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�0. Notation

For any n ∈ N := {1, 2, . . .}, we define [n] to be the set {1, 2, . . . , n}.

Given two strings s1, s2, we denote by s1||s2 the concatenation of s1 and s2.

Let q be a prime power. Then Fq denotes the finite field of order q.

We shall often identify Fm
q and Fqm with each other, where q is a prime power. In most cases, the exact bijection

(which is equivalent to specifying a degree m irreducible polynomial in Fq) will not be important, and will thus be
left unspecified.

For any matrixX ∈ Fn×m, where F is a field, we define the spark ofX to be the size of the smallest linearly dependent
set of columns of X .
Now, note that while appending an extra column to a maximal linearly independent set of columns yields a linearly
dependent set of columns, this obtained set of columns may not be the smallest linearly dependent set of columns.
Thus the spark of X is at most rank(X) + 1, but it may not necessarily equal rank(X) + 1.
Also, note that the spark of a matrix may not necessarily equal the spark of its transpose.
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�1. A Note to the Reader

We have mainly followed this book [GRS22] (Chapters 1-6) and these [Gur10] notes for this report.
We would also like to make a special point about pre-requisites: Coding theory makes heavy use of the theory of
finite fields. Unfortunately, as is the case with most mathematical theories, a comprehensive study of finite fields
will consume too much of the reader’s time, and distract her somewhat from her purpose of learning coding theory.
Consequently, most texts on coding theory include a very brief description of finite fields for aiding the reader.
However, the author feels that this is inadequate.
Thus, the reader is suggested this [For] reading for the theory of finite fields. This is not too extensive, yet it covers
all the requisite material along with proofs wherever required.
Many proofs in coding theory use the properties of the entropy function. However, presenting the properties of the
entropy function in between the chapter can disrupt the narrative. Thus, an entire chapter (Appendix A.2) worth of
content discussing the properties of the entropy function has been relegated to the appendix. The reader is advised
to consult it whenever required.
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�2. Introduction and Basic De�nitions

One of the characteristic features of human language is that it has a lot of redundancy: Consequently, as is quite
common in colloquial speech, even if someone speaks in a manner that is grammatically or otherwise incorrect,
the meaning of the sentence is usually transmitted through. Take for example this sentence: “Never know them
let move next your”. Most human readers can, after a moment’s thought, get that this sentence is the scrambling
of some correct sentence. The reason they can do this is that English speech contains information beyond what is
required to be conveyed, and consequently, in cases of errors, some extra redundancy/structure helps us recover the
original meaning of the sentence.
For similar reasons, some amount of error correction capabilities are desired within data transmission in digital
systems too, especially because data is prone to be corrupted/mutilated, in which case it becomes important to
extract what the original uncorrupted message was.
From this need arose the field of coding theory, which tells us how one may design codes, which, through some
redundancy, can correct certain errors.

Definition 2.1. (Codes) Let Σ be a set of alphabets, with |Σ| = q. A code of block length n is a subset of Σn.
We often denote |C| byM .

Remark. A few remarks are in order:
1. Note that q ≥ 2.
2. Note that q need not be a constant: It can vary with n, as is the case with certain codes.

We also define

Definition 2.2. (Dimension of a Code) Given a code C ⊆ Σn, we define the dimension of C to be

k := logq |C|

Remark. Note that:-
1. Since C ⊆ Σn, |C| ≤ |Σn| = qn, and consequently k ≤ n. Furthermore, assuming C is non-empty, we also have

that k ≥ 0.
2. The dimension of a code can be non-integral.

Finally, the degree of redundancy in a code is specified by its rate, which is defined below.

Definition 2.3 (Rate of a code). The rate R of a code C ⊆ Σn with dimension k is defined as

R :=
k

n

At this point, we give some concrete examples of codes to better elucidate the definitions given above.
Example (Parity Code). Let Σ = {0, 1}, and thus q = 2. Then the parity code C⊕ for t-bit strings is defined as

C⊕(x1, x2, . . . , xt) := (x1, x2, . . . , xt, x1 ⊕ x2 ⊕ · · · ⊕ xt), (x1, x2, . . . , xt) ∈ {0, 1}t

Note that C⊕ = {(x1, x2, . . . , xt, x1 ⊕ x2 ⊕ · · · ⊕ xt) : (x1, x2, . . . , xt) ∈ {0, 1}t} ⊆ {0, 1}t+1, and consequently, we
have n = t+ 1. Moreover, we also have k = t, since |C| = 2t, which implies that k = log2(2

t) = t. Furthermore, the
rate of this code is t

t+1 .
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Example (Repetition Code). Let Σ = {0, 1}, and thus q = 2. Then the 3-repetition code C3,rep for t-bit strings is
defined as

C3,rep(x1, x2, . . . , xt) := (x1, x1, x1, x2, x2, x2, . . . , xt, xt, xt), (x1, x2, . . . , xt) ∈ {0, 1}t

Note that C3,rep = {(x1, x1, x1, x2, x2, x2, . . . , xt, xt, xt) : (x1, x2, . . . , xt) ∈ {0, 1}t} ⊆ {0, 1}3t, and consequently, we
have n = 3t. Moreover, we also have k = t, since |C| = 2t, which implies that k = log2(2

t) = t. Furthermore, the
rate of this code is t

3t =
1
3 .

2.1. Error Correction

Before we can come to error correction through codes, we must define the most central notion in coding theory: the
Hamming distance.

Definition 2.4 (Hamming Distance). Given u, v ∈ Σn, we define the Hamming distance∆(u, v) between u and v as
the number of positions in which u, and v differ, ie:-

∆(u, v) := |{i : ui ̸= vi}|

Remark. One can verify that the Hamming distance is a metric on Σn. In particular,∆ obeys the triangle inequality.
A very similar notion is the notion of Hamming weight.

Definition 2.5 (Hamming Weight). Let Σ = {0, 1, . . . , q− 1}. Then the Hamming weight wt(v) of v ∈ Σn is defined
to be ∆(v, 0n).

We now define our model of data corruption explicitly.

Definition 2.6 (e-error Channel). A n-symbol e-error channel is defined to be a function Ch: Σn 7→ Σn such that
∆(Ch(v), v) ≤ e for every v ∈ Σn.

Remark. Note that inherent in our conception of an e-error channel is the notion that at most a certain number of
errors (namely e) can occur during our transmission, and these errors may occur on any subset of bit(s) of the
transmitted code. Such a model of noise is known as the “worst-case” or adversarial model of noise, and this model
was proposed byHamming. It is important to know that there exist other models of noise: For example, the Shannon
model of noise assumes that every bit of the transmitted message is equally likely to be flipped with some probability
p, where p is the parameter of our noise model.
Unsurprisingly, the quantitative error-correction capabilities of a code are dependent on the noise model being used.
Unless we specify explicitly, we shall always use the Hamming noise model.
Also, associated with every code is an encoding and decoding mechanism, which are described below.

Definition 2.7 (Encoding). Let C ⊆ Σn be a code, and consider some well-ordering of C, which naturally leads to
an encoding function E : [|C|] 7→ Σn. Consequently, ifM is our well-ordered set of messages such that we have a
bijection τ :M 7→ [|C|], then one can define the encoding of a messagem to be E(τ(m)) =: C(m).

Remark. As we shall see later, the well-orderings on C andM are not completely arbitrary: We shall often impose
some additional structure on Σ while constructing codes, which then dictates a canonical order on C andM.
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Definition 2.8 (Decoding). Let C be a code. Then a function D : Σn 7→ M is called a decoding function for C.

One of the most common decoding functions is theMaximum Likelihood Decoding function: The MLD decoding func-
tion is defined as follows:

D(v) := argminc∈C∆(v, c)

Note that for the notion of anMLD decoder to be consistently defined, it is necessary that for every permissible v ∈ Σn,
there is a unique codeword in C which is closest to v. We shall examine this issue at length a bit later. Also, unless
specified otherwise, we shall always assume our decoding function to be an MLD decoder.
We can now formally define what we mean by error detection.

Definition 2.9 (Error Correction). A code C ⊆ Σn is said to be e-error correcting if there exists a decoding function
D such that for every messagem, and any e-error channel Ch, we have D(Ch(C(m))) = m.

Remark. We don’t assume any particular decoder in the above definition.
In a similar vein,

Definition 2.10 (Error Detection). A code C ⊆ Σn is said to be e-error detecting if there exists a detecting algorithm
D such that for every message m, and for every v ∈ Σn received across our channel satisfying ∆(C(m), v) ≤ e, D
outputs a 1 if v = C(m), and outputs 0 otherwise.

Here are some examples detailing how error correction and detection can be performed by codes.
Example (Error correction by C3,rep). We show that up to 1-bit flip can be corrected by this code: Indeed, consider
the 3-bit block where the error occurred. If the block originally had 3 zeros, then it will now have 2 zeros, and simi-
larly, if the block originally had 3 ones, then it will now have 2 ones.
Consequently, if we take the majority number of bits among every 3-bit block, we can reconstruct the original mes-
sage.
Also, note that this code can not correct 2-bit flips: Indeed, consider the 3-bit block “000”. Suppose the first two bits
got flipped, so the transmitted message is “110”. Now, the decoder on the other side can’t guess if this “110” was
produced by two-bit flips from “000”, or one-bit flip from “111”.
Example (Error detection by the parity codeC⊕). Note thatC⊕ = {(x1, x2, . . . , xt, x1⊕x2⊕· · ·⊕xt) : (x1, x2, . . . , xt) ∈
{0, 1}t}. Consequently, if we take the XOR of all (t+ 1) bits of any element of C⊕, we get x1 ⊕ x2 ⊕ · · · ⊕ xt ⊕ (x1 ⊕
x2 ⊕ · · · ⊕ xt), which equals 0.
Consequently, the parity code can detect an odd number of errors (Note that when Σ = {0, 1}, an error is just a bit
flip): Indeed, if an odd number of bits are flipped in any element of C⊕, the collective XOR of all the values changes
from 0 to 1, which tells us that there has been an error somewhere.
For similar reasons, note that the parity code will fail to detect an even number of errors.

2.1.1. Distance of a Code

Definition 2.11 (Distance of a Code). Let C be a code. We define the distance d of C to be

d := min
x,y∈C
x ̸=y

∆(x, y)



Coding Theory 8 / 58 Arpon Basu

The distance of a code is the minimum separation between any two codewords of a given code C. The reason this
notion is so important is made clear by the theorem below.

Theorem 2.1. Let C be a code. Then the following are equivalent:
1. The distance of C is d.
2. C is

⌈
d−2
2

⌉
-error correcting.

3. C is (d− 1)-error detecting.

Proof. We assume the MLD decoder for this theorem.
• (1 =⇒ 2): We must prove that the MLD decoder finds a unique codeword c ∈ C which is closest to any

y ∈ Σn for whichminc∈C ∆(y, c) ≤
⌈
d−2
2

⌉
. Assume for the sake of contradiction there exist c1, c2 ∈ C such that

c1, c2 are both the closest members of C to y, ie:-∆(y, c1) = ∆(y, c2). Then by the triangle inequality we have

∆(c1, c2) ≤ ∆(c1, y) + ∆(y, c2) ≤ 2 ·
⌈
d− 2

2

⌉
< d

which contradicts the definition of the distance of C.
• (1 =⇒ 3): Consider the transmitted message y. Since ∆(y, C) < d, if y is corrupted, then y ̸∈ C 1. Conse-

quently, our error correction algorithm declares an error if and only if y ̸∈ C.
• (¬1 =⇒ ¬2): Since ¬1 holds, the distance of C is < d. Thus assume the distance of C is d − k, k > 0.

Also assume for the sake of simplicity that d − k is even 2, and let c1, c2 ∈ C be such that ∆(c1, c2) = d − k.
WLOG let c1 = ℓ||ℓ(1)2 ||ℓ

(1)
3 , c2 = ℓ||ℓ(2)2 ||ℓ

(2)
3 , where the length of ℓ is n − d + k, and length of ℓ(i)2 as well as

ℓ
(i)
3 is d−k

2 for i ∈ {1, 2}. Furthermore, ℓ(i)2 ̸= ℓ
(i)
3 for i ∈ {1, 2}. Then consider y := ℓ||ℓ(1)2 ||ℓ

(2)
3 . Clearly

∆(y, c1) = ∆(y, c2) =
d−k
2 . Now, a decoder can’t decide if y was generated by corrupting c1 or c2, and thus we

demonstrated an instance for which the decoder can’t correct d−k
2 ≤ d−1

2 errors.
• (¬1 =⇒ ¬3): If there exist codewords c1, c2 such that ∆(c1, c2) < d, then by changing < d bits of c1, we

can get c2. Consequently, if we receive c2 across the channel, we can’t be sure if it is the codeword c2, or the
mutilated codeword c1.

■

2.2. Hamming Bound

Before we conclude this section, we shall establish a fundamental bound constraining the parameters of a code.

Definition 2.12. A code C ⊆ Σn with dimension k and distance d is also known as a (n, k, d)q code.

Definition 2.13 (Hamming Ball). For any v ∈ Σn, and any ℓ ∈ N, we define

Bq,n(v, ℓ) := {y ∈ Σn : ∆(v, y) ≤ ℓ}

1Note that since the distance between any two codewords is ≥ d, if we corrupt any codeword in < d positions, we can never obtain another
codeword

2the odd case is similar, just some ceilings and floors may need to be added here and there
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Remark. We shall often suppress the subscripts q, n if they are clear from the context.

