preferences a ≺ c, c ≺ a, a ≺ c, c ≺ a, c ≺ a. Thus, if we denote a ≺ c by −1, and c ≺ a by 1, we have the
input (−1, 1,−1, 1, 1), and Maj5(−1, 1,−1, 1, 1) = 1 = c ≺ a, i.e. a defeats c in a pairwise election. Similarly, we note
that a defeats b and b defeats c in pairwise elections too, and thus we have the order c ≺ b ≺ a, i.e. the Condorcet
winner of this particular instance of preference orders is a.
However, if we get a cycle in our order, then we are doomed, since a Condorcet winner can’t be consistently defined.
Indeed, for the candidates a, b, c, the preference orders a ≺ b ≺ c, b ≺ c ≺ a, c ≺ a ≺ b, and the voting rule f = Maj3,
pairwise elections between {a, b} yields a ≺ b, pairwise elections between {b, c} yields b ≺ c, and pairwise elections
between {c, a} yields c ≺ a. Clearly the pairwise results a ≺ b, b ≺ c, c ≺ a can’t be consistently extended to a total
order, and thus we can’t define a Condorcet winner for this particular instance of preference orders.
If a particular preference list induces a cyclic Condorcet order, we call that preference list irrational. Naturally, we
want voting rules f which don’t have any irrational preference list, and thus a Condorcet winner can always be
found. Arrow’s theorem says that the only such functions are the dictators.
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Theorem 3.4 (Arrow’s theorem ([Arr50])). Let f : {−1, 1}n 7→ {−1, 1} be a unanimous functionwhich doesn’t have
any irrational preference list. Then f must be a dictator.

Remark. f is called unanimous if f(b, . . . , b) = b for every b ∈ {−1, 1}.

Proof. Suppose we have n voters, and each voter picks one of the 6 preference lists on a, b, c, uniformly (and inde-
pendently of others). Let x, y, z ∈ {−1, 1}n be 3 strings such that xi = 1 if and only if the ith voter prefers a over b,
and similarly, yi = 1 if and only if the ith voter prefers b over c, and zi = 1 if and only if the ith voter prefers c over a.
This preference list is irrational if and only if f(x) = f(y) = f(z). Now, define the “Not-All-Equals” function
NAE : {−1, 1}3 7→ {0, 1}, such that NAE(−1,−1,−1) = NAE(1, 1, 1) = 0, and NAE is 1 on all other inputs. It is easy
to verify that

NAE(w1, w2, w3) =
3

4
− 1

4
w1w2 −

1

4
w2w3 −

1

4
w3w1

Thus,

Pr(f is rational) = Ex,y,z

[
3

4
− 1

4
f(x)f(y)− 1

4
f(y)f(z)− 1

4
f(z)f(x)

]
=

3

4
− 3

4
Ex,y

[
f(x)f(y)

]
Now, note that Pr(xi = 1) = Pr(yi = 1) = 1

2 , since the preference orders were chosen (uniformly) randomly. Also,
note that xi = yi if and only if c ≺ b ≺ a or a ≺ b ≺ c. Thus Pr(xi = yi) =

1
3 , and thus (xi, yi) are (−1/3)-correlated.

Consequently, Ex,y

[
f(x)f(y)

]
= Stab−1/3[f ], and thus

Pr(f is rational) = 3

4
− 3

4
Stab−1/3[f ] =

3

4
− 3

4

(
1 ·W 0[f ]− 1

3
·W 1[f ] +

1

9
·W 2[f ]− · · ·

)

≤ 3

4
− 3

4

(
−1

3

)(
W 0[f ] +W 1[f ] +W 2[f ] + · · ·

)
= 1

where the last equality follows by Corollary 1.7.
Thus, note that Pr(f is rational) = 1 if and only if W 1[f ] = 1, and W 0[f ] = W 2[f ] = W 3[f ] = · · · = 0. Finally,
observe that if f : {−1, 1}n 7→ {−1, 1} is a function such thatW 1[f ] = 1, then f is either a dictator or an anti-dictator:
Indeed,W 1[f ] = 1 implies that f =

∑n
i=1 aiχi. Now, note that a1 = f(1,1,...,1)+f(1,−1,...,−1)

2 , and thus a1 ∈ {−1, 0, 1}
(and similarly, ai ∈ {−1, 0, 1} for every i ∈ [n]). Furthermore if |ai| = 1 for some i ∈ [n], then aj = 0 for every j ̸= i,
since

∑n
t=1 a

2
t = 1.

Finally, the unanimity condition forces that f can’t be an anti-dictator, and thus, f must be a dictator. ■

Remark. Fourier analysis also yields a “robust” version of Arrow’s theorem, i.e. if Pr(f is rational) = 1− ε, then f is
O(ε)-close to a dictator/anti-dictator. This robust version was proved by Friedgut, Kalai and Naor in 2003.
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�4. Bonami's Lemma, The KKL theorem

Recall that the Tρ operator is contractive. In this chapter, we will initiate our journey towards the so-called hypercon-
tractive theorem, which says that if ρ is small enough, then ∥Tρf∥q ≤ ∥f∥p even if q > p, i.e. the contractivity of Tρ is
so strong that even increasing the norm doesn’t kill off the contraction.
We begin with a simpler lemma, called Bonami’s lemma:

Lemma 4.1 (Bonami’s Lemma). Let f : {−1, 1}n 7→ R be a degree-k function, i.e. f̂(S) = 0 if |S| > k. Then
E
[
f4
]
≤ 9k E

[
f2
]2.

Proof. The statement is trivial for k = 0. Thus assume k ≥ 1. We will prove the statement by double induction on
n, k. Once again, the base case of n = 0 is trivial.
Now, note that

f = xn · poly1(x1, . . . , xn−1) + poly2(x1, . . . , xn−1) = xn · d+ e

where d, e are polynomials in x1, . . . , xn−1. Note that deg(d) ≤ k − 1, since deg(f) ≥ 1 + deg(d). Now,

f4 = x4nd
4 + 4x3nd

3e+ 6x2nd
2e2 + 4xnde

3 + e4

Since d, e don’t involve xn (and thus are independent of it), E
[
xj1n d

j2ej3
]
= E

[
xj1n
]
· E
[
dj2ej3

]
for any j1, j2, j3 ≥ 0.