Theorem 2.2 (Generalized Hamming Bound). For any (n, k, d)q code, we have

k ≤ n− logq

⌊ d−1
2 ⌋∑

i=0

(
n

i

)
(q − 1)i



Proof. For notational convenience, set e =
⌊
d−1
2

⌋
. Since the distance of our code is d, we have thatB(c1, e)∩B(c2, e) =

∅ for any c1, c2 ∈ C. Consequently, ∣∣∣∣∣∣
⋃
c∈C

B(c, e)

∣∣∣∣∣∣ =
∑
c∈C

|B(c, e)| = |C| · |B(0n, e)|

where the last equality follows from the fact that the volume of a ball doesn’t depend on the location of its center.
Now, an elementary counting argument reveals that

|B(0n, e)| =
e∑

i=0

(
n

i

)
(q − 1)i

On the other hand, we also know that

⋃
c∈C

B(c, e) ⊆ Σn =⇒

∣∣∣∣∣∣
⋃
c∈C

B(c, e)

∣∣∣∣∣∣ ≤ |Σn| = qn

Thus
|C| · |B(0n, e)| = qk ·

e∑
i=0

(
n

i

)
(q − 1)i ≤ qn

simplifying which yields the desired result. ■

Definition 2.14 (Perfect Codes). Codes that satisfy the Hamming Bound are known as perfect codes.
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�3. Linear Codes

Definition 3.1 (Linear Codes). Let q be a prime power, and letΣ = Fq . ThenC ⊆ Fn
q is a linear code if it is a subspace

of Fn
q .

A linear code C ⊆ Fn
q with dimension k and distance d is denoted as [n, k, d]q , or simply [n, k]q .

Remark. Note the subtle difference in notation between [n, k, d]q and (n, k, d)q .
Linearity simplifies many aspects of general codes. For example,

Lemma 3.1 (Distance Equals Minimum Hamming Weight). Let C be a [n, k, d]q code. Then

d = min
c∈C
c̸=0

wt(c)

Proof. Firstly, note that minc∈C
c ̸=0

wt(c) = minc∈C
c ̸=0

∆(0, c) ≥ minc,c′∈C
c̸=c′

∆(c, c′) = d.

Now, since d is the distance of C, there exist c1, c2 ∈ C such that ∆(c1, c2) = d. However, since C is also linear,
c1 − c2 ∈ C, and consequently,minc∈C

c̸=0
wt(c) ≤ wt(c1 − c2) = ∆(c1, c2) = d.

Combining the two inequalities yields the desired lemma. ■

We now elucidate the linear algebraic structure of linear codes more explicitly, in the form of the definitions below.

Definition 3.2 (Generator Matrices). Let C be a [n, k]q code. Then there exists a full-rank matrix G ∈ Fn×k
q , also

known as the generator matrix of C, such that

C = {Gx : x ∈ Fk
q}

Remark. Note that the columns of G form a basis for C. This also tells us that G is not unique in general.

Definition 3.3 (Parity Check Matrices). Let C be a [n, k]q code. Then there exists a full-rank matrix H ∈ F(n−k)×n
q ,

also known as the parity-check matrix of C, such that

C = {y ∈ Fn
q : Hy = 0}

Remark. C is the null space of H . Furthermore, note that HG = O.
Before we move on to the applications of generator and parity check matrices, we explore another powerful conse-
quence of the linearity of codes.
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Definition 3.4 (Systematic code). A (linear) code generated by a matrix G ∈ Fn×k
q is called systematic if G is of the

form
[

Ik
A

]
for some A ∈ F(n−k)×k

q .

Note that if C is a systematic code, then C(m) = Cm =

[
m
m′

]
, ie:- the encoding of every messagem containsm as

a prefix. Thus decoding systematic codes is as easy as it gets.

Theorem 3.2. Let C = [n, k]q be any linear code. Then there exists a systematic (linear) code C ′ such that C and C ′

are in a linear bijection.

Proof. LetG be anymatrix generating C. Since the rank ofG is k, the rank ofGT is k too. Moreover, the reduced-row
echelon form of GT is of the form A′ := [Ik|A] for some A ∈ Fk×(n−k)

q . Now, we know that the reduced row-echelon
form ofGT can be obtained by performing row operations on it. We also know that performing a row operation on a
matrix is equivalent to pre-multiplying the matrix by some elementary matrix corresponding to the row operation.
Consequently, A′ = EGT, where E is the product of elementary matrices, and is thus invertible. Thus

A′ = EGT =⇒ GT = E−1A′ =⇒ GE−1 = (A′)T

Since (A′)T generates a systematic code, there exists a linear bijection between the code generated by G and a sys-
tematic code. ■

Remark. Note that linear bijections don’t necessarily preserve the distance of a code.

3.1. Applications of the Generator and Parity Check Matrices

One immediate consequence of the above definitions is

Lemma 3.3. Any [n, k]q code can be represented with O(n ·min(k, n− k)) symbols.

Proof. Depending on whether k is lesser (or greater than) n− k, once can represent a [n, k]q code by its generator or
parity check matrix respectively. ■

Now, note that if C is a [n, k]q code, then the encoding of C can be simply defined as C(m) := Gm, wherem ∈M =
Fk
q . Consequently,

Lemma 3.4. Encoding for a [n, k]q code can be performed in O(nk) time.

Proof. It takes O(nk) time to multiply a n× k matrix with a k × 1 vector. ■

Lemma 3.5. For a [n, k]q code, error detection can be performed O(n(n− k)) time.
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Proof. Note that a particular y ∈ Fn
q belongs to C if and only if Hy = 0. Since Hy can be calculated in O(n(n − k))

time, the lemma follows. ■

Finally, we can obtain another identity for d in terms of the parity check matrix H .

Lemma 3.6. Let C be a [n, k, d]q code, and let H be a parity-check matrix for C. Then spark(H) = d.

Proof. By Lemma 3.1, there must exist a c ∈ C such that wt(c) = d. Now, by the definition ofH , we haveHc = 0, ie:-∑n
j=1 Hi,jcj = 0 for every i ∈ [n− k]. Now since wt(c) = d, c has only d non-zero entries in it, say cj1 , . . . , cjd , which

in turn implies that the set of columns H·,j1 , . . . ,H·,jd are linearly dependent, since their linear combination by the
non-zero entries of c leads to them becoming zero. Thus the spark of H is at most d.
On the other hand, let H·,ℓ1 , . . . ,H·,ℓt be a set of linearly dependent columns with non-zero weights c′ℓ1 , . . . , c

′
ℓt

making them 0, ie:-∑t
i=1 H·,ℓicℓi = 0. Then consider c′ ∈ Fn

q where the ℓthi entries of c′ are just c′ℓi , while the other
entries are 0. Then Hc′ = 0, which implies that c′ ∈ C, which further implies that the spark of H is atleast d.
Joining the two inequalities above yields that the spark of H is d. ■

Corollary 3.7 (Singleton Bound). For any linear code [n, k, d]q , we have d ≤ n− k + 1.

Remark. The Singleton bound holds for all codes. We’ll see the general proof later.
Proof. d = spark(H) ≤ rank(H) + 1 = n− k + 1. ■

3.2. Hamming Codes

We are now in a position to describe a very important class of codes called Hamming Codes.

Definition 3.5. For any r ∈ N, consider the matrix Hr ∈ Fr×(2r−1)
2 , where the ith column of Hr is defined to be the

r-bit binary representation of i, for i ∈ [2r − 1].
The [2r − 1, 2r − r − 1]2 Hamming code, denoted by CH,r is the code with parity check matrix Hr.

It turns out that all Hamming codes have a distance of 3.

Lemma 3.8. The distance of any Hamming code is 3.

Proof. Note that any two columns ofHr are linearly independent: Indeed, in Fn
2 , the only pair of linearly dependent

vectors are (0n, 1n), and by the definition of Hr, 0r doesn’t occur in Hr. Consequently, the spark of Hr is at least 3.
On the other hand, note that

H1
r +H2

r +H3
r =


...
0
1

+


...
1
0

+


...
1
1

 = 0

which shows that the spark of Hr is 3, which implies that d = 3. ■



Coding Theory 13 / 58 Arpon Basu

Corollary 3.9. Hamming Codes can correct up to 1 error.

Finally, one of the reasons why Hamming codes are so interesting, from a theoretical point of view, is because they
are perfect codes.

Lemma 3.10. Hamming codes are perfect.

Proof. Note that Hamming codes have d = 3, and q = 2, which means that

⌊ d−1
2 ⌋∑

i=1

(
n

i

)
(q − 1)i =

(
2r

1

)
= 2r

Consequently, logq
(∑⌊ d−1

2 ⌋
i=1

(
n
i

)
(q − 1)i

)
= log2(2

r) = r, and indeed k = n−r−1, showing that equality is achieved
in the Hamming bound for Hamming codes. ■

Remark. A few remarks are in order:
1. The only perfect codes (non-linear codes included) with q = 2 are:

(a) Hamming Codes
(b) C = {0n, 1n} ⊆ {0, 1}n is a (trivial) perfect code with specifications [n, 1, n]2.
(c) Golay Codes

2. Note that for every v ∈ {0, 1}2r−1, which is not a Hamming codeword, there is a unique Hamming codeword
at a distance of 1 to v.

To explicitly give an example of aHamming code, consider the [7, 4, 3]2 Hamming code, which is described as follows:

CH,3(x1, x2, x3, x4) := (x1, x2, x3, x4, x2 ⊕ x3 ⊕ x4, x1 ⊕ x3 ⊕ x4, x1 ⊕ x2 ⊕ x4)

Its generator matrix can just be read off by substituting the basis vectors e1, . . . , e4 into CH,3 to get

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


The parity check matrix, of course, can be just written from the definition of H·,r:

H3,r =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


The special structure of Hamming codes also allows for the easy decoding of Hamming codes.
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Theorem 3.11. Consider a C = [n, k, d]q = [2r− 1, 2r− r− 1, 3]2 Hamming code. Then there exists a decoder, which
given a y ∈ Fn

2 ,
1. Certifies y as a valid codeword if y ∈ C.
2. Detects the error, and gives its location if minc∈C ∆(y, c) = 1.

Furthermore, this decoder works in O(n log n) time.

Proof. Note that performing the matrix calculation Hry takes O(rn) = O(n log n) time.
Observe that y ∈ C if and only if Hry = 0. We can check if Hry = 0 in O(n log n) time.
Now suppose minc∈C ∆(y, c) = 1: Then y = c + ei for some i ∈ [n], where ei is the unit vector with a 1 at the ith

position. Then Hry = H
(i)
r , where H

(i)
r is the ith column of H . Consequently, if minc∈C ∆(y, c) = 1, then we can

detect and locate the error in O(n log n) time. ■

3.2.1. *The Hat Problem

This section is optional and can be skipped in the first reading.
Hamming codes arise very naturally as a solution to the following popular puzzle:

There are n prisoners in a room, each of whom is given a black/white hat, uniformly at random. Every
prisoner can see the hat of every prisoner but his own.
The jailor asks each prisoner the color of his hat. A prisoner can either guess or abstain from answering.
The group of n prisoners wins collectively if they make at least one guess, and every guess they make
is correct.
Thus, the prisoners lose if they all abstain, or if any one of them makes a wrong guess.
The prisoners are not allowed to talk to each other once the jailor has started asking them questions,
although they can strategize beforehand.

We ask the usual questions: What is the maximum possible value of the probability that the prisoners win? What is
a strategy that will maximize the probability of the prisoners winning?
We shall answer these questions, and see a surprising connection with Hamming codes along the way.

Lemma 3.12. Consider the undirected hypercube graph

G = (V,E) := ({0, 1}n, {{x, y}, x, y ∈ {0, 1}n : ∆(x, y) = 1})

Let H be a subgraph of G. Now, to every edge of H , we assign a direction, thus turning H into a directed graph.
We define K(H) to be the number of vertices in H with an in-degree of at least 1, and an out-degree of 0.
Then the maximum probability of winning the hat game is

max
H is a directed subgraph of G

K(H)

2n

Proof. Suppose n = 5, and the third prisoner sees the colors 0, 1, 1, 1 (where 0 stands for white and 1 stands for
black). Consequently, for the third prisoner, the hat color configuration is (0, 1, ?, 1, 1).
Now suppose our subgraph ‘H’ contains an edge between (0, 1, 0, 1, 1) and (0, 1, 1, 1, 1). If the edge is towards the
tuple with ? = 1, we interpret that as the third prisoner’s strategy being guessing 1. Similarly, if ? = 0, the third
prisoner guesses 0. Finally, if the edge is absent, then the prisoner abstains.
As described in the example above, it is easy to see how every directed subgraph ofG encodes a strategy: Every edge
present in our subgraph encodes a choice, and those edges ofGwhich aren’t present encode abstinence. Conversely,
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every possible strategy is encoded by some directed subgraph of G.
Now, note that if the prisoners play by a strategy in which two prisoners make guesses which correspond to different
configurations, then that strategy is bound to fail since at least one of the prisoners will be wrong.
Consequently, if the prisoners play by the strategy encoded by H , then the vertices which have an in-degree of ≥ 1,
as well as an out-degree of ≥ 1, correspond to fatal configurations: If the prisoners make guesses according to that
configuration, then they will lose. Stated alternatively, the only configurations which on being chosen could lead to
victory are the configurations that have an in-degree of ≥ 1 and out-degree of 0 3.
Since each configuration occurs with probability 1

2n , the lemma follows. ■

Lemma 3.13. The probability of victory in the hat game is at most n
n+1 .

Proof. Let H = (VH , EH) be a directed subgraph of G. A vertex of H with 0 out-degree and ≥ 1 in-degree is called
nice. Let N ⊆ VH be the set of nice vertices of H , and let U = {0, 1}n \ N be the set of vertices which are not nice.
Then

|N |+ |U | = 2n

Note that |N | = K(H).
At the same time, |N | ≤ n · |U |, since the out-degree of any vertex inG is at most n. Thus 2n ≥ |N |+ |N |

n =⇒ |N |
2n ≤

n
n+1 , as desired. ■

Theorem 3.14. Let r ∈ N, and n = 2r − 1. Then the bound proved in Lemma 3.13 can be achieved through the use
of Hamming codes.