Furthermore, E
[
x2j+1
n

]
= 0, and E

[
x2jn
]
= 1 for every j ≥ 0, since xn equals ±1 with equal probability. Thus

E
[
f4
]
= E

[
d4
]
+ 6E

[
d2e2

]
+ E

[
e4
]

Similarly,

E
[
f2
]
= E

[
d2
]
+ E

[
e2
]

=⇒ E
[
f2
]2

= E
[
d2
]2

+ 2E
[
d2
]
E
[
e2
]
+ E

[
e2
]2

Since e has only n − 1 variables, 9k E
[
e2
]2 ≥ E

[
e4
]
. Similarly, since d has only n − 1 variables, and deg(d) ≤

k − 1, 9k−1 E
[
d2
]2 ≥ E

[
d4
]
. Finally, by Cauchy-Schwartz, E

[
d2e2

]
≤
√

E [d4] ·
√
E [e4]. But

√
E [d4] ·

√
E [e4] ≤

9k

3 E
[
e2
]
E
[
d2
]
, and we thus have:

E
[
f2
]2

≥ 1

9k−1
E
[
d4
]
+

1

9k
E
[
e4
]
+

6

9k
E
[
d2e2

]
≥ 1

9k

(
E
[
d4
]
+ E

[
e4
]
+ 6E

[
d2e2

])
as desired. ■

Remark. A few remarks are in order:

1. Note that (Dnf)(x) = (f(xn 7→1)+ f(xn 7→−1))/2 = d(x1, . . . , xn−1), i.e. d is the derivative of f w.r.t xn. Further-
more, Exn [f ] = e(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0). Thus, f = f(x1, . . . , xn−1, 0) + (Dnf)(x1, . . . , xn−1, 0)
is basically the “Taylor expansion” of f about xn = 0! Furthermore, since every function over {−1, 1}n is a
multilinear polynomial, the said Taylor expansion doesn’t have any order 2 terms, since the double derivative
of any function f : {−1, 1}n 7→ R w.r.t any xi is 0.

2. To illustrate the next point, consider a randomvariableX , such thatPr(X = 0) = 1−2−n = 1−Pr(X = 1). Then
E
[
X2
]
= E

[
X4
]
= 2−n, and thus E

[
X2
]2
/E
[
X4
]
= 2−n. Now, some reflection onwhy E

[
X2
]2
/E
[
X4
]
is so

small reveals that the behavior of X is not really random: Indeed, it assumes the value 0 with overwhelming
probability and is thus “almost” deterministic. Thus, E

[
X2
]2
/E
[
X4
]
is a good proxy for how random the

variable is, or how close to uniform it is. Consequently, Bonami’s lemma, and by extension the Hypercon-
tractivity theorem, by providing a lower bound for E

[
X2
]2
/E
[
X4
]
, can also be viewed as anti-concentration

results.
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Corollary 4.2. For any f : {−1, 1}n 7→ R with deg(f) ≤ k, ∥f∥2 ≤ ∥f∥4 ≤
√
3
k∥f∥2, where ∥f∥p := E [fp]

1/p for any
p ≥ 1.

Corollary 4.3. For any f : {−1, 1}n 7→ R, ∥T 1√
3
f=k∥4 ≤ ∥f=k∥2, where f=k :=

∑
|S|=k f̂(S)χS .

Proof. Recall that T 1√
3
f=k =

∑
|S|=k

(
1√
3

)k
f̂(S)χS , from which the result follows. ■

Remark. Note that ∥T 1√
3
f∥22 = ⟨T 1√

3
f, T 1√

3
f⟩ =

∑
S⊆[n]

1
3k
f̂(S)2 = Stab 1

3
[f ]. Thus, ∥T 1√

3
f∥2 has a combinatorial

meaning too.
Although the inequality as stated works for only homogenous polynomials, we can obtain a “free” upgrade.

Theorem 4.4 ((2, 4)-hypercontractivity theorem). For any f : {−1, 1}n 7→ R, ∥T 1√
3
f∥4 ≤ ∥f∥2.

Proof. We mimic the proof of Lemma 4.1. We have f = xnd+ e =⇒ Tf = xn · 1√
3
Td+ Te, where T = T 1√

3
. Thus

E
[
(Tf)4

]
=

(
1√
3

)4

E
[
(Td)4

]
+

(
1√
3

)2

· 6E
[
(Td)2(Te)2

]
+E

[
(Te)4

]
≤ E

[
(Td)4

]
+2E

[
(Td)2(Te)2

]
+E

[
(Te)4

]
Cauchy-Schwartz

≤ E
[
(Td)4

]
+ 2
√
E
[
(Td)4

]√
E
[
(Te)4

]
+ E

[
(Te)4

]
=

(√
E
[
(Td)4

]
+
√
E
[
(Te)4

])2

induction hypothesis
≤

(
E
[
d2
]
+ E

[
e2
])2

= E
[
f2
]2

as desired. ■

We can easily prove another hypercontractivity result from the above, using Hölder’s inequality.

Theorem 4.5 ((4/3, 2)-hypercontractivity theorem). For any f : {−1, 1}n 7→ R, ∥T 1√
3
f∥2 ≤ ∥f∥ 4

3
.

Proof. Observe that

∥T 1√
3
f∥22 = ⟨f, T 1√

3
T 1√

3
f⟩

Hölder
≤ ∥f∥ 4

3
· ∥T 1√

3
T 1√

3
f∥4

Theorem 4.4
≤ ∥f∥ 4

3
· ∥T 1√

3
f∥2

as desired. ■

Remark. Since ∥T 1√
3
f∥22 = Stab1/3[f ], we have Stab1/3[f ] ≤ ∥f∥24/3.