Proof. Let C ⊆ {0, 1}n be the Hamming code. Let H = G, and we assign directions to the edges of G as follows:
Draw outward edges from every codeword in C to its neighbors. No other edges are drawn.
Now, for this graph,

K(H) = |{0, 1}n| − |C| = 22
r−1 − 22

r−r−1

Thus
K(H)

2n
=

22
r−1 − 22

r−r−1

22r−1
= 1− 2−r =

n

n+ 1

■

3.3. Dual of a Linear Code

Definition 3.6. Let C be a code, and letH be a parity-check matrix for C. Then the code generated byHT is known
as the dual of C, which is denoted as C⊥.

Remark. If C is a [n, k]q code, then C⊥ is a [n, n− k]q code. Furthermore, if G,H are the generator and parity-check
matrices of C respectively, then HT, GT are generator and parity-check matrices of C⊥ respectively.
We digress a bit to point out a slightly counterintuitive fact: Note that if C is a subspace of a vector space over R,
then C ∩C⊥ = {0} since no non-zero vector of real numbers is orthogonal to itself. However, this is not the case for
finite fields (whose characteristic is positive): There exist non-zero self-orthogonal vectors over finite fields, and for
subspaces C of vector spaces over some finite field, C ∩ C⊥ can contain non-zero vectors too.

3the configurations which have an out-degree ≥ 1 and in-degree 0won’t be chosen in the first place
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Definition 3.7. A linear code C is called:
1. Self-orthogonal if C ⊆ C⊥.
2. Self-dual if C = C⊥.

Remark. We shall see some examples, later on, of self-dual codes.
We use the concept of duals to define two important classes of codes below.

Definition 3.8. (Simplex Code) For every r ∈ N, the dual of the Hamming code CH,r is said to be the simplex code,
CSim,r, ie:- CSim,r := C⊥

H,r. Consequently, CSim,r is a [2r − 1, r]2 code.

Definition 3.9. (Hadamard Code) For any r ∈ N, take the r × (2r − 1) matrix Hr, and append the all-zero column
to it to make a new matrix H ′

r ∈ Fr×2r

2 . The code generated by (H ′
r)

T is called the Hadamard code, which is denoted
as CHad,r, and it is a [2r, r]2 code.

We’ll now state a very interesting property of Hadamard codes.

Theorem 3.15. The weight of every non-zero codeword in CHad,r is 2r−1.

Proof. Fix some i ∈ [r].
Partition all columns of H ′

r into pairs, where two columns u and v are paired together if u = v + ei. Since we are
over F2, if u = v + ei, then v = u+ ei, and thus the pairing scheme is symmetric.
Now, for any x ∈ Fr

2 such that xi = 1, note that

⟨x, u⟩ = ⟨x, v + ei⟩ = ⟨x, v⟩+ xi = ⟨x, v⟩+ 1

Thus exactly one number among ⟨x, u⟩, ⟨x, v⟩ is 1. Consequently, exactly 2r−1 columns of H ′
r have a dot product of

1 with x.
Now, the Hadamard code encodes x as cx := (H ′

r)
Tx. Note that the weight of cx is the number of rows of (H ′

r)
T

(alternatively viewed as columns of H ′
r) which have a dot product of 1 with x. Assuming x is non-zero, there is

some i ∈ [r] such that xi = 1, and then by the discussion above, we get that the weight of cx is 2r−1. Since every
non-zero Hadamard codeword is generated by some non-zero vector in Fr

2, the claim follows. ■

Corollary 3.16. The distance of CSim,r is 2r−1, the simplex code is [2r − 1, r, 2r−1]2.

Corollary 3.17. The distance of CHad,r is 2r−1, the Hadamard code is [2r, r, 2r−1]2.

We also define the augmented Hadamard code, which is a variant of the Hadamard code with a slightly better rate.
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Definition 3.10. Let r ≥ 2. For x ∈ Fr
2, we define the augmented Hadamard encoding of x to be

augHad(x) := (⟨x, y⟩)y∈{1}×{0,1}r−1 ∈ F2r−1

2

The augmented Hadamard code is a [2r−1, r, 2r−2]2 code.

The reader can refer to [Had23] for more on the augmented Hadamard code.
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�4. Bounds on Codes

Before we begin this section, we introduce the concept of relative distance ‘δ’ of a (n, k, d)q code, which is defined as
d/n. The notion of δ homogenizes the notion of distance and makes the comparison of different codes possible.

Definition 4.1. Given a (n, k, d)q code, we define its relative distance δ to be d
n .

Remark. The above definition has been given for all codes, not just linear codes.
After provingmany of the bounds below, it is often fruitful to look for codes that form the equality case of the bound.
This is because the codes satisfying these equality conditions often possess very desirable “extremal properties”,
which makes them useful candidates for real-life applications.

4.1. Asymptotic Hamming Bound

Just the notion of relative distance allows us to state and prove an inequality right away.

Theorem 4.1 (Asymptotic Hamming Bound). Consider a family of codes {(ni, ki, di)qi}i∈N, with rates Ri = ki/ni

and relative distances δi = di/ni. Let R = limi→∞ Ri, and δ = limi→∞ δi. Then

R ≤ 1−Hq

(
δ

2

)

Proof. By Theorem A.10, we know that volqi,ni

(⌊
di−1
2

⌋)
≥ q

Hqi
(
δi
2 )ni−o(ni)

i , and thus

logqi volqi,ni

(⌊
di − 1

2

⌋)
≥ Hqi

(
δi
2

)
ni − o(ni) =⇒ 1

ni
logqi volqi,ni

(⌊
di − 1

2

⌋)
≥ Hqi

(
δi
2

)
− o(1)

On the other hand, from Theorem 2.2, we know that

ki ≤ ni − logqi volqi,ni

(⌊
di − 1

2

⌋)
=⇒ Ri ≤ 1− 1

ni
logqi volqi,ni

(⌊
di − 1

2

⌋)

Combining the two inequalities above yields

Ri ≤ 1−Hqi

(
δi
2

)
+ o(1)

Finally, passing into the limit yields the desired result. ■

Remark. It is a good mathematical rule of thumb that wherever we see the entropy functionH(·), the volume of the
Hamming ball must have been involved somewhere in the proof.

4.2. Gilbert-Varshamov Bound

We now establish one of the most important bounds in coding theory, namely the Gilbert-Varshamov bound. The
reason why this bound is so important is that it gives a lower bound for R in terms of δ: such inequalities are rare.
Also, from now onwards, we shall directly work with codes, assuming that they belong to some family, which justifies
things like taking limits or talking in terms of asymptotic notation, without explicitly mentioning so every time.
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Lemma 4.2. For any n, q ∈ N, and any δ ∈
[
1
n , 1−

1
q

)
, there exists a (n, k,≥ δn)q code satisfyingR ≥ 1−Hq

(
δ − 1

n

).
Proof. We present a greedy algorithm for constructing a code with the desired properties.
Note that the code outputted by this algorithm indeed has a distance ≥ d: Indeed, a codeword is added to C if

Algorithm 1: Gilbert Varshamov Construction
Data: n, q, d = δn
Result: C = (n, k,≥ d)q

1 C ← ∅;
2 while ∃v ∈ [q]n,minc∈C ∆(v, c) ≥ d do
3 Add v to C

4 return C

and only if it doesn’t cause the distance of the code to fall below d, and when no such codeword can be found the
algorithm terminates.
Now, note that ⋃c∈C Bq,n(c, d − 1) = [q]n, where C is the code returned by the algorithm: Indeed, if there existed
x ∈ [q]n \

⋃
c∈C Bq,n(c, d− 1), then ∆(x, c) ≥ d for every c ∈ C, which is a contradiction since our algorithm would

have found at least one candidate x ∈ [q]n for which minc∈C ∆(x, c) ≥ d, and wouldn’t have terminated, returning
C.
Thus ∣∣∣∣∣∣

⋃
c∈C

Bq,n(c, d− 1)

∣∣∣∣∣∣ = qn =⇒
∑
c∈C

|Bq,n(c, d− 1)| ≥ qn =⇒ |C| · volq,n(d− 1) ≥ qn

By Theorem A.10, volq,n(d− 1) ≤ qnHq(δ− 1
n ), and thus

|C| ≥ qn

qnHq(δ− 1
n )

= qn(1−Hq(δ− 1
n )) =⇒ k ≥ n

(
1−Hq

(
δ − 1

n

))
=⇒ R ≥ 1−Hq

(
δ − 1

n

)
■

Remark. The δ < 1− 1
q condition is needed for Theorem A.10 to hold.

Corollary 4.3. For any δ ∈
(
0, 1− 1

q

)
, there exists a family of codes with asymptotic relative distance ≥ δ and

asymptotic rate satisfying R ≥ 1−Hq(δ).

However, there are multiple problems with the above construction: First of all, the code produced by the greedy
algorithmmay not be linear, in which case even storing the code can take an exponential amount of space. Secondly,
it can be shown that the greedy algorithm outlined above takes qO(n) time to run, which implies that even finding a
code with the above properties can take exponential time.
Fortunately, a randomized construction saves the day.

Theorem 4.4. With high probability, one can find (a family of) linear codes satisfying the bounds in Corollary 4.3.
A bit more precisely, let δ ∈

[
1
n , 1−

1
q

)
, ε ∈ (0, 1−Hq(δ)], n ∈ N be any numbers. Then a uniformly random matrix

in Fn×k
q , where k = n(1−Hq(δ)− ε), generates a [n, k,≥ δn]q code with probability ≥ 1− q−εn.



Coding Theory 20 / 58 Arpon Basu

Proof. Wemust show that a uniformly randommatrix in Fn×k
q is full rank 4. Furthermore, by Lemma 3.1, it is enough

to show that the following holds (with high probability) to establish that the distance is ≥ δn:

wt(Gx) ≥ δn,∀x ∈ Fk
q \ {0k}

Now, let G be a uniformly random matrix in Fn×k
q . Then, by Lemma A.2, Gx is a uniform random vector in Fn

q .
Consequently, for any x ∈ Fk

q \ {0k}

Pr(wt(Gx) < d) =
volq,n(d− 1)

qn
≤ q

−n
(
1−Hq(δ− 1

n )
)

where the last inequality is a familiar invocation of Theorem A.10.
Since Hq

(
δ − 1

n

)
≤ Hq(δ)

5,
Pr(wt(Gx) < d) < q−n(1−Hq(δ)) = q−kq−εn

Consequently, by Lemma A.1,

Pr(wt(Gx) ≥ δn,∀x ∈ Fk
q \ {0k}) ≥ 1− (qk − 1)(q−kq−εn) > 1− q−εn

Suppose G is not full rank. Then there would exist x ∈ Fk
q \ {0k} such that Gx = 0 =⇒ wt(Gx) = 0.

Consequently, the event “wt(Gx) ≥ δn,∀x ∈ Fk
q \ {0k}” implies that G is full-rank, and the lemma follows. ■

4.3. Singleton Bound

The Singleton bound is named after its discoverer, R. Singleton. Thus the “Singleton” in the Singleton bound refers
to a person, not the set-theoretic term for a set with one element. That’s why we spell this ‘Singleton’ with an upper
case ‘S’.
Note that we have already seen the Singleton bound for linear codes in Corollary 3.7. We shall prove it for all codes
now.

Theorem 4.5. For any (n, k, d)q code, we have d ≤ n− k + 1.

Proof. Let c1, c2, . . . , cqk be the codewords in our code. For any codeword ci, let c′i be the prefix of ci of length n−d+1.
Then note that if i ̸= j, then c′i ̸= c′j : Indeed, if c′i = c′j , then ∆(ci, cj) = ∆(c′′i , c

′′
j ) where ci = c′i||c′′i , cj = c′j ||c′′j . But

since the length of c′′i is d− 1, ∆(c′′i , c
′′
j ) ≤ d− 1, contradicting the fact that the distance of our code is d.

Consequently, the number of codewords in our code can be at most the number of distinct strings of length n−d+1
that can be formed from an alphabet of size q.
Casting the above reasoning in mathematical notation yields

|C| = qk ≤ qn−d+1 =⇒ k ≤ n− d+ 1

as desired. ■

Remark. Although we took a prefix of length n− d+ 1 in this proof, note that we could have taken any subset of the
indices with size n− d+ 1 and our proof would have gone through.

Corollary 4.6. Consider a family of codes with asymptotic rateR and asymptotic relative distance δ. ThenR ≤ 1−δ.

Proof. By the Singleton bound, Ri ≤ 1− δi +
1
ni
. Taking the limit yields the desired result. ■

4otherwise the dimension of the code it generates will not be k
5recall that Hq(·) is an increasing function on

[
0, 1− 1

q

)
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4.3.1. MDS codes

Definition 4.2. Codes that satisfy the Singleton bound are known as Maximum Distance Separable (MDS) codes.

Remark. Note that:-
1. MDS codes do exist (so we aren’t talking about unicorns here)! As we shall see later, Reed-Solomon codes are

a very important class of MDS codes, although they are not the only ones.
2. In case k is not an integer, satisfying the Singleton bound entails d being the largest integer smaller thann−k+1.

Definition 4.3. Given a code C ⊆ Σn, and given a subset S = {s1, s2, . . . , sm} ⊆ [n], we define the projection of C
onto S to be

CS := {cS = (cs1 , cs2 , . . . , csm) : c = (c1, c2, . . . , cn) ∈ C}

Theorem 4.7. Let C be a (n, k)q MDS code. Then for any S ⊆ [n]with |S| = k, we have |CS | = qk.

Proof. As remarked after the proof of the Singleton bound, for any distinct α, β ∈ C, αS ̸= βS , where S is any subset
of n with size k. Consequently, if |S| = k, the projection C → CS is actually a bijection. The desired result then
follows. ■

Theorem 4.8. The dual of a linear MDS code is also a linear MDS code.

Proof. Consider the linear MDS code C := [n, k, n− k+ 1]q , generated by the matrix G. Its dual is C⊥ := [n, n− k]q .
We must show that the distance of C⊥ is k + 1. Now, by Lemma 3.6, the distance of C⊥ is the spark of GT.
Now, we claim that every set of k rows of G is linearly independent. Assume for the sake of contradiction that
some k rows of G, given by Gt1,·, Gt2,·, . . . , Gtk,· are linearly dependent. Then if we concatenate these n rows, we
get a k × k matrix, whose rows are linearly dependent. Consequently, the columns of this matrix are also linearly
dependent, which implies that the space spanned by these k columns is of dimension lesser than k, and consequently,
the cardinality of the space spanned by these k columns is lesser than qk, which contradicts Theorem 4.7.
Since any k rows of G are linearly independent, the spark of GT is atleast k + 1. Now, by Theorem 4.5, the distance
of C⊥ is at most n− (n− k) + 1 = k + 1. Consequently, the distance of C⊥ is exactly k + 1, as desired. ■

4.4. Plotkin Bound

Plotkin’s bound has 3 régimes: δ greater than, lesser than, or equal to, 1− 1
q . We shall see each of them one by one.

Theorem 4.9. For any C = (n, k, d)q code, if δ = d
n > 1− 1

q , then |C| = qk ≤ δ
δ−(1− 1

q )
.

Proof. Define
S :=

∑
c1,c2∈C
c1 ̸=c2

∆(c1, c2)
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Clearly S ≥
(|C|

2

)
d = 1

2 |C|(|C| − 1)d.
Also define the matrix C ∈ F|C|×n

q , where each row of C is a codeword in C. Now, note that

S =

n∑
j=1

∑
1≤i1<i2≤|C|

1Ci1j ̸=Ci2j

Now, fix any j, and let Σ = {σ1, . . . , σq}. Suppose in the jth column of C, tℓ,j entries equal σℓ for ℓ ∈ [q]. Then
∑

1≤i1<i2≤|C|

1Ci1j ̸=Ci2j =

(
|C|
2

)
−

q∑
ℓ=1

(
tℓ,j
2

)

Now, since x 7→ x(x−1)
2 is a convex function, by Jensen’s inequality we have

q∑
ℓ=1

(
tℓ,j
2

)
≥ q

( 1
q ·
∑q

ℓ=1 tℓ,j

2

)
= q

( |C|
q

2

)
=
|C|(|C| − q)

2q

=⇒
∑

1≤i1<i2≤|C|

1Ci1j ̸=Ci2j
≤
(
|C|
2

)
− |C|(|C| − q)

2q
=
|C|2

2

(
1− 1

q

)
Consequently

S =

n∑
j=1

∑
1≤i1<i2≤|C|

1Ci1j ̸=Ci2j
≤

n∑
j=1

|C|2

2

(
1− 1

q

)
=

n|C|2

2

(
1− 1

q

)
Thus

n|C|2

2

(
1− 1

q

)
≥ 1

2
|C|(|C| − 1)d

Simplifying this inequality yields the desired result. ■

Corollary 4.10. For some fixed δ > 1− 1
q , R = k

n ≤
1
n logq

(
δ

δ−(1− 1
q )

)
= on→∞(1).

Theorem 4.11. For any C = (n, k, d)q code, if δ = d
n ≤ 1− 1

q , then R = k
n ≤ 1− q

q−1δ +
3+logq(n)

n = 1− q
q−1δ + o(1).

Proof. Define n′ :=
⌊

qd
q−1

⌋
− 1. Now, for any x ∈ Σn−n′ , define

Cx := {(cn−n′+1, . . . , cn) : (c1, . . . , cn) ∈ C, (c1, . . . , cn−n′) = x} ⊆ Σn′

Note that if |Cx| ≥ 2, then the distance of Cx is ≥ d 6. We now claim that
|Cx| ≤ qd

Now, if |Cx| ≤ 2, then the inequality is satisfied trivially. Otherwise, Cx is a (n′, k′,≥ d)q code such that n′ < qd
q−1 =⇒

d
n′ ≥ 1− 1

q , and thus by Theorem 4.9 we have

|Cx| ≤
d
n′

d
n′ − (1− 1

q )
=

qd

qd− (q − 1)n′ ≤ qd

6note that all codewords in C whose suffixes are in Cx have a distance of ≥ d among themselves by the very definition of d. Now, note that
the distance between these codewords is entirely due to the distance between their suffixes since their prefixes are the same



Coding Theory 23 / 58 Arpon Basu

as desired.
Now, note that

C =
⊔

x∈Σn−n′

Cx =⇒ |C| ≤
∑

x∈Σn−n′

|Cx| ≤ |Σn−n′
| · qd

=⇒ |C| ≤ qn−n′+1d < qn−
q

q−1d+3d ≤ qn−
q

q−1d+3n = qn−
q

q−1d+3+logq n = qn−
q

q−1d+o(n) = qn(1−
q

q−1 δ+o(1))

Thus
qk ≤ qn(1−

q
q−1 δ+o(1)) =⇒ k ≤ n

(
1− q

q − 1
δ + o(1)

)
=⇒ R ≤ 1− q

q − 1
δ + o(1)

■

Theorem 4.12. Let δ = d
n = 1− 1

q . Then |C| ≤ 2qn.

Proof. Let f be the map given by Lemma A.12. Then

⟨f(ci), f(cj)⟩ = 1− q∆(ci, cj)

n(q − 1)
≤ 1− qd

n(q − 1)
= 0, 1 ≤ i < j ≤ |C|

Thus {f(c1), . . . , f(c|C|)} are a set of non-zero vectors in Rnq such that all of their mutual dot products are non-
positive. Thus by Lemma A.11, we have that |C| ≤ 2qn, as desired. ■

Corollary 4.13. For δ = 1− 1
q , R = k

n ≤
1
n logq (2qn) = on→∞(1).

Corollary 4.14. Consider a family of codes with asymptotic relative distance δ ≥ 1− 1
q . Then R = 0.

Proof. Follows from Corollary 4.10, Theorem 4.11 and Corollary 4.13. ■

If q = 2, then Theorem 4.12 can be improved even further.

Theorem 4.15. Consider a binary code C of block length n and distance ≥ n
2 . Then |C| ≤ 2n.

Proof. Define a map f : Fn
2 7→ Rn as

f(c) = f((c1, . . . , cn)) :=
1√
n
((−1)c1 , . . . , (−1)cn)

Then for two different codewords c, d one can easily verify that

⟨f(c), f(d)⟩ = 1− 2∆(c, d)

n
≤ 0

The result then follows by applying Lemma A.11 on the vectors produced by applying f on the codewords in C.
Finally, note that this bound is tight, as is witnessed by augmented Hadamard codes (Definition 3.10). ■
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4.5. Elias-Bassalygo Bound

This is a very powerful bound, that asymptotically supersedes most other bounds we have seen so far.
Before stating the Elias-Bassalygo bound, we prove some lemmata.

Lemma 4.16. Given any code C ⊆ [q]n, and any e ∈ {0, . . . , n}, there exists a Hamming ball of radius e containing
≥ |C| volq,n(e)

qn codewords in it.

Proof. Pick a y ∈ [q]n uniformly at random. Now note that

E[|B(y, e) ∩ C|] =
∑
c∈C

Pr(c ∈ B(y, e)) =
∑
c∈C

Pr(y ∈ B(c, e)) =
∑
c∈C

volq,n(e)

qn
=
|C| volq,n(e)

qn

where the first equality follows by the linearity of expectation. Now, since the expectation of the random variable
|B(·, e) ∩ C| is |C| volq,n(e)

qn , there must exist some y ∈ [q]n for which |B(y, e) ∩ C| ≥ |C| volq,n(e)
qn

7, as desired. ■

Definition 4.4. We define the q-ary Johnson function Jq :
[
0, 1− 1

q

]
7→ R as

Jq(x) :=

(
1− 1

q

)(
1−

√
1− qx

q − 1

)

Lemma 4.17 (Johnson Bound). Consider any binary code C = (n, k, d)2, and let e < J2(δ)n, where δ = d
n ≤ 1 − 1

2 .
Let y ∈ Fn

2 be any arbitrary vector. Then |B(y, e) ∩ C| ≤ 2dn.

Remark. For general q-ary alphabets, we have |B(y, e) ∩ C| ≤ qdn, mutatis mutandis.
Proof. We mimic the proof of Theorem 4.9: Let B(y, e) ∩ C = {c1, c2, . . . , cu}. We must show that u ≤ 2dn. Define
c′i = ci − y for i ∈ [u]. Finally, define

S :=
∑

1≤i<j≤u

∆(c′i, c
′
j) =

∑
1≤i<j≤u

∆(ci, cj)

Clearly S ≥
(
u
2

)
d.

Once again, construct the matrix C ∈ Fu×n
2 , where the ith row of C is ci. Now, note that

S =

n∑
j=1

∑
1≤i1<i2≤u

1Ci1j ̸=Ci2j

Now, fix any j, and suppose in the jth column of C, tj entries equal 1. Then note that

S =

n∑
j=1

tj(u− tj)

7otherwise if |B(y, e) ∩ C| < |C| volq,n(e)

qn
for every y ∈ [q]n, then we’d have E[|B(y, e) ∩ C|] < |C| volq,n(e)

qn
, which is a contradiction
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Finally, define e :=
∑n

j=1 tj

u . Then

S = u

n∑
j=1

tj −
n∑

j=1

t2j = u2e−
n∑

j=1

t2j ≤ u2e− (ue)2

n
= u2

(
e− e2

n

)

Consequently,

u2

(
e− e2

n

)
≥
(
u

2

)
d =

u(u− 1)d

2
=⇒ u ≤ 1

1− 2e
d (1− e

n )
=

2dn

(n− 2e)2 − n(n− 2d)

Finally, also note that∑n
j=1 tj is the number of ones in C, which is also the sum of weights of c′i, i ∈ [u]. Now, since

ci ∈ B(y, e), wt(c′i) = ∆(ci, y) ≤ e. Consequently,

ue =

n∑
j=1

tj =

u∑
i=1

wt(c′i) ≤ ue =⇒ e ≤ e =⇒ 2dn

(n− 2e)2 − n(n− 2d)
≤ 2dn

(n− 2e)2 − n(n− 2d)

=⇒ u ≤ 2dn

(n− 2e)2 − n(n− 2d)

Now, since e < J2(δ)n, n − 2e > n

(
1−

√
1− 2 d

n

)
=⇒ (n − 2e)2 > n(n − 2d). Since (n − 2e)2, n(n − 2d) ∈ Z,

(n− 2e)2 − n(n− 2d) ≥ 1 =⇒ u ≤ 2dn, as desired. ■

Theorem 4.18 (Elias-Bassalygo Bound). Consider any code C = (n, k, d)q , with R = k
n , δ = d

n ≤ 1 − 1
q . Then

R ≤ 1−Hq(Jq(δ)) + o(1).

Proof. Define e = nJq(δ)− 1. By Lemma 4.16, there exists a Hamming ball B of radius e such that |B| ≥ |C|·volq,n(e)
qn .

Also, by Lemma 4.17, |B| ≤ qdn 8.
Consequently

qdn ≥ |C| · volq,n(e)
qn

=⇒ |C| ≤ qdn · qn

volq,n(e)

Invoking Theorem A.10 yields
qk = |C| ≤ qn(1−Hq(Jq(δ))+o(1))

as desired. ■

4.6. Summary

Throughout this chapter, we tried to explore the tradeoffs between the rate and relative distance, and we saw many
bounds for the same. To recapitulate the central theme of this chapter,

Consider a family of codes with asymptotic relative distance δ. What is the maximum possible asymp-
totic rate R∗ that this family can achieve?

Although we have proved many bounds in this chapter, the best upper bounds for R in terms of δ are given by
Theorem 4.18 and Corollary 4.14. The only lower bound we have is the Gilbert Varshamov bound. Combining these
results yields:

8The Johnson Bound holds for general q-ary alphabets, although we only proved it for q = 2
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Theorem 4.19. For δ < 1− 1
q , the optimal value R∗ is

R∗ ≥ 1−Hq(δ), Corollary 4.3

R∗ ≤ 1−Hq(Jq(δ)), Theorem 4.18

R∗ ≤ 1− qδ

q − 1
, Theorem 4.11

For δ ≥ 1− 1
q , R∗ = 0, by Corollary 4.14.

Remark. A few remarks are in order:
1. All other upper bounds proved in this chapter are weaker than the ones mentioned above: However, that

doesn’t mean that the effort that went into proving themwaswasted. This is because bounds like the Singleton
bound are very useful in a “finite setting” when we are not talking about asymptotic quantities, but rather
trying to determine if some particular code is feasible or not. Moreover, the concept of MDS codes, which were
defined as the extremal cases of the Singleton bound, is very useful and will be discussed later on too, in the
context of Reed-Solomon codes. Finally, the crucial insight used in proving the Singleton bound, which is to
observe that any set of n − d + 1 indices uniquely determines a codeword, forms the underpinning of many
important constructions from codes, where the uniqueness of any set of indices translates into “independence”
in a probabilistic setting.

2. It is worth noting that the Gilbert-Varshamov bound is one of the very few lower bounds on R∗ in coding
theory literature, while a multitude of upper bounds for the same exist.

3. Note that Theorem 4.11 states that for any code, R ≤ 1− qδ
q−1 + o(1). Thus, if we keep the size of our alphabet

q constant, then for large enough n, 1− qδ
q−1 + o(1) < 1− δ. Consequently,

A family of codes on a fixed alphabet size will eventually stop satisfying the Singleton bound.
Alternatively stated, an MDS family of codes will necessarily see its alphabet size grow with n.

4. For q = 2, the Elias-Bassalygo bound outperforms even the Plotkin bound. However, for large q (say q = 100),
the Plotkin bound is (mostly) better, except for small values of δ.