To further emphasize the “anti-concentration” nature of Bonami’s lemma, we frame it in a corollary.
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Corollary 4.6. Let f : {−1, 1}n 7→ R be a non-constant function of degree≤ k. Write µ := E [f ] , σ :=
√

Var(f). Then

Pr
x∼{−1,1}n

(
|f(x)− µ| ≥ σ

2

)
>

91−k

16

Proof. Write g := (f − µ)/σ. Then ∥g∥2 = 1, and thus by Lemma 4.1, E
[
g4
]
≤ 9k. Then

Pr

(
|f − µ| ≥ σ

2

)
= Pr

(
|g| ≥ 1

2

)
= Pr

(
|g| ≥ 1

2
∥g∥2

)
= Pr

(
g2 ≥ 1

4
E
[
g2
])

We now invoke the Paley-Zygmund inequality, to get that

Pr

(
g2 ≥ 1

4
E
[
g2
])

>
9

16

E
[
g2
]2

E [g4]
≥ 91−k

16

as desired. ■

Remark. For a proof of the Paley-Zygmund inequality, note that Z = E
[
Z · 1Z<θ E[Z]

]
+E

[
Z · 1Z≥θ E[Z]

]
< θE [Z] +

E
[
Z · 1Z≥θ E[Z]

]
, and now E

[
Z · 1Z≥θ E[Z]

]
≤
√

E [Z2] ·
√

E
[
1Z≥θ E[Z]

]
= Pr(Z ≥ θE [Z]) ·

√
E [Z2], i.e.

Z < θE [Z] + Pr(Z ≥ θE [Z]) ·
√
E [Z2] =⇒ (1− θ)E [Z] < Pr(Z ≥ θE [Z]) ·

√
E [Z2]

and we get that Pr(Z ≥ θE [Z]) > (1− θ)2 E [Z]
2
/E
[
Z2
]
.

Even though Bonami’s lemma is a very special case of the Hypercontractivity theorem, it is already sufficient to
prove the Friedgut-Kalai-Naor theorem.

Theorem 4.7 (Friedgut-Kalai-Naor Theorem). Suppose we have f : {−1, 1}n 7→ {−1, 1} such that W 1[f ] :=∑n
i=1 f̂(i)

2 = 1− δ. Then f is O(δ)-close to some ±χi for some i ∈ [n].

Proof. Let ℓ = f=1 =
∑n

i=1 f̂(i)χi, and thus E
[
ℓ2
]
= W 1[f ] = 1− δ. Towards our goal, we first show that Var(ℓ2) ≤

6400δ 1. Indeed, by Corollary 4.6,

Pr

(
|ℓ2 − (1− δ)| ≥ 1

2

√
Var(ℓ2)

)
>

91−2

16
=

1

144

Now, assume for the sake of contradiction that Var(ℓ2) > 6400δ, and also assume WLOG that δ ≤ 1
1600 . Then

Pr
(
|ℓ2 − (1− δ)| > 40

√
δ
)

≤ Pr
(
|ℓ2 − 1| > 39

√
δ
)
. Now, since |f | = 1 and δ ≤ 1/1600, |ℓ2 − 1| > 39

√
δ =⇒

(ℓ− f)2 ≥ 169δ, and thus E
[
(ℓ− f)2

]
≥ 169δ

144 > δ, which is a contradiction since E
[
(ℓ− f)2

]
= 1−W 1[f ] = δ.

Now,

E
[
ℓ4
]
=

n∑
i=1

f̂(i)4 + 6
∑

1≤i<j≤n

f̂(i)2f̂(j)2

E
[
ℓ2
]2

=

n∑
i=1

f̂(i)4 + 2
∑

1≤i<j≤n

f̂(i)2f̂(j)2

1note that if f = ±χi, then ℓ2 ≡ 1 and Var(ℓ2) = 0
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Thus

1

2
Var(ℓ2) = 2

∑
1≤i<j≤n

f̂(i)2f̂(j)2 =

 n∑
i=1

f̂(i)2

2

−
n∑

i=1

f̂(i)4 = (1− δ)2 −
n∑

i=1

f̂(i)4 ≥ (1− 2δ)−
n∑

i=1

f̂(i)4

=⇒ (1− 2δ)−
n∑

i=1

f̂(i)4 ≤ 3200δ =⇒ 1− 3202δ ≤
n∑

i=1

f̂(i)4 ≤

(
max
i∈[n]

f̂(i)2

)
·

n∑
i=1

f̂(i)2 ≤ max
i∈[n]

f̂(i)2 ≤ max
i∈[n]

|f̂(i)|

as desired. ■

Remark. We immediately have a “robust” version of Arrow’s theorem, i.e. if Pr(f is rational) = 1 − δ, then f is
O(δ)-close to a dictator.
We will now begin our journey towards the KKL theorem, once again by deriving some corollaries of Lemma 4.1 2.

Corollary 4.8. Let A ⊆ {−1, 1}n have volume α, i.e. |A| = α · 2n. Then Stab1/3[1A] ≤ α3/2.

Proof. We know that Stab1/3[f ] ≤ ∥f∥24/3 for any f : {−1, 1}n 7→ R. Thus set f = 1A, and observe that

∥1A∥24/3 =

(
E
[
1
4/3
A

]3/4)2

= E
[
1
4/3
A

]3/2
= E [1A]

3/2
= α3/2

as desired. ■

Exactly similar to the above proof, we have the proof of the following result:

Proposition 7. If g : {−1, 1}n 7→ {−1, 0, 1} is a function such that α = Pr(|g| = 1), then Stab1/3[g] ≤ α3/2.

We are now finally ready to prove the Kahn-Kalai-Linial theorem:

Theorem 4.9 (Kahn-Kalai-Linial Theorem ([KKL88])). For any f : {−1, 1}n 7→ {−1, 1},

max
i∈[n]

Infi[f ] ≥ Ω

(
log n

n

)
·Var(f)

Proof. If f : {−1, 1}n 7→ {−1, 1} is a function, and i ∈ [n], then g := Dif has co-domain {−1, 0, 1}. Now, using the
facts that Stab1/3[h] = ∥T1/√3h∥22 =

∑
S⊆[n](1/3)

|S|ĥ(S)2, and Dif =
∑

i∈S f̂(S)χS\{i} (see Proposition 5), we get
that Stab1/3[g] =

∑
i∈S(1/3)

|S|−1f̂(S)2.
At the same time, by the definition of influence, Pr(|g| = 1) = Infi[f ]. Thus

∑
i∈S

(
1

3

)|S|−1

f̂(S)2 ≤ Infi[f ]
3/2 (4.1)

2Lemma 4.1 captures a significant section of the power of the Hypercontractivity theorem, it is thus unsurprising that it has so many powerful
consequences
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Summing up Eq. (4.1) for all i ∈ [n], we get:

n∑
i=1

∑
i∈S

(
1

3

)|S|−1

f̂(S)2 ≤
n∑

i=1

Infi[f ]
3/2

Now, set
M := max

i∈[n]
Infi[f ]

to obtain
∑n

i=1 Infi[f ]
3/2 ≤M1/2

∑n
i=1 Infi[f ] =M1/2 · I[f ]. Now,

n∑
i=1

∑
i∈S

(
1

3

)|S|−1

f̂(S)2 =
∑
S ̸=∅

|S| ·
(
1

3

)|S|−1

f̂(S)2 ≥ 3
∑
S ̸=∅

(
1

3

)|S|

f̂(S)2 = 3Stab1/3[f ]

We now define the so-called “spectral sample” S , which is a probability distribution supported on 2[n] \{∅}, where
each S is sampled with probability f̂(S)2/Var(f). Then note that

∑
S ̸=∅

(
1
3

)|S|
f̂(S)2 = Var(f) ·ES

[
3−|S|

]
. Apply-

ing Jensen’s inequality (since x 7→ 3−x is convex) yields ES

[
3−|S|

]
≥ 3−ES [|S|]. But

ES

[
|S|
]
=
∑
S ̸=∅

|S| · f̂(S)
2

Var(f)
=

I[f ]
Var(f)

=: Ĩ[f ]

Thus

M1/2 · I[f ] ≥ 3Var(f) · 3−Ĩ[f ] =⇒ M1/2 ≥ 31−Ĩ[f ]

Ĩ[f ]
=⇒ M ≥ 91−Ĩ[f ]

Ĩ[f ]2

Now, if Ĩ[f ] ≥ 0.3 log2 n, then I[f ] ≥ 0.3 ·Var(f) log n =⇒ M ≥ 0.3 ·Var(f) log n/n. Otherwise, note that 91−x/x2 is
a decreasing function of x, and thus

M ≥ 91−0.3 log2 n/n

0.09 log22 n/n
2
= Ω̃(n−0.3 log2 9) = Ω̃(n−0.951) ≫ Var(f) · Ω

(
log n

n

)
as desired. ■

Remark. Recall that the unbiased Tribes function has Var ≈ 1, and maximum influence equal to Θ(log n/n), thus
showing that the KKL inequality is sharp.
Note that although we didn’t prove the general hypercontractivity theorem, which states that for any f ∈ R{−1,1}n ,
∥Tρf∥q ≤ ∥f∥p for all 0 ≤ ρ ≤

√
(p− 1)/(q − 1), q > p ≥ 1, we did state Bonami’s lemma, and derived special cases

of the theorem (Theorem 4.4, Theorem 4.5). As it turns out, these 3 special cases capture almost all of the power
of the general theorem: Indeed, we managed to prove some very powerful theorems (Theorem 4.7, Theorem 4.9)
using them.
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�5. p-biased Analysis

We often come across scenarios where we have Bernoulli Random variables, with parameters that aren’t necessarily
1/2. For example, take the Erdős-Rényi model G(n, p), or Bernoulli percolation on lattices in general.
We would thus like to develop a theory of Fourier analysis where all x ∈ {−1, 1}n aren’t sampled uniformly; rather,
x is sampled with probability pk(1− p)n−k, where k is the number of entries of x that are −1.
To that end, let πp denote the distribution of the Bernoulli/Rademacher random variable, which assumes −1 with
probability p, and 1 with probability 1− p, i.e.

µi := Exi∼πp
[xi] = 1− 2p

σi :=
√

Var(xi) = 2
√
p(1− p)

For simplicity, we will assume that all our variables x1, . . . , xn are i.i.d sampled from πp, i.e. x is sampled from π⊗n
p .

Now, define

ϕ(xi) :=

(
xi − µ

σ

)
We have ϕ(1) =

√
p/(1− p), ϕ(−1) = −

√
(1− p)/p. Furthermore, E [ϕ] = 0,E

[
ϕ2
]
= 1. Now, for any S ⊆ [n], define

ϕS(x) :=
∏
i∈S

ϕ(xi)

Note that if p ̸= 1/2, then ϕS · ϕT ̸= ϕS⊕T in general. However, Ex∼π⊗n
p

[
ϕS(x) · ϕT (x)

]
= 0, since any i ∈ (S \ T ) ∪

(T \ S) factorizes out and gives 0 expectation.
Now, for any f : {−1, 1}n 7→ R, we can define our Fourier coefficients as:

f̂p(S) := Ex∼π⊗n
p

[
f(x)ϕS(x)

]
Since the {ϕS}S⊆[n] is still an orthonormal basis under the modified inner product space, our Fourier decomposition
f =

∑
S⊆[n] f̂p(S)ϕS continues to hold.

We now define the derivative and influence operators: Note that ∂
∂ϕi

= ∂
∂xi

· ∂xi

∂ϕi
= σ · ∂

∂xi
. Thus the new derivative

operator is defined as:
Di,pf := σDif = 2

√
p(1− p)Dif

Thus the p-biased derivative is just a rescaled version of the “original” derivative operator. Similar to Proposition 5,
we have the equality

Di,p(f) =
∑
i∈S

f̂p(S)ϕS\i

Using the above definition of derivatives, and simplifying Infi,p[f ] := Ex∼π⊗n
p

[
(Di,pf)

2
]
yields:

Infi,p[f ] := σ2 Pr
x∼π⊗n

p

(f(x) ̸= f(x⊕i))

Also define:

Ip[f ] :=
n∑

i=1

Infi,p[f ]

Furthermore, similar to Lemma 2.4, if f is monotone, we have

Infi,p[f ] = σf̂p(i)

The reason p-biased Fourier analysis is so important is that it allows us to track the behavior of the system as we
change p, which is a proxy for the expectation of the system. For example, consider the Boolean function fconn :

{−1, 1}(
n
2) 7→ {−1, 1}, which tracks whether the graph described by {−1, 1}(

n
2) is connected or not. Clearly then,

tracking phase transitions in fconn as we vary the parameter p is the theory of Erdős-Rényi random graphs!
One of the most fundamental lemmata in this regard is the Margulis-Russo formula:



Boolean Function Analysis 22 / 30 Arpon Basu

Lemma 5.1 (Margulis-Russo formula). Let f : {−1, 1}n 7→ R be a function, let p ∈ [0, 1], and set µ = 1− 2p. Then

d

dµ

(
Ex∼π⊗n

p

[
f(x)

])
=

1

σ
·

n∑
i=1

f̂p(i)

In particular, if f : {−1, 1}n 7→ {−1, 1} is monotone, then

d

dp

(
Pr

x∼π⊗n
p

(f(x) = −1)

)
=

1

σ2
· Ip[f ]

Proof. Let f =
∑

S⊆[n] f̂(S)χS be the ordinary Fourier expansion of f . Then

Ex∼π⊗n
p

[f ] =
∑
S⊆[n]

f̂(S) · Ex∼π⊗n
p

[χS ] =
∑
S⊆[n]

f̂(S) · µ|S|

Thus
d

dµ

(
Ex∼π⊗n

p

[
f(x)

])
=

d

dµ

∑
S⊆[n]

f̂(S) · µ|S|

 =
∑
S ̸=∅

f̂(S) · |S|µ|S|−1 =

n∑
i=1

∑
i∈S

f̂(S)µ|S|−1

At the same time, from the definition of f̂p(S), we have:

f̂p(S) =
∑

T⊆[n]

f̂(T )Ex∼π⊗n
p

[χTϕS ]

Now, if i ∈ S \ T , then E [χTϕS ] = 0, since E
[
ϕ(xi)

]
will factorize out and become 0. On the other hand, if S ⊆ T ,

then the expectation becomes µ|T |−|S|. Thus

f̂p(S) =
∑
S⊆T

f̂(T )µ|T |−|S| =⇒ f̂p(i) =
∑
i∈T

f̂(T )µ|T |−1

and we’re done. ■

Note that one of the central objectives of random graph theory, percolation theory, andmany other fields throughout
probability theory and computer science, is to show that the emergence of someproperty exhibits a phase transition, i.e.
there is a certain parameter ‘p’, and a certain threshold pc, such that if p < pc, then the probability of the phenomenon
is ≈ 0, while if p > pc, then the probability of the phenomenon is ≈ 1. Furthermore, once we have established a
phase transition, we are also interested in showing that the transition is sharp, i.e. for every ε > 0, there exists a small
quantity δ = δ(ε) > 0, such that if p < pc − δ, then the probability of our phenomenon is < ε, while if p > pc + δ,
then the probability of our phenomenon is > 1− ε.
Indeed, such phase transitions have been rigorously proven in many contexts: For example, using standard proba-
bility theory, it is not too difficult to establish that the emergence of a clique, or the graph becoming connected, in
the Erdős-Rényi model G(n, p), exhibits a sharp phase transition. In an infinite context, the emergence of infinite
clusters in random lattices exhibit a sharp phase transition.
The following theorem, by Friedgut and Kalai ([FK96]), proves a sharp phase transition for all monotone properties 3!
Before we state and prove the theorem, we fix a bit of notation: Let f : {−1, 1}n 7→ {−1, 1} be a function. Define a
function ν : [0, 1] 7→ [0, 1], where:

ν(p) := Pr
x∼π⊗n

p

(f(x) = −1)

Recall that our convention was that ‘−1’ is the ‘true’ value.
Also, we shall need a small lemma for p-biased cubes, which we shall not prove. Instead, we present a proof for the
unbiased case.

3we need our property to be monotone, so that when we increase our parameter p, the probability of the property increases
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Corollary 5.2. There is an absolute constant c > 0 such that for every function f : {−1, 1}n 7→ {−1, 1}, there is a
variable i ∈ [n] such that Infi,p[f ] ≥ cη′ log n/n, where η′ := min(ν(p), 1− ν(p)), for every p ∈ [0, 1].

Proof for p = 1/2. By Lemma 1.8, Var(f) = 4ν(p)(1− ν(p)) ≥ 2η′. The result now follows from Theorem 4.9. ■

Theorem 5.3 (Monotone properties exhibit sharp thresholds). Let f : {−1, 1}n 7→ {−1, 1} be a symmetric monotone
Boolean-valued function such that ν(·) is a strictly increasing function. Then there exists an absolute constant c > 0
such that if 1/2 ≥ ν(p0) > ε, then

ν

(
p0 + c

log(1/2ε)

log n

)
> 1− ε

Remark. Recall that a function f : {−1, 1}n 7→ R is called symmetric, if for any permutation σ of [n], and any
(x1, . . . , xn) ∈ {−1, 1}n, we have f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Proof. Since f is symmetric, the influence of every variable is the same, and thus, by Lemma 5.1,

dν

dp
=

n

4p(1− p)
Inf1,p[f ]

At the same time, byCorollary 5.2, Inf1,p[f ] ≥ c′ν(p) log n/n for some absolute c′ > 0, for every p such that ν(p) ≤ 1/2.
Thus, for p ≤ ν−1(1/2),

dν

dp
≥ c′ν log n

4p(1− p)
≥ c′ν log n =⇒ dν

ν
≥ c′p log n =⇒ d(log ν) ≥ c′p log n (5.1)

Now, let ν(p0) > ε, p∗ = ν−1( 12 ). Then integrating Eq. (5.1) yields:

log
1

2
− log ε > c′ (p∗ − p0) log n =⇒ p0 + c′

log(1/2ε)

log n
> p∗

Thus, by symmetry, at q = p0 + 2c′ log(1/2ε)logn , we will have ν(q) > 1− ε, as desired. ■
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�6. Håstad's Hardness of Approximation Results

Wewill nowuse Fourier analysis to prove some hardness of approximation results. Let us first review some standard
terminology.

Problem (MAX-E3-SAT). Consider a CNF formula, where every clause has exactly 3 literals, all of which correspond
to distinct variables (i.e. clauses likex1∨¬x1∨x2 are not allowed). Our job is to find aBoolean assignment of variables
that maximizes the number of clauses satisfied.

Problem (MAX-E3-LIN). Consider a system of linear equations over F2, where each equation looks like xi1 + xi2 +
xi3 = bi, where i1, i2, i3 are distinct, and bi ∈ F2. Once again, we have to find an assignment {x1, . . . , xn} 7→ F2 that
maximizes the fraction of equations satisfied.