Coding Theory 27 / 58 Arpon Basu

Figure 1: Feasible values of (R∗, δ) for q = 2, according to the bounds covered in this chapter. The upper curve is
given by the Elias-Bassalygo bound, and the lower curve by the Gilbert-Varshamov bound. Both the axes have been
scaled 100× for clarity

Figure 2: Feasible values of (R∗, δ) for q = 53, according to the bounds covered in this chapter. Note how the Plotkin
bound (which is the straight line) outperforms the Elias-Bassalygo bound (the blue curve) except for small δ. The
lower bound is still the Gilbert-Varshamov bound. Both the axes have been scaled 100× for clarity
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�5. Reed Solomon Codes

In this chapter, we shall see a lot of codes, and see many of the concepts we have seen so far in action.
Although we will most often be engrossed in deep technical details about Reed-Solomon codes, it should be kept
in mind that aplications of Reed-Solomon codes can be found far beyond the boundaries of coding theory. Apart
from being a very useful code in practice (Reed-Solomon codes and its variants are used for error-correction in DVD
players, database storage systems such as RAID 6, satellite communications, and many other places), the properties
of Reed-Solomon codes have found use in proving seminal results in computational complexity, such as the PCP
theorem ([AS98]).
Thus, let us dive into the study of a very rich and powerful class of codes.

5.1. Reed-Solomon Codes: A de�nition

Definition 5.1. Let q be a prime power, and let k ≤ q. For any m = (m0, . . . ,mk−1) ∈ Fk
q , we define the polynomial

corresponding to m as

fm(X) :=

k−1∑
i=0

miX
i ∈ Fq[X]

Lemma 5.1. The map Fk
q 7→ Fq[X] : m 7→ fm is Fq-linear.

Proof. The lemma merely says that for every m,m1,m2 ∈ Fk
q , λ ∈ Fq , we have fm1+m2 = fm1 + fm2 , fλm = λfm,

which can be easily seen to be true. ■

Definition 5.2 (Reed-Solomon Codes). Let q be a prime power, and let 1 ≤ k ≤ n ≤ q be integers. Let α1, α2, . . . , αn

be distinct elements of Fq . We then define the Reed-Solomon encoding function

RS : Fk
q 7→ Fn

q

RS(m) := (fm(α1), . . . , fm(αn))

Remark. A few remarks are in order:
1. α1, α2, . . . , αn are also known as “evaluation points” of the RS code.
2. Note how the alphabet size is greater than or equal to the block length.

5.2. Some Basic Properties of the Reed-Solomon code

We explore the properties of the Reed-Solomon code.

Lemma 5.2. The Reed-Solomon code is linear.

Proof. Follows from Lemma 5.1. ■
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Lemma 5.3. Reed-Solomon codes are MDS codes, ie:- RS codes are [n, k, n− k + 1]q codes.

Proof. If there exist distinct m1,m2 ∈ Fk
q such that ∆(RS(m1),RS(m2)) ≤ n − k, then that would mean that for at

least k values ‘α’ in {α1, . . . , αn}, we have fm1
(α) = fm2

(α) =⇒ fm1−m2
(α) = 0, which would mean that the

non-zero polynomial fm1−m2
has ≥ k roots in Fq , leading to a contradiction 9, since deg(fm1−m2

) ≤ k − 1.
Consequently, the distance of an RS code is at least n− k+1. Now, consider the polynomial p(X) :=

∏k−1
i=1 (X −αi).

Since p is a polynomial of degree k − 1, there existsm ∈ Fk
q such that fm(X) = p(X). Now, note that

∆(RS(m),RS(0)) =

n∑
i=1

1fm(αi )̸=f0(αi) =

n∑
i=1

1fm(αi )̸=0 =

n∑
i=k

1fm(αi )̸=0 = n− k + 1

where the last equality follows from the fact that fm(αi) ̸= 0 for every i ≥ k, since if we had fm(αi) = 0 for some
i > k, then that would imply that fm had ≥ k roots (α1, . . . , αk−1, αi), leading to a contradiction.
Consequently, the distance of an RS code is exactly equal to n− k + 1, as desired. ■

For the next lemma, we’ll state an identity about finite fields, without proof.

Lemma 5.4. Let q be a prime power. Then

∑
a∈Fq

ak =

{
0, if k ∈ {0, 1, . . . , q − 2}
−1, if k = q − 1

Remark. In this lemma, we set 00 to be 1.
Note that the generator matrix for an RS code is

G =


1 α1 α2

1 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2... ... ... . . . ...
1 αn α2

n . . . αk−1
n

 ∈ Fn×k
q

Lemma 5.5. The dual of a [q, k]q RS code is once again an RS code.

Proof. Note that the generator matrix for the [q, k]q RS code is

G =


1 α1 α2

1 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2... ... ... . . . ...
1 αq α2

q . . . αk−1
q

 ∈ Fq×k
q

where Fq = {α1, α2, . . . , αq}. Now consider the matrix

H =


1 1 1 . . . 1
α1 α2 α3 . . . αq

... ... ... . . . ...
αq−k−1
1 αq−k−1

2 αq−k−1
3 . . . αq−k−1

q

 ∈ F(q−k)×q
q

9Recall that a non-zero polynomial of degree t on a field can have at most t roots
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Then for A = HG ∈ F(q−k)×k
q , we have

aij =

q∑
k=1

hikgkj =

q∑
k=1

αi−1
k · αj−1

k =
∑
α∈Fq

αi+j−2 = 0

where the last equality follows from Lemma 5.4.
Consequently, H is the parity-check matrix for the [q, k]q RS code. Very clearly, HT is the generator matrix for the
[q, q − k]q RS code, which establishes our desired result. ■

Corollary 5.6. [2t, 2t−1]2t RS codes are self-dual, for t ∈ N.

Proof. This follows from the above lemma and the fact that the [q, k]q RS code is the unique RS code (on Fq) of
dimension k. ■

5.3. Generalizations and Variants of Reed-Solomon Codes

Notation Alert: In this section,mwill denote an integer. We shall instead use ‘µ’ to denote a message in this section.
Before we state the generalized Reed-Solomon code, we re-examine Definition 5.1.

Lemma 5.7. Let F(m−1)
q [X] denote the polynomials in Fq[X] with degree at most m − 1. Then there is a bijection

between F(m−1)
q [X] and Fm

q .

Proof. The proof is quite obvious: We identify a polynomial p(X) :=
∑m−1

i=0 µiX
i with (µ0, . . . , µm−1). Clearly, this

induces a bijection. ■

Whenwe examine the above proof a bitmore closely, we observe thatwe took a polynomial p(X) ∈ F[X], expressed it
as a linear combination of the basis elements (1, X,X2, . . . , Xm−1), and constructed the vector out of the coefficients
of the basis elements. Formalizing this notion,

Definition 5.3. LetF(m−1)
q [X]denote the polynomials inFq[X]with degree atmostm−1. Also, letB = (b0, . . . , bm−1)

be a basis for F(m−1)
q [X].

We define the encoding of a polynomial p ∈ F(m−1)
q [X] in the basis B as follows:

encB(p) = (µ0, . . . , µm−1) ∈ Fm
q

where p =
∑m−1

i=0 µibi.
In case our basis B is just the canonical basis (1, X, . . . ,Xm−1), we shall write encB(p) simply as enc(p).

Before, we state the next theorem, we would like to recall that polynomials over fields also follow the Chinese Re-
mainder Theorem.

Theorem 5.8 (Chinese Remainder Theorem for Polynomials). Let E1(X), . . . , En(X) ∈ F[X] be polynomials such
that deg(gcd(Ei(X), Ej(X)))= 0, for all 1 ≤ i < j ≤ n, ie:- the polynomials aremutually co-prime. Let di = deg(Ei)
for every i ∈ [n], and letD :=

∑n
i=1 di. IfA1(X), . . . , An(X) ∈ F[X] are polynomials such that deg(Ai) < di orAi = 0

for every i ∈ [n], then there is a unique polynomial p ∈ F[X] such that deg(p) < D, and p(X) mod Pi(X) = Ai(X)
for every i ∈ [n].
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Definition 5.4. Let m ≥ 1 be an integer parameter such that m < k ≤ n. Let E1(X), . . . , En(X) ∈ Fq[X] be
polynomials of degree m such that deg(gcd(Ei(X), Ej(X))) = 0, for all 1 ≤ i < j ≤ n, ie:- the polynomials are
mutually co-prime.
We define the generalized RS code to be

genRS : Fk
q 7→ Fn

qm

µ 7→ (fµ(X) mod E1(X), . . . , fµ(X) mod En(X))

Now, note that we identify enc(fµ(X) mod Ei(X)) ∈ Fm
q as an element of Fqm .

Theorem 5.9. genRS is a
[
n, k

m , n−
⌊
k−1
m

⌋]
qm

code, ie:- genRS is a linear MDS code.

Remark. Note that the dimension of this code is not necessarily integral.
Proof. We first note that genRS is an injective function: Indeed, if genRS(µ1) = genRS(µ2), then by Theorem 5.8 we
must have fµ1 = fµ2 ⇐⇒ µ1 = µ2. Consequently, the size of the genRS code is |Fk

q | = qk, and thus, the dimension is
logqm(qk) = k

m .
Linearity of genRS can also be seen easily: Since both the maps µ 7→ fµ and fµ 7→ (fµ mod E) are linear, and
consequently, their composition is linear too.
Finally, we prove that the distance of this code is at least n−

⌊
k−1
m

⌋
: The Singleton bound then forces the distance to

be exactly n−
⌊
k−1
m

⌋
. To that end, assume for the sake of contradiction that there existed some distinct µ1, µ2 ∈ Fk

q

such that ∆(genRS(µ1), genRS(µ2)) ≤ n −
⌊
k−1
m

⌋
− 1. Then for at least

⌊
k−1
m

⌋
+ 1 indices i ∈ [n], we have that

fµ1
mod Ei = fµ2

mod Ei. Now, note that m ·
(⌊

k−1
m

⌋
+ 1

)
≥ k > k − 1, which implies that by Theorem 5.8,

fµ1
= fµ2

⇐⇒ µ1 = µ2, which is a contradiction. ■

Corollary 5.10. The generalized RS code, with m = 1 and Ei(X) = X − αi, i ∈ [n] returns to us our original RS
code, where α1, α2, . . . , αn ∈ Fq are distinct (Note that we just use the canonical encoding scheme ‘enc’ for each
coordinate).

Proof. Follows from the fact that for any polynomial f(X) ∈ F[X], f(X) mod (X − αi) = f(αi). ■

We now derive various codes by substituting different expressions for the polynomials Ei(X). All of the codes
mentioned below are very important in the context of coding theory.

5.3.1. Derivative Codes

For this section, we first formally define derivatives in finite fields.

Definition 5.5 (Derivatives). Let f =
∑n

i=0 fiX
i ∈ F[X] be a polynomial. We define the derivative of f to be

f ′ :=

n−1∑
i=0

(i+ 1)fi+1X
i
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where for any n ∈ N, we define n := 1F + . . .+ 1F︸ ︷︷ ︸
n times

.

One common theme in algebra is to extend results in analysis (ie:- results about R and C) to fields with positive
characteristic. In these endeavours, many a times, results which hold on fields with characteristic 0 also hold on
fields with sufficiently large characteristic. We shall see an example of this in action now.

Theorem 5.11 (Taylor’s theorem for positive characteristics). Let q be a prime power, and let k ≤ char(Fq). Consider
a polynomial f ∈ Fq[X]. Then

f(X) mod (X − α)k = f(α) +
f ′(α)

1
(X − α) + . . .+

f (k−1)(α)

1 · 2 . . . · (k − 1)
(X − α)k−1 =

k−1∑
ℓ=0

f (ℓ)(α)
(X − α)ℓ

ℓ!

Now, let k,m, n be such that k < char(Fq),m < k < nm. Consider the generalized RS code with Ei(X) = (X −
αi)

m, i ∈ [n], where α1, α2, . . . , αn ∈ Fq are distinct.
Now, for every αi ∈ Fq , denote by Ti the basis {1, (X − αi), . . . ,

(X−αi)
m−1

(m−1)! } of F
(m−1)
q [X]. Then note that

encTi
(f(X) mod Ei(X)) = encTi

m−1∑
ℓ=0

p(ℓ)(αi)
(X − αi)

ℓ

ℓ!

 = (p(αi), p
′(αi), . . . , p

(ℓ)(αi))

where the first equality follows from Theorem 5.11.
Consequently, the generalized RS code, with Ei(X) = (X − αi)

m, i ∈ [n], and with the encoding scheme provided
by Ti for each coordinate i (note that, unlike RS codes, the encoding scheme for each coordinate is different), gives
rise to what is known as a derivative code.

Definition 5.6 (Derivative Codes). Let m ≥ 1 be an integer, and consider k, n such that m < k < mn, k < char(Fq).
Let α1, . . . , αn be distinct elements of Fq . Then the codeword for some µ ∈ Fk

q is
fµ(α1) fµ(α2) . . . fµ(αn)
f ′
µ(α1) f ′

µ(α2) . . . f ′
µ(αn)

... ... . . . ...
f
(m−1)
µ (α1) f

(m−1)
µ (α2) . . . f

(m−1)
µ (αn)


By the properties of the generalized RS code, the derivative code is a

[
n, k

m , n−
⌊
k−1
m

⌋]
qm

code.

5.3.2. Folded Reed Solomon Codes

Let α1, . . . , αn ∈ Fq be distinct elements. Suppose there exists some γ ∈ F∗
q := Fq \ {0} such that Si ∩ Sj = ∅ for

every 1 ≤ i < j ≤ n, where
Si := {αi, γαi, . . . , γ

m−1αi}

We also require γa ̸= γb for every a, b ∈ {0, . . . ,m− 1}, a ̸= b.
Consider the generalized RS code with Ei(X) :=

∏m−1
j=0 (X − γjαi), i ∈ [n].
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Now, for any f(X) ∈ Fq[X], i ∈ [n], αi ̸= 0, note that if q(X) = f(X) mod Ei(X), then q(γjαi) = f(γjαi). Now, since
the degree of q is lesser thanm, the expression for q can be given by Lagrange interpolation, and consequently,

q(X) =

m−1∑
j=0

f(γjαi)
∏
ℓ̸=j

X − γℓαi

γjαi − γℓαi

Thus, for every i ∈ [n] for which αi ̸= 0, define the basis Li :=
{∏

ℓ ̸=j
X−γℓαi

γjαi−γℓαi
: 0 ≤ j ≤ m− 1

}
of F(m−1)

q [X].
For indices i such that αi = 0, we fall back to our canonical basis, ie:- {1, X, . . . ,Xm−1}, for them.
Consequently, the generalized RS code, with Ei(X) = (X − αi)

m, i ∈ [n], and with the encoding scheme described
above gives rise to what is known as a folded Reed Solomon code.

Definition 5.7 (Folded Reed Solomon Code). Let α1, . . . , αn ∈ Fq be distinct elements for which there exists some
γ ∈ F∗

q := Fq \ {0} such that Si ∩ Sj = ∅ for every 1 ≤ i < j ≤ n, where

Si := {αi, γαi, . . . , γ
m−1αi}

Further suppose γa ̸= γb for every a, b ∈ {0, . . . ,m− 1}, a ̸= b.
Then the codeword for some µ ∈ Fk

q is
fµ(α1) fµ(α2) . . . fµ(αn)
fµ(γα1) fµ(γα2) . . . fµ(γαn)

... ... . . . ...
fµ(γ

m−1α1) fµ(γ
m−1α2) . . . fµ(γ

m−1αn)


By the properties of the generalized RS code, the folded Reed-Solomon code is a

[
n, k

m , n−
⌊
k−1
m

⌋]
qm

code.

5.3.3. Algebraic-Geometric Codes

Algebraic-Geometric Codes are another way to generalize Reed-Solomon codes. We shall first establish some lem-
mata before we define the code.

Lemma 5.12. Let p be a prime, and let q = p2. Define

S := {(α, β) ∈ F2
q : βp + β = αp+1}

Then |S| = p3.

Proof. Throughout this argument, whenever we refer to Fp, we shall be referring to the subfield of Fq .
We make two cases:

1. p = 2: The equation then becomes β2 + β = α3. We further make cases:
(a) α = 0: Then β2 + β = 0. This has 2 solutions, β = 0, 1. Furthermore, since β2 + β is a quadratic equation

over a field, it can’t have more than 2 roots.
(b) α ̸= 0: Note that since α ∈ F4, α4 = α. Since α ̸= 0, that implies α3 = 1. Now, note that the polynomial

X2 + X + 1 is irreducible over F2. Thus we identify F4 with F2[X]
(X2+X+1) , and consequently there exists

r ∈ F4 \F2 such that r2 + r = 1. Also note that if r2 + r = 1, then (1+ r)2 +(1+ r) = r2 +2r+1+1+ r =
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r2 + r = 1. Thus the two elements in F4 \ F2 (ie:- r and r + 1) are roots of the equation β2 + β = 1, and
consequently for every non-zero α we have exactly two β for which β2 + β = α3.

Collecting the above solutions yield exactly 8 solutions, as desired.
2. p ≥ 3: Let r ∈ Fp be a quadratic non-residue for p 10. Then the polynomial X2 − r is irreducible over Fp, and

we thus identify Fq with Fp[X]
(X2−r) . Consequently, every element of Fq can be uniquely written as xη + y, where

η ∈ Fq \ Fp is such that η2 = r, and x, y ∈ Fp, ie:- if x1η + y1 = x2η + y2, then x1 = x2, y1 = y2. Consequently,
set α = a1η + a2, β = b1η + b2. Then

βp + β = (b1η + b2)
p + (b1η + b2) = bp1η

p + bp2 + b1η + b2

where the last equality follows from the fact that (a + b)p = ap + bp for all a, b ∈ Fq . Furthermore, since
b1, b2 ∈ Fp, bp1 = b1, b

p
2 = b2, and thus

βp + β = b1η(r
p−1
2 + 1) + 2b2

Now note that since (r p−1
2 )2 = 1, we have r p−1

2 = ±1. However, since r p−1
2 can be 1 if and only if the order of

r in F∗
p is even, which can’t be the case since r is a quadratic non-residue. Consequently, r p−1

2 = −1, implying
that

βp + β = 2b2

Similarly,
ap+1 = (a1η + a2)(a1η

p + a2) = (a1η + a2)(−a1η + a2) = a22 − ra21

Consequently, note that we can choose a1, a2 and b1 freely from Fp, and then b2 =
a2
2−ra2

1

2 gets fixed. Thus
|S| = p3.

■

For the next lemma, we shall need Eisenstein’s criterion for multivariate polynomials.

Lemma 5.13 (Eisenstein’s Criterion). Let F be a field, and let F[X,Y ] be the ring of bivariate polynomials over F. A
polynomial f(X,Y ) := Y t+ ft−1(X)Y t−1+ . . .+ f0(X) is irreducible over F[X,Y ] if there exists a prime polynomial
p(X) ∈ F[X] such that p(X) divides fi(X) for every i ∈ {0, . . . , t− 1}, but p(X)2 does not divide f0(X).
Recall that a polynomial p(X) ∈ F[X] is said to be prime if it has degree at least 1 and for anypolynomials a(X), b(X) ∈
F[X], if p(X) divides a(X)b(X) then p(X) either divides a(X) or it divides b(X).

Lemma 5.14. The polynomial F (X,Y ) := Xp +X − Y p+1 is irreducible over Fq , where q = p2 and p is a prime.

Proof. We will be done if we can show that Y p+1 − (Xp + X) is irreducible over Fq . Note that the polynomial
g(X) = X is prime in Fq[X], g(X) divides −(Xp +X) but g(X)2 doesn’t divide −(Xp +X). We can thus conclude
by Lemma 5.13. ■

As has become customary now, we shall need another fact from algebraic geometry before our next lemma.

Lemma 5.15 (Bezout’s Bound). If f, g ∈ Fq[X,Y ] are non-zero polynomials with no common factors, then they have
at most deg(f) deg(g) common zeros.

10such a quadratic non-residue always exists for odd primes



Coding Theory 35 / 58 Arpon Basu

Lemma 5.16. Let n = p3, q = p2, where p is a prime number. Consider the evaluation map ev : Fq[X,Y ] 7→ Fn
q

defined by
ev(f) := (f(α, β) : (α, β) ∈ S)

where S is defined as in Lemma 5.12.
If f is a non-zero polynomial not divisible by Y p + Y − Xp+1, then the Hamming weight of ev(f) is atleast n −
deg(f)(p+ 1).

Proof. Since Y p + Y − Xp+1 is irreducible, if it doesn’t divide f , then the gcd of f and Y p + Y − Xp+1 must be of
degree 0, and thus f and Y p + Y −Xp+1 have no common factors.
Thus, by Lemma 5.15, f and Y p + Y −Xp+1 have at most (p + 1) deg(f) common zeros, implying that for at most
(p+ 1) deg(f) elements of S, can f evaluate to 0.
The conclusion of the lemma now follows. ■

We now define a special class of bivariate polynomials which we are interested in.

Definition 5.8. For any ℓ ∈ N, we define

Fℓ := {f ∈ Fq[X,Y ] : deg(f) ≤ ℓ,degX(f) ≤ p}

where degX(f) is the degree of f interpreted as polynomial in X . For example, for f(X,Y ) := X2Y 4 + Y 5 − X4,
deg(f) = 6 and degX(f) = 4.

Note that every polynomial in Fℓ can be generated as a Fq-linear combination of the polynomials {XiY j : i ≤
p, i+j ≤ ℓ}. Consequently, Fℓ can be viewed as a Fq-vector space of dimension (ℓ−p+1)+(ℓ−p+2)+ . . .+(ℓ+1) =

(ℓ+ 1)(p+ 1)− p(p+1)
2 .

We can finally define the Algebraic-Geometric code.

Definition 5.9 (Algebraic-Geometric Codes). Let p be a prime number, and let n = p3, q = p2. Then the algebraic-
geometric code is defined as

AGp,ℓ := {ev(f) : f ∈ Fℓ} ⊆ Fn
q

Lemma 5.17. AGp,ℓ is a [n, k, d]q code where

k ≤ (ℓ+ 1)(p+ 1)− p(p+ 1)

2
, d ≥ n− ℓ(p+ 1)

Proof. The inequality for k follows from the fact that ev is Fq-linear. Consequently, the image of Fℓ under ev is also
a Fq-vector space of dimension at most the dimension of Fℓ.
Thus k ≤ (ℓ+ 1)(p+ 1)− p(p+1)

2 .
The inequality for d follows from Lemma 5.16. Note that no polynomial in Fℓ is divisible by Y p + Y −Xp+1 since
the X-degree of polynomials in Fℓ is at most p. ■

Note that AG codes are [n, k, d]q codes where d ≥ n− k+ 1− p(p−1)
2 . Thus the bound for d has a deviation of p(p−1)

2
from the Singleton bound. However, the deviation is only O(p2) = o(n). However, this slight deficiency from the
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Singleton bound allows us to increase our block length n to q
3
2 , whereas in RS codes we were constrained to keep

n ≤ q. In fact, AG codes have very good rate-distance tradeoffs, which we shall show next.

Theorem 5.18. AG codes beat the Gilbert-Varshamov bound for large enough p.

Proof. Note that the Gilbert Varshamov bound constructs codes with asymptotics R ≥ 1 − Hq(δ) − ε = 1 − δ −
O( 1

log q )− ε.
Meanwhile, for the AG code, we have

d ≥ n− k + 1− p(p− 1)

2
=⇒ δ ≥ 1−R+

1

n
− p(p− 1)

2n︸ ︷︷ ︸
−O( 1√

q )

=⇒ R ≥ 1− δ −O

(
1
√
q

)

Since 1− δ −O
(

1√
q

)
> 1− δ −O

(
1

log q

)
− ε for large enough q for any fixed ε > 0, we have our desired result. ■

Remark. In general, in combinatorics, random objects are often extremal. In the context of coding theory, the Gilbert-
Varshamov bound constructs a random linear code and achieves an asymptotic rate of 1 −Hq(δ) from it. Thus, for
many years, the consensus in the coding theory community was that the Gilbert-Varshamov bound was optimal.
That notionwas dispelledwith the advent of algebraic-geometric codes, whose careful constructionmanaged to beat
the rate of a random linear code.

5.3.4. BCH Codes

BCH codes are named after their discoverers, Bose, Ray-Chaudhuri, and Hocquenghem.

Definition 5.10. Let q be a prime power. Consider the k-dimensional RS code [q − 1, k]q on Fq generated by using
all the non-zero elements of Fq as evaluation points, ie:- every element of F∗

q is used as an evaluation point.
We denote this RS code as RSF∗

q
[k].

Now, recall that if F is a finite field, then (F∗, 1, ·) is a cyclic group, where F∗ := F \ {0}. Consequently, there exists
a primitive element α ∈ F∗ such that F∗ = {1 = α0, α1, α2, . . . , α|F|−2}. Thus the parity check matrix of RSF∗ [k] is as
given below:

HF∗,k =


1 1 1 . . . 1
α0 α1 α2 . . . α|F|−2

... ... ... . . . ...
α0·(|F|−k−2) α1·(|F|−k−2) α2·(|F|−k−2) . . . α(|F|−2)·(|F|−k−2)



Definition 5.11 (BCHCodes). Consider the codeRSF∗
2m

[k], ie:- n = 2m−1. All of its codewords reside in Fn
2m . Now,

consider the inclusion F2 ↪→ F2m , and consider the code

CBCH := RSF∗
2m

[k] ∩ Fn
2

ie:- the BCH code consists of all codewords in the Reed-Solomon code whose only entries are 0, 1.

Before we analyze the parameters of the BCH code, we establish some small facts about finite fields.
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Lemma 5.19. Consider n numbers c0, . . . , cn−1 ∈ F2. Let m ∈ N, and consider an indeterminate α ∈ F2m satisfying
the equation

c0 + c1α+ . . .+ cn−1α
n−1 = 0

The above equation is equivalent to a system of m linear equations in F2.

Proof. We endow F2m with a vector space structure over F2, ie:- we pick a basis B = {β1 = 1, β2, . . . , βm} ⊆ F2m such
that every element of F2m can be written as a unique linear combination∑m

i=1 ηiβi, where ηi ∈ F2 = {0, 1}, i ∈ [m].
Note that if we have η ∈ F2 ↪→ F2m , then the representation of η in the vector space Fm

2 with B as a basis is just[
η 0 . . . 0

]T.
Now, consider the mapMα : F2m 7→ F2m , whereMα(x) := αx. Clearly, Mα is F2-linear, sinceMα(x + y) =
Mα(x) +Mα(y) andMα(ηx) = ηMα(x) for every x, y ∈ F2m , η ∈ F2. ConsequentlyMα can be associated with a
matrix Mα ∈ Fm×m

2 such that for any v ∈ F2m , if the representation of v in the vector space Fm
2 (according to the

basis B) is (v1, . . . , vm), then Mα ·
[
v1 . . . vm

]T gives us the vector space representation ofMα(v) = αv.
Consequently, the equation c0 + c1α+ . . .+ cn−1α

n−1 = 0 translates to, in Fm
2 , to:

c0
0
...
0

+Mα


c1
0
...
0

+ . . .+Mn−1
α


cn−1

0
...
0

 =


0
0
...
0


Comparing this equation component-wise yields m linear equations over F2, as desired. ■

Lemma 5.20. If f(X) ∈ F2[X], then f(X2) = f(X)2.

Proof. Recall that if x, y ∈ Fps , then (x+ y)p = xp + yp. Consequently, let f(X) = c0 + c1X + . . .+ cn−1X
n−1, where

c0, . . . , cn−1 ∈ F2. Then

f(X)2 = (c0 + c1X + . . .+ cn−1X
n−1)2 = c20 + (c1X)2 + . . .+ (cn−1X

n−1)2

Now, also note that for any η ∈ F2, η
2 = η. Thus

c20 + (c1X)2 + . . .+ (cn−1X
n−1)2 = c20 + c21X

2 + . . .+ c2n−1X
2(n−1) = c0 + c1X

2 + . . .+ cn−1X
2(n−1) = f(X2)

as desired. ■

Corollary 5.21. Let f(X) ∈ F2[X] ↪→ F2m [X], and suppose f(α) = 0 for some α ∈ F2m . Then f(α2) = 0.