Both of these problems are NP-complete, so we look for approximation algorithms for them. In particular, we will
look for (α, β)-approximation algorithms, i.e. on any instance of the problem with optimum value ≥ β, our algo-
rithm should output ≥ α 4.
There is a very easy 7/8-approximation algorithm for MAX-E3-SAT: Assign each variable a(n uniformly) random
Boolean value. Each clause is satisfied with probability 7/8, and thus in expectation, 7/8 fraction of the clauses is
satisfied. Furthermore, this randomized algorithm can be efficiently derandomized.
Similarly, there is a trivial 1/2-approximation algorithm for MAX-E3-LIN, which assigns xi either 0 or 1 with equal
probability.
Now, a landmark result of Håstad [H0̊1] in complexity theory says that it is NP-hard to obtain a (7/8 + δ, 1)-
approximation ofMAX-E3-SAT, and it is also NP-hard to obtain a (1/2+ δ, 1− δ)-approximation ofMAX-E3-SAT, i.e.
the trivial approximation algorithms are the best we can hope for.
We will now start our journey towards Håstad’s results. While Håstad’s results are quite technical, we can still
establish a somewhat weaker version, which says that assuming the Unique Games Conjecture, it is NP-hard to
(7/8+ δ, 1− δ)-approximateMAX-E3-SAT, or (1/2+ δ, 1− δ)-approximateMAX-E3-LIN. While this is not completely
satisfactory (since Håstad’s results are completely unconditional, while the Unique Games Conjecture is still a con-
jecture), the ideas used in proving this more or less capture Håstad’s main ideas; indeed, with a little more technical
wrangling on top of the ideas described here, even Håstad’s results can be established.
We first define an “attenuated” version of influence, inspired by the Tρ operator.

Definition 6.1. For f : {−1, 1}n 7→ R, ρ ∈ [0, 1] and i ∈ [n], we define the ρ-stable influence of f at i to be:

Inf
(ρ)
i [f ] = Stabρ[Dif ] =

∑
i∈S

ρ|S|−1f̂(S)2

We also define I(ρ)[f ] :=
∑n

i=1 Inf
(ρ)
i [f ].

Remark. A few remarks are in order:

1. Recall that this expression arose in the proof of the KKL theorem too.

2. Clearly, Inf(1)i [f ] = Infi[f ].

3. One can easily verify that I(ρ)[f ] = d
dρ Stabρ[f ] =

∑n
k=1 kρ

k−1 ·W k[f ].
4if our algorithm is randomized, then the expectation of the random variable outputted by our algorithm should be ≥ α
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We define a “noise-stable” version of small influence using the definition above:

Definition 6.2. For f : {−1, 1}n 7→ R, ρ ∈ [0, 1] and i ∈ [n], we say that i is (ε, δ)-notable if Inf(1−δ)
i [f ] > ε.

Remark. Note that as ε→ 1, δ → 0, (ε, δ)-notability captures the notion of dictatorship.
As it turns out, proving hardness-of-approximation is intimately connected to “dictatorship tests”.

Definition 6.3 ((α, β)-Dictator vs. No-notables test). A (α, β)-Dictator vs. No-notables test is a local tester for func-
tions f : {−1, 1}n 7→ {−1, 1} such that:

1. If f is a dictator, then the test accepts with probability ≥ β.

2. If f has no (ε, ε)-notable coordinates, i.e. if Inf(1−ε)
i [f ] ≤ ε for every i ∈ [n], then the test acceptswith probability

≤ α+ oε(1).

Remark. A local tester queries the function O(1) many times.
Wewill nowdesign a dictatorship test for theMAX-E3-LIN problem. Naturally, our test must involve linear equations
with 3 variables to maintain a connection with theMAX-E3-LIN problem.
We will modify the BLR test (Theorem 1.10) to accept dictators with high probability, and reject “egalitarian” func-
tions with probability ∼ 1/2.
Firstly, the “BLR”-way to design a test would simply check if f(x)f(y)f(x ◦ y) = 1, where x ◦ y ∈ {−1, 1}n is the

Algorithm 2: Håstadδ-test
Data: f : {−1, 1}n 7→ {−1, 1}

1 Pick x, y independently and uniformly from {−1, 1}n;
2 Pick b uniformly from {−1, 1}, and set z = b · (x ◦ y) (x ◦ y ∈ {−1, 1}n is the pointwise product of x, y);
3 Choose z′ ∼ N1−δ(z);
4 Accept if f(x)f(y)f(z′) = b

pointwise product of x, y. Clearly, dictators pass this test 5. However, the constant function f ≡ 1 passes this test
too, despite having no notable coordinates. Thus, to eliminate the constant 1 function, we introduce a “global flip”
b. However, even with the flip, we still accept χS for odd |S|. Furthermore, if |S| is large, then no coordinate in χS

is notable. Thus, to eliminate χS , we introduce some noise to z = b · (x ◦ y). The noise destroys the careful parity
balance between the LHS and RHS, while still accepting dictators with high enough probability.
Thus, let’s now formalize the above design intuitions:

Proof of correctness of Algorithm 2. Note that

Pr(Håstadδ accepts f |b = 1) = Ex,y,z′

[
1

2
+

1

2
f(x)f(y)f(z′)

]
=

1

2
+

1

2
· Ex,y

[
f(x)f(y) · Ez′

[
f(z′)|x, y

]]
But note that given x, y and z′ ∼ N1−δ(t), where t = b · (x ◦ y) = x ◦ y, we have Ez′

[
f(z′)|x, y

]
= (T1−δf)(t) =

(T1−δf)(x ◦ y). Thus

Pr(Håstadδ accepts f |b = 1) =
1

2
+

1

2
· Ex,y

[
f(x)f(y) · (T1−δf)(x ◦ y)

]
=

1

2
+

1

2
· Ex

[
f(x) · (f ∗ (T1−δf))(x)

]
5although note that anti-dictators fail
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=
1

2
+

1

2

∑
S⊆[n]

f̂(S) ̂f ∗ T1−δf(S) =
1

2
+

1

2

∑
S⊆[n]

(1− δ)|S|f̂(S)3

Similarly,

Pr(Håstadδ accepts f |b = −1) = Ex,y,z′

[
1

2
− 1

2
f(x)f(y)f(z′)

]
where z′ ∼ N1−δ(−(x ◦ y)) = N−(1−δ)(x ◦ y), where we note that Nρ(−x) = N−ρ(x). Thus

Pr(Håstadδ accepts f |b = −1) =
1

2
− 1

2

∑
S⊆[n]

(−1)|S|(1− δ)|S|f̂(S)3

Consequently,

Pr(Håstadδ accepts f) =
1

2
+

1

2

∑
|S| odd

(1− δ)|S|f̂(S)3

If f is a dictator, i.e. f = χi, then the aforementioned probability is 1− δ/2 6. On the other hand,

∑
|S| odd

(1− δ)|S|f̂(S)3 ≤

(
max
|S| odd

(1− δ)|S|f̂(S)

)
·
∑

|S| odd

f̂(S)2 ≤ max
|S| odd

(1− δ)|S|f̂(S) ≤
√

max
|S| odd

(1− δ)2|S|f̂(S)2

≤
√

max
|S| odd

(1− δ)|S|−1f̂(S)2 ≤
√
max
i∈[n]

Inf
(1−δ)
i [f ]

Thus, if f has no (δ, δ)-notable coordinates, then

Pr(Håstadδ accepts f) ≤
1

2
+

1

2

√
max
i∈[n]

Inf
(1−δ)
i [f ] ≤ 1

2
+

1

2

√
δ

as desired. ■

Thus, we have a (1/2 + δ, 1 − δ)-dictatorship test for MAX-E3-LIN. At this point we’re done, by simply invoking a
black-box result from [KKMO07]:

Theorem 6.1. Suppose for each n ∈ N, we have a (α, β)-Dictator vs. No-notables tester for f : {−1, 1}n 7→ {−1, 1},
such that our tester uses predicates of some CSP Ψ. Then, assuming the Unique Games Conjecture, a (α+ δ, β − δ)-
approximation to MaxCSP(Ψ) is NP-hard.

Remark. When we say our tester uses “predicates of Ψ”, we mean that our tester evaluates it’s queries using al-
lowed predicates. For example, Algorithm 2 made it’s decision by composing f(x), f(y), f(z′) using a MAX-E3-LIN
predicate.
Thus, under the Unique Games Conjecture, it is NP-hard to find a (1/2 + δ, 1 − δ)-approximation for MAX-E3-LIN.
As mentioned earlier, Håstad proved this result unconditionally, but nevertheless, we have managed to convey the
key ideas of his proof.

6note that if f = −χi, i.e. an anti-dictator, then the above probability is δ/2. Thus, the Håstadδ-test accepts dictators only, not 1-juntas
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�7. A Brief Taste of Additive Combinatorics over Fn2
Let A ⊆ Fn

2 be a non-empty set. Define A+A := {a+ a′ : a, a′ ∈ A}. Also, define µ(A) := |A|/2n to be the measure
of A. Finally, define the sum-set expansion of A to be

e(A) :=
µ(A+A)

µ(A)

Clearly, since a+A ⊆ A+A for any a ∈ A, and since µ(a+A) = µ(A), we have e(A) ≥ 1 for any non-empty set A.
Also note that for any non-empty A, 0 = a+ a ∈ A+A since we’re working over F2.

Proposition 8. A = A+A if and only if A is a subspace of Fn
2 .

Proof. If A = A+A, then A is closed under addition and is thus a subspace of Fn
2 : Indeed, linear combinations in F2

are just ordinary sums, and 0 ∈ A+A, so A is a subspace. Conversely, if A is a subspace then A = A+A. ■

Proposition 9. e(A) = 1 if and only if A = a+H , where H is a subspace of Fn
2 .

Proof. Fix arbitrary a0 ∈ A. Clearly, we must have a0 +A = A+A. Now, if v1, v2 ∈ A+A, then there exist a1, a2 ∈ A
such that vi = a0 + ai, i ∈ {1, 2}. Thus v1 + v2 = 2a0 + a1 + a2 = a1 + a2 ∈ A+A. Thus A+A, being closed under
additions, and having 0, is a subspace. Consequently, A = a0 + (A + A) is a translation of a subspace, also known
as an affine subspace. The converse is obvious. ■

Proposition 10. Let H be a subspace of Fn
2 , and let A ⊆ H be an arbitrary subset of H such that µ(A) > µ(H)/2.

Then A+A = H .

Proof. Choose an arbitrary h ∈ H . Since µ(A) > µ(H)/2, A ∩ (A + h) ̸= ∅. Thus there exist a, a′ ∈ A such that
a = a′ + h =⇒ h = a+ a′ =⇒ h ∈ A+A =⇒ H ⊆ A+A =⇒ H = A+A. ■

Thus, if e(A) > 1, A doesn’t need to have any a priori structure, since we could take a subspace H , take an arbitrary
subset Awith µ(A)/µ(H) = ν > 1/2, and we would have e(A) = 1/ν.
However, can we make statements of the sort “e(A) is close to 1 =⇒ A + A is a subspace”? Turns out we can:
Freiman proved that if e(A) < 3/2, then A+A is a subspace. Green-Tao further strengthened the statement to hold
for e(A) < 1.75.
Now, what about the case when e(A) = 1000, i.e. e(A) has a constant-factor, but large, sum-set expansion? Let us
explore 3 sets in this regard:

1. A is a random subset of Fn
2 with measure 1/1000: Fix a0 ∈ A. For any v ∈ Fn

2 , Pr(v−a0 ̸∈ A) = 0.999, and thus
Pr(v ̸∈ A+A) ≈ 0.9992

n/1000 = on(1), i.e. with high probability A+A = Fn
2 , and consequently, e(A) = 1000.

2. A is a subspace of Fn
2 with co-dimension 10, i.e. dim(A) = n − 10: In this case, e(A) = 1, even though

µ(A) = 2−10 ≈ 1/1000. Just based on these two examples, onemay be tempted to conjecture that “random” sets
have high expansion, while “structured” sets have low expansion. The next example disproves this conjecture.