Lemma 5.22. The BCH code is a [n, k′, d′]2 code, where n = 2m − 1 for some m ∈ N, d′ ≥ n − k + 1 and k′ ≥
n−

⌈
d′−1
2

⌉
log2(n+ 1).

Proof. Note that RSF∗
2m

[k] is a subspace of Fn
2m , and so is Fn

2 . Thus the BCH code, being the intersection of two
subspaces is also a subspace and is consequently linear.



Coding Theory 38 / 58 Arpon Basu

Note that since the BCH code is a subset of the RS code, and since the RS code has distance n − k + 1, the distance
between any two codewords in the BCH code must also be ≥ n− k + 1, as desired.
Now, let α be any primitive element of F2m . Since the BCH code is a sub-code of an RS code, the parity check matrix
of the RS code nullifies the codewords of the BCH code too. Thus, let c = (c0, c1, . . . , cn−1) ∈ Fn

2 be an element of
the BCH code. Then we have

α0·0 α1·0 α2·0 . . . α(n−1)·0

α0·1 α1·1 α2·1 . . . α(n−1)·1

... ... ... . . . ...
α0·(n−k−1) α1·(n−k−1) α2·(n−k−1) . . . α(n−1)·(n−k−1)




c0
c1
...

cn−1

 =


0
0
...
0


Thus

fc(1) = fc(α) = . . . = fc(α
n−1−k) = 0

where fc(X) = c0 + c1X + . . .+ cn−1X
n−1 ∈ F2[X].

Now, from Corollary 5.21, we know that fc(αj) = 0 implies fc(α
2j) = 0. Thus the solution space of the system

fc(1) = fc(α) = . . . = fc(α
n−1−k) = 0 is the same as the solution space of the system fc(α

1) = fc(α
3) = fc(α

5) =

. . . = 0, ie:- we only care about the odd exponents of α in the system now. Now, we have at most
⌈
n−k
2

⌉
equations

in fc(α
1) = fc(α

3) = fc(α
5) = . . . = 0, and by Lemma 5.19, each equation fc(α

j) = 0 translates to m = log2(n + 1)
equations in F2.
Thus the solution space of the system fc(α

1) = fc(α
3) = fc(α

5) = . . . = 0 is in bijection with the solution space of⌈
n−k
2

⌉
·m =

⌈
n−k
2

⌉
· log2(n+ 1) linear equations in F2.

Thus the nullity of our BCH code is at most
⌈
n−k
2

⌉
· log2(n + 1), and consequently the dimension of our code is at

least n−
⌈
n−k
2

⌉
· log2(n+ 1) ≥ n−

⌈
d′−1
2

⌉
· log2(n+ 1), as desired. ■

5.4. Applications

We use the aforementioned construction of BCH codes to give a very efficient construction of a k-wise independent
source.

Definition 5.12. A set of vectors S ⊆ Fn
q is called t-wise independent if for every I ⊆ [n]with |I| = t, every vector in

Ft
q appears an equal number of times as a projection of some element s ∈ S onto I .

Remark. A few remarks are in order.
1. (n, k)q MDS codes are k-wise independent. In fact, every vector in Fk

q occurs exactly once as a projection of
some codeword in (n, k)q . This follows from Theorem 4.7.

2. Given n random variables X1, . . . , Xn, taking values in R, we say they are k-wise independent if Pr(Xi1 =

r1, . . . , Xik = rk) =
∏k

ℓ=1 Pr(Xiℓ = rℓ) holds for every {i1, i2, . . . , ik} ⊂ [n] and every (r1, . . . , rk) ∈ Rk. Then
note that ifS ⊆ Fn

q is k-wise independent, then the randomvectorsX1, X2, . . . , Xn are also k-wise independent,
where Xi is the random variable denoting the ith entry of a uniformly randomly chosen element of S.

Theorem 5.23. One can compute n random bits which are t-wise independent using ⌈ t
2

⌉
log2(1 + n) uniform inde-

pendent random bits, using BCH codes.

Proof. This result follows (after some effort) from Proposition 6.5 in [ABI86]. ■
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�6. Alternative Noise Models: Shannon's Theorem

So far we have implicitly worked with the Hamming model of a channel, which upper bounds the number of errors
a transmitted codeword can have: However, those errors are allowed to occur on any bit of the codeword, which
thus includes within itself the possibility that an adversary could selectively corrupt bits to make decoding impos-
sible/erroneous.
However, another large class of noise models is derived from the assumption that noise is a stochastic process: Thus,
in most stochastic noise models, there is no upper bound on the number of errors that may take place: There is a
non-zero probability that every bit might be corrupted.
This class of noise models was introduced and investigated by Shannon, who proved an eponymous theorem re-
garding rate-error tradeoffs for stochastic noise models.
But before stating Shannon’s theorem, we first define our error model precisely.

Definition 6.1 (Binary Symmetric Channel). Fix a parameter p ∈ [0, 1
2

]. The binary symmetric channel is a channel
that flips every bit with probability p, independently of other bits.
This channel is denoted as BSCp, and we shall write e ∼ BSCp to denote an error e sampled from the BSCp channel.
Note that if our channel is a n-bit channel, then e ∈ {0, 1}n.

Remark. A few remarks are in order:
1. There are lots of other stochastic noise models, but we will only consider the BSC model. Consequently, we

will only be talking about binary codes in this chapter.
2. Ifx ∈ {0, 1}n is the original codeword, and e ∈ {0, 1}n is the error, then the transmitted codeword isx+e = x⊕e.

6.1. Shannon's Theorem

Theorem 6.1 (Shannon’s Theorem). Consider real numbers p, ε such that p ∈ (0, 1
2

)
, ε ∈

[
0, 1

2 − p
]. Then for large

enough n ∈ N, we have that:
1. There exists a real δ > 0, a positive integer k ≤ ⌊(1−H(p+ ε))n

⌋, and functions E : {0, 1}k 7→ {0, 1}n, D :
{0, 1}n 7→ {0, 1}k, such that for every µ ∈ {0, 1}k:

Pr
e∼BSCp

(D(E(µ) + e) ̸= µ) ≤ 2−δn

2. If k ≥ ⌈(1−H(p) + ε)n
⌉, then for any pair of functionsE : {0, 1}k 7→ {0, 1}n, D : {0, 1}n 7→ {0, 1}k, there exists

a µ ∈ {0, 1}k such that
Pr

e∼BSCp

(D(E(µ) + e) ̸= µ) ≥ 1

2

Remark. A few remarks are in order:
1. Note how in the first part we have ε inside the entropy function (‘1−H(p+ ε)’), while in the second part, we

have it outside the entropy function (‘1−H(p) + ε’).
2. The reason why Shannon’s theorem is so important is that it precisely identifies 1−H(p) to be the “threshold”

up to which reliable transmission is possible on the BSCp channel. In this respect, it is somewhat similar to the
Singleton Bound. Indeed, if we want to tolerate p fraction of errors in the Hamming model of noise, we need
our relative distance δ to be at least 2p, and then Theorem 4.5 forces our rate R to be at most 1− δ ≤ 1− 2p.



Coding Theory 40 / 58 Arpon Basu

We will give proofs for the two parts separately. We will prove the second part of the theorem first.
Proof of the second part. Suppose k ≥

⌈
(1−H(p) + ε)n

⌉, and assume for the sake of contradiction there exist E :
{0, 1}k 7→ {0, 1}n, D : {0, 1}n 7→ {0, 1}k such that for every µ ∈ {0, 1}k,

Pr
e∼BSCp

(D(E(µ) + e) ̸= µ) <
1

2
⇐⇒ Pr

e∼BSCp

(E(µ) + e ̸∈ D−1(µ)) <
1

2

Now set γ = ε

2p log2

(
1
p−1

) , and for every µ ∈ {0, 1}k, define

Sµ := B(E(µ), (1 + γ)pn) \B(E(µ), (1− γ)pn)

Now, by Theorem A.3,
Pr(E(µ) + e ̸∈ Sµ) < 2e−

γ2pn
3 = 2−Ω(γ2n)

Thus by Lemma A.1,

Pr((E(µ) + e) ̸∈ Sµ ∩D−1(µ)) <
1

2
+ 2−Ω(γ2n) =⇒ Pr((E(µ) + e) ∈ Sµ ∩D−1(µ)) >

1

2
− 2−Ω(γ2n) ≥ 1

4

where the last inequality holds for large enough n.
On the other hand, note that
Pr((E(µ)+e) ∈ Sµ∩D−1(µ)) ≤ |Sµ∩D−1(µ)| ·max

y∈Sµ

Pr(E(µ)+e = y) = |Sµ∩D−1(µ)| · max
d∈[(1−γ)pn,(1+γ)pn]

pd(1−p)n−d

Some elementary calculus yields that pd(1− p)n−d is a decreasing function of d for p ≤ 1
2 , and consequently

max
d∈[(1−γ)pn,(1+γ)pn]

pd(1− p)n−d = p(1−γ)pn(1− p)n−(1−γ)pn =

(
1− p

p

)γpn

2−nH(p)

Thus
1

4
≤ Pr((E(µ) + e) ∈ Sµ ∩D−1(µ)) ≤ |Sµ ∩D−1(µ)| ·

(
1− p

p

)γpn

2−nH(p)

=⇒ |Sµ ∩D−1(µ)| ≥ 1

4

(
1− p

p

)−γpn

2nH(p)

Finally, note that

{0, 1}n =
⊔

µ∈{0,1}k

D−1(µ) =⇒ 2n =
∑

µ∈{0,1}k

|D−1(µ)| ≥
∑

µ∈{0,1}k

|D−1(µ) ∩ Sµ|

≥ 2k · 1
4

(
1− p

p

)−γpn

2nH(p) > 2k+nH(p)−εn

where the last inequality follows, for large enough n, when we substitute γ = ε

2p log2

(
1
p−1

) .
But since k ≥ ⌈(1−H(p) + ε)n

⌉, 2n > 2k+nH(p)−εn is a contradiction, as desired. ■

Before proving the first part, we establish some lemmata.

Lemma 6.2. Let k ≤ (1−H(p+ ε))n, where p, ε are as they were defined in Theorem 6.1.
Let E : {0, 1}k 7→ {0, 1}n be a random encoding function, ie:- for every µ ∈ {0, 1}k, E(µ) is uniformly random in
{0, 1}n. LetD be themaximum likelihood decoding function corresponding toE: In case some x ∈ {0, 1}n is equally
close to E(µ1), E(µ2), . . . , E(µt), we arbitrarily assign one of µ1, µ2, . . . , µt as D(x).
Then there exists some δ′ > 0 such that for any µ ∈ {0, 1}k:

EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]
≤ 2−δ′n
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Proof. Let ε′ := ε
2 . Also define yµ := E(µ) + e. Then

Pr
e∼BSCp

(
D(E(µ) + e) ̸= µ

)
=

∑
y∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y) ̸=µ +
∑

y ̸∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y) ̸=µ

Now, ∑
y ̸∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y)̸=µ ≤
∑

y ̸∈B(E(µ),(p+ε′)n)

Pr(yµ = y) = Pr(yµ ̸∈ B(E(µ), (p+ ε′)n)) ≤ e−
n(ε′)2

2

where the last inequality follows by Theorem A.3.
Thus

Pr
e∼BSCp

(
D(E(µ) + e) ̸= µ

)
≤

∑
y∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y) ̸=µ + e−
n(ε′)2

2

=⇒ EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]
≤ EE

 ∑
y∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y) ̸=µ

+ e−
n(ε′)2

2

By linearity of expectation,

EE

 ∑
y∈B(E(µ),(p+ε′)n)

Pr(yµ = y)1D(y)̸=µ

 =
∑

y∈B(E(µ),(p+ε′)n)

EE

[
Pr(yµ = y)1D(y)̸=µ

]

=
∑

y∈B(E(µ),(p+ε′)n)

Pr
e∼BSCp

(yµ = y)EE

[
1D(y)̸=µ

]
Note that

EE

[
1D(y) ̸=µ

]
= Pr

E

(
D(y) ̸= µ

∣∣yµ = y
)
≤
∑
µ′ ̸=µ

Pr

(
∆(E(µ′), y) = ∆(E(µ), y)

∣∣∣∣yµ = y

)
where the last inequality is quite apparent when we recall that D was the MLD decoder: Thus D can fail to decode
a message only when there are other, equidistant messages 11. Now, if y ∈ B(E(µ), (p + ε′)n), then ∆(E(µ), y) ≤
(p + ε′)n. Consequently, ∆(E(µ′), y) ≤ (p + ε′)n ⇐⇒ E(µ′) ∈ B(y, (p + ε′)n), where µ, µ′ are as in the summation
above.
Thus

EE

[
1D(y) ̸=µ

]
≤
∑
µ′ ̸=µ

Pr

(
∆(E(µ′), y) = ∆(E(µ), y)

∣∣∣∣yµ = y

)
=
∑
µ′ ̸=µ

|B(y, (p+ ε′)n)|
2n

≤
∑
µ′ ̸=µ

2nH(p+ε′)

2n

= (2k − 1)
2nH(p+ε′)

2n
< 2k−n(1−H(p+ε′))

Since k ≤ n(1−H(p+ ε)),
EE

[
1D(y) ̸=µ

]
≤ 2−n(H(p+ε)−H(p+ε′))

Thus

EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]
≤

∑
y∈B(E(µ),(p+ε′)n)

Pr
e∼BSCp

(yµ = y) · 2−n(H(p+ε)−H(p+ε′)) + e−
n(ε′)2

2

Finally, ∑
y∈B(E(µ),(p+ε′)n)

Pr
e∼BSCp

(yµ = y) ≤
∑

y∈{0,1}n

Pr
e∼BSCp

(yµ = y) = 1

11in which case our MLD scheme assigns an output randomly
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Thus

EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]
≤ 2−n(H(p+ε)−H(p+ε′)) + e−

n(ε′)2
2 = 2−n(H(p+ε)−H(p+ ε

2 )) + 2−
nε2

8 ln 2

where we recall that ε′ = ε
2 .