3. A := {x ∈ Fn
2 : wt(x) ≤ n/2−3

√
n/2}, i.e. A is the Hamming ball of radius n/2−3

√
n/2 centered at the origin,

an unarguably “structured” set. Using standard Hamming weight estimates, µ(A) ≈ 1/1000. Also, it is easy
to see that A+A = {x : wt(x) ≤ n− 3

√
n}, and thus µ(A+A) ≈ 1, leading to e(A) ≈ 1000.
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Unsurprisingly, it is hard to get a handle from A based on e(A) alone. However, in all 3 examples, even when A+A
was not a subspace (as is the case when A was the Hamming ball), A + A contains a large chunk of some large
subspace. We formalize this observation through a conjecture.

Conjecture (A + A conjecture). µ(A) ≥ α =⇒ there exists a subspace H , of co-dimension O(log(1/α)), such that
µ(H ∩ (A+A)) ≥ 0.99µ(H), i.e. A+A contains a significant chunk of some large subspace.

This conjecture implies the following result: If e(A) ≤ 1/α, then A + A + A + A contains a subspace H such that
µ(H) ≥ poly(α) · µ(A). This statement is also known as the polynomial Bogolyubov conjecture.
The polynomial Bogolyubov conjecture also implies the following statement: If e(A) ≤ 1/α, then there exists an
affine subspace x+H such that µ(x+H) ≤ poly(1/α) · µ(A), and µ((x+H) ∩A) ≥ poly(α) · µ(A). This statement
is also known as the polynomial Freiman-Ruzsa conjecture: The Freiman-Ruzsa conjecture, also known as Marton’s
conjecture, was resolved very recently (Nov 2023) by Gowers, Green, Manners and Tao [GGMT23], which was a
huge breakthrough, since Freiman-Ruzsa/Marton’s conjecture was commonly considered to be the most important
open problem in additive combinatorics.
The Freiman-Ruzsa-Marton conjecture theorem is equivalent to a rather innocent-looking property testing problem:

Conjecture. Suppose there exists a series of functions fm : Fn
2 7→ Fm

2 such that Prx,y∼Fn
2
(f(x)+f(y) = f(x+y)) ≥ ε,

for everym ∈ N. Then there exists a series of linear functions gm : Fn
2 7→ Fm

2 such that fm is poly(ε)-close to gm.

Themain reason a statement like this is interesting is that even asm shoots to∞, the distance between fm, gm remains
independent ofm.
So while proving any of the above conjectures would be amazing, we now divert our attention to something that has
been proven and is very interesting in its own right.

7.1. A Theorem of Sanders

Theorem 7.1. Suppose A ⊆ Fn
2 is such that µ(A) = α. Then A+A+A contains an affine subspace of co-dimension

≤ 1/α.

Proof. If A + A + A = Fn
2 , then we’re done. Otherwise, choose x ̸∈ A + A + A. Then Pra,b,c∈A(a + b + c = x) = 0,

where a, b, c are chosen independently, and uniformly, from A. Now, let ϕA := 1A/α be the PDF associated with A.
Then a+ b+ c is distributed according to φA := ϕA ∗ ϕA ∗ ϕA, and thus φA(x) = 0. Now, let φA :=

∑
γ∈Fn

2
φ̂A(γ)χγ

be the Fourier expansion of φA in Fn
2 , where χγ(x) := (−1)

∑n
i=1 γixi = (−1)⟨γ,x⟩. We know that φ̂A(γ) = ϕ̂A(γ)

3, and
thus

0 =
∑
γ∈Fn

2

ϕ̂A(γ)
3(−1)⟨γ,x⟩ = ϕ̂A(0)

3 +
∑
γ ̸=0

ϕ̂A(γ)
3(−1)⟨γ,x⟩ ≥ ϕ̂A(0)

3 −
∑
γ ̸=0

|ϕ̂A(γ)|3

But ϕ̂A(0) = E [ϕA] = 1, and thus

0 ≥ 1−
∑
γ ̸=0

|ϕ̂A(γ)|3 ≥ 1−
(
max
γ ̸=0

|ϕ̂A(γ)|
)
·
∑
γ ̸=0

ϕ̂A(γ)
2

But
∑

γ ̸=0 ϕ̂A(γ)
2 = Var(ϕA) = E

[
ϕ2A
]
− E [ϕA]

2
= (1− α)/α. Thus, there exists γ∗ ∈ Fn

2 \ {0} such that |ϕ̂A(γ∗)| ≥
α/(1−α). Now, note that ϕ̂A(γ∗) = E

[
⟨ϕA, χγ∗⟩

]
= Ea∼A

[
χγ∗(a)

]
. Also, let F− := {x ∈ Fn

2 : χγ∗(x) = −1} = ⟨γ∗⟩⊥,
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and F+ := {x ∈ Fn
2 : χγ∗(x) = 1} = Fn

2 \ F−, and let A† := A ∩ F†, where † ∈ {−,+}. Then

Ea∼A

[
χγ∗(a)

]
=

|A+| − |A−|
|A|

=⇒
∣∣∣∣ |A+| − |A−|

|A|

∣∣∣∣ ≥ α

1− α

NowWLOG assume |A+| ≥ |A−|. Then∣∣∣∣ |A+| − |A−|
|A|

∣∣∣∣ = 2|A+| − |A|
|A|

≥ α

1− α
=⇒ |A+|

|A|
≥ 1

2(1− α)
=⇒ µ(A+) ≥

α

2(1− α)

Thus, µF+
(A+) := |A+|/|F+| = 2µ(A+) ≥ α

1−α > α.
Since F+

∼= Fn−1
2 , we can set A1 := A+, and repeat the above process. Once again, we either obtain A1 +A1 +A1

∼=
Fn−1
2 , or we can “bump” up the relative density of A1 in some (n− 2)-dimensional (affine) subspace of F+.

Now, note that x/(1− x) is an increasing function, and furthermore,

α/(1− tα)

1− (α/(1− tα))
=

α

1− (t+ 1)α
, ∀ t ∈ N

Thus, if the above process repeats k times, we get a subsetAk ⊆ A, such that the relative density ofAk in some affine
subspace of co-dimension k is ≥ α/(1− kα). Clearly, k ≤ 1/α, and thus there is some A′ ⊆ A such that A′ +A′ +A′

contains an affine subspace of co-dimension at most 1/α, as desired. ■

Remark. This argument is an example of a density increment argument.
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