The above expression can be upper bounded by 2−δ′n for some small enough δ′ > 0, for large enough n. We have
thus proved our desired result. ■

Thus, for every µ ∈ {0, 1}k, EE

[
Pre∼BSCp

(
D(E(µ) + e) ̸= µ

)]
≤ 2−δ′n. Consequently

Eµ

[
EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]]
≤ 2−δ′n

But
Eµ

[
EE

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]]
= EE

[
Eµ

[
Pr

e∼BSCp

(
D(E(µ) + e) ̸= µ

)]]
Consequently, there exists some E∗ such that Eµ

[
Pre∼BSCp

(
D(E∗(µ) + e) ̸= µ

)]
≤ 2−δ′n.

Thus for E∗, the average decoding error is upper bounded. We now show that by throwing away half of the code-
words, the maximum decoding error is also upper bounded. This process of throwing away codewords to convert an
average-case bound to a worst-case bound is also known as expurgation 12.

Lemma 6.3. Let µ1, µ2, . . . , µ2k be an ordering of {0, 1}k such that for

pi := Pr
e∼BSCp

(D(E∗(µi) + e) ̸= µi)

we have p1 ≤ p2 ≤ . . . ≤ p2k .
Then p2k−1 ≤ 21−nδ′ .

Proof. Note that
1

2k

2k∑
i=1

pi = Eµ

[
Pr

e∼BSCp

(
D(E∗(µ) + e) ̸= µ

)]
≤ 2−δ′n

Now, assume for the sake of contradiction that p2k−1 > 21−nδ′ . Then

1

2k

2k∑
i=1

pi ≥
1

2k

2k∑
i=2k−1

pi >
1

2k
2k−121−δ′n = 2−δ′n

leading to a contradiction. ■

Proof of the first part. Following the groundwork laid above, the proof is quite straightforward: Define δ = δ′ + 1
n . In

Lemma 6.2, choose some k ≤ (1−H(p+ ε))n, and conclude that there is some E∗ such that

Eµ

[
Pr

e∼BSCp

(
D(E∗(µ) + e) ̸= µ

)]
≤ 2−δ′n

Apply Lemma 6.3 to get that if we reduce our dimension by 1, ie:- set k′ = k − 1 (note that k′ ≤ ⌊(1−H(p+ ε))n
⌋),

then our maximum decoding error is bounded above by 21−nδ′ = 2−nδ , as desired. ■

Note that even though we presented Shannon’s theorem, we haven’t given any explicit construction of a code that
achieves the optimal rate predicted by Shannon’s theorem. Such codes do exist, but we shall not have the occasion
to see them here.

12The technique of expurgation is pretty common across computer science: For example, in these notes [Pan17], one may see expurgation in
action to establish the Goldreich-Levin theorem.
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6.2. Shannon vs. Hamming

Note that in the Shannon model, the errors are stochastic. Furthermore, for BSCp, the errors in different bits are
independent too. This makes the probabilistic error model much weaker than the Hamming error model, where
various errors can be chosen adversarially to thwart the decodability of the transmitted codeword.
Stated equivalently, given a particular code, and a particular parameter denoting the fraction of errors, we can achieve
higher rates in the Shannon model than in the Hamming model.
One can argue about that as follows:

Lemma 6.4. Consider p ∈ (0, 1
2

)
, ε ∈

(
0, 1

2 − p
]. If some algorithm A can handle (p + ε) fraction of errors in the

transmitted codewords, then BSCp can be used for reliable communication.

Proof. Indeed, by Theorem A.3, with probability ≥ 1− e−nε2/2, the fraction of errors is ≤ p+ ε. We can then invoke
A to recover the transmitted codeword. ■

Consequently, if the relative distance of our code is > 2p+ ε, then reliable decoding is possible over BSCp.
Although we won’t cover it in this chapter, an analogous statement to Theorem 6.1 holds for qSCp channels too, ie:-
consider a channel transmitting codewords in Fn

q , and every entry of the codeword can get changed to some different
element of Fq with probability p. Then if p < 1 − 1

q , then reliable communication is possible for R ⪅ 1 − Hq(p).
Furthermore, one can show, using the tools developed in Appendix A.2, that 1 − Hq(p) ∈ [1 − p − ε, 1 − p] for
ε = O

(
1

log2(q)

)
. Consequently, for large enough q, one can have reliable communication withR ≈ 1−Hq(p) ≈ 1− p

in the Shannon model. Stated differently, a Shannon channel with rate R can tolerate ∼ 1−R fraction of errors.
On the other hand, for the Hamming model, decodability is possible only if the number of errors made is at most 1

2

the distance, ie:- e < d
2 .

For the sake of comparison with Shannon’s theorem, assume that the fraction of errors is p. Then p < δ
2 , where δ is

the relative distance.
But by Theorem 4.5, δ ≤ 1−R, where R is the rate of the code. Consequently, for the Hamming model, we need to
have p < 1−R

2 if we want decodability.
Thus, we see a quantitative verification of our intuition: The Shannon model can tolerate twice as many errors as the
Hamming model. We shall later see a method of “bridging” this gap.
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�7. List Decoding

As noted in the last chapter, there is a factor of about 2 in the fraction of errors that can be tolerated in the Shannon
model, vs. in the Hamming model.
Now, suppose we give up on our insistence on unique decoding, ie:- given a transmitted codeword, we no longer
insist that there be some algorithm that tells us what the original codeword was. We instead demand only a list of
possible codewords as candidates from our decoding algorithm.
But then how do we deal with the real-life problem of assigning a unique codeword as the decoded result of a
transmitted codeword? We go about it as follows: Suppose our list is of size L. Then we include some “metadata”
within codewords which helps us in choosing the correct codeword from the list of L codewords.
Note that the above process effectively reduces the dimension of our code by log2 L, since you need that many bits to
encode the metadata. But if L is not too large, then this slight decrease in the dimension of the code is permissible:
After all, it helps us tolerate more errors in our channel.
We shall now make the aforementioned notions precise.

7.1. List Decoding

Definition 7.1. Given ρ ∈ [0, 1], L ≥ 1, we say that a code C ⊆ Σn is (ρ, L)-list decodable if for every received word
y ∈ Σn,

|{c ∈ C : ∆(c, y) ≤ ρn}| ≤ L

Note that since we will eventually be concerned with efficient (read poly-time) algorithms for list decoding, we will
generally consider L to be poly(n), because if L is superpolynomial, then any list decoding algorithm will have to
output a list of length L, which itself will not be a poly-time task.
Now, having set up this notion of list decoding, wewant to explore howmany errorswe can tolerate in this paradigm.
To do that, we recall Lemma 4.17, which we restate here for the reader’s convenience:

Definition 7.2. We define the q-ary Johnson function Jq :
[
0, 1− 1

q

]
7→ R as

Jq(x) :=

(
1− 1

q

)(
1−

√
1− qx

q − 1

)

Lemma 7.1 (Johnson Bound). Consider any code C = (n, k, d)q , and let e < Jq(δ)n, where δ = d
n ≤ 1 − 1

q . Let
y ∈ Fn

q be any arbitrary vector. Then |B(y, e) ∩ C| ≤ qdn = qδn2. In other words, C is (ρ, qδn2)-list decodable, for
any ρ < Jq(δ).

Finally, for the sake of comparison, we state an inequality for Jq(·).

Lemma 7.2. Let q ≥ 2 be an integer, and let x ∈
(
0, 1− 1

q

)
. Then

Jq(x) ≥ 1−
√
1− x >

x

2



Coding Theory 45 / 58 Arpon Basu

This result already shows that list decoding can outperform unique decoding: Indeed, as argued in the last chapter,
unique decoding is possible only if p < δ

2 ≤
1−R
2 .

However, we can tolerate up to Jq(δ) > δ
2 fraction of errors in the list-decoding paradigm 13, and thus we have

outperformed the unique decoding bound already!
Now that we have outperformed the unique decoding barrier, wewould like to knowhow farwe can go. Fortunately,
an analog of Shannon’s theorem tells us that.

Theorem 7.3 (List Decoding Capacity). Let q ≥ 2 be an integer, let ρ ∈
(
0, 1− 1

q

)
, and let ε > 0. Then for large

enough n ∈ N, we have that:
1. For any L ∈ N, if R ≤ 1−Hq(ρ)− 1

L , there exists a (ρ, L)-list decodable code with rate R.

2. If R ≤ 1−Hq(ρ) + ε, every (ρ, L)-list decodable code with rate R has L ≥ qΩ(εn).

Perhaps unsurprisingly, the proof of this theorem exploits the probabilistic method, in a manner not dissimilar to
the technique used in the proof of Shannon’s theorem.
Proof. The proofs for both parts go as follows:

1. Consider any k ∈ N such that k ≤ (1−Hq(ρ)− 1
L

)
n. Let C ⊆ Fn

q be a random code of dimension k, ie:- pick
qk elements from Fn

q , uniformly, without replacement.
Now, given any y ∈ Fn

q , and any c0, . . . , cL ∈ Fn
q , we say that the tuple (y, c0, . . . , cL) constitutes a “bad event”

if ci ∈ B(y, ρn) for all i ∈ {0, . . . , L}. Note that C is (ρ, L)-list decodable if and only if there are no bad events.
Now,

Pr

 L∧
i=0

(ci ∈ B(y, ρn))

 =

(|B(y,ρn)|
L+1

)(
qn

L+1

) ≤
(
|B(y, ρn)|

qn

)L+1

where the last inequality follows from the fact that (
a
k)
(bk)

= a(a−1)···(a−k+1)
b(b−1)···(b−k+1) ≤

(
a
b

)k if a ≤ b, since if a ≤ b, then
a−r
b−r < a

b for any 0 < r < a.
But by Theorem A.10, (

|B(y, ρn)|
qn

)
≤ q−n(1−Hq(ρ))

Thus,

Pr(A bad event occurs) = Pr

 ⋃
{c0,...,cL}⊆C

y∈Fn
q

L∧
i=0

(ci ∈ B(y, ρn))

 ≤ ∑
{c0,...,cL}⊆C

y∈Fn
q

Pr

 L∧
i=0

(ci ∈ B(y, ρn))



≤ qn
(

qk

L+ 1

)(
|B(y, ρn)|

qn

)L+1

≤ qn
(

qk

L+ 1

)(
q−n(1−Hq(ρ))

)L+1

≤ qnqk(L+1)
(
q−n(1−Hq(ρ))

)L+1

= qn+nR(L+1)−n(L+1)(1−Hq(ρ)) < 1

where the last inequality follows from the fact that R ≤ 1−Hq(ρ)− 1
L .

Since for a random code, the probability of a bad event occurring is less than 1, we get that there must be some
code for which the bad event doesn’t occur, as desired.

13a small technicality here: As we remarked earlier, we require L to be polynomial, when we say that some code is (ρ, L)-decodable. Now, the
Johnson bound gives us L = qδn2. Thus, L = poly(n) if and only if q = poly(n). However, that is hardly a concern, as a majority of codes
studied in theory and used in practice satisfy q = poly(n).



Coding Theory 46 / 58 Arpon Basu

2. Let C = (n, k)q be any code. Pick y ∈ Fn
q uniformly randomly. Fix any c ∈ C. Then

Pr(c ∈ B(y, ρn)) = Pr(y ∈ B(c, ρn)) =
|B(c, ρn)|

qn
≥ q−n(1−Hq(ρ))−o(n)

where the second equality follows from the fact that y is uniformly random on Fn
q , and the last inequality

follows from Theorem A.10.
Thus

E[|C ∩B(y, ρn)|] =
∑
c∈C

Pr(c ∈ B(y, ρn)) ≥ |C| · q−n(1−Hq(ρ))−o(n) = qn(Hq(ρ)−(1−R)−o(1))

Substituting R = 1−Hq(ρ) + ε, yields qn(Hq(ρ)−(1−R)−o(1)) = qn(ε−o(1)) = qΩ(εn).
Since E[|C ∩B(y, ρn)|] ≥ qΩ(εn), there exists some y∗ ∈ Fn

q such that |C ∩B(y∗, ρn)| ≥ qΩ(εn).
Consequently, if C is (ρ, L)-list decodable, then L ≥ qΩ(εn), as demonstrated by y∗.

■

7.2. Conclusion

We thus got a brief overview of the notion of list decoding and saw that it outperforms unique decoding. We also
saw what the limits of list decoding were: Once again, note that we didn’t give explicit codes satisfying that bound
(though there do exist such codes).
Finally, note that we haven’t seen any explicit list decoding algorithms. We shall see some soon for the specific case
of Reed-Solomon codes.
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�8. E�cient Decoding of Reed Solomon Codes

Reed-Solomon codes are one of the crown jewels of coding theory: They pop up in unexpected places and have a
wide variety of applications.
It is thus worth exploring the decoding of Reed Solomon codes in more detail, and not just as a part of decoding in
general.

8.1. Unique Decoding: Berlekamp-Welch Algorithm

Notation alert: Unlike in the chapter for Shannon’s theorem, for this chapter e shall denote an integer, not an element
of {0, 1}n.
Consider a [n, k, n− k + 1]q RS code with evaluation points (α1, . . . , αn).
Now, suppose we receive some y ∈ Fn

q which is guaranteed to be within n−k
2 distance of some RS codeword. Then

by Theorem 2.1, y can be decoded uniquely.
By the naive MLD algorithm, we would have to test qk codewords to find the nearest one, which is an exponential
time algorithm.
We shall now focus on finding a polynomial time algorithm for error correction of RS codes.
Note that finding the codeword ‘m’ nearest to y is equivalent to finding the corresponding polynomial fm(X), so
we shall focus on that now.
Thus our problem is:

Problem. Given y ∈ Fn
q , a [n, k]q RS code with n distinct evaluation points (α1, . . . , αn), and an e ≤ n−k

2 , calculate
a polynomial p(X) of degree ≤ k − 1 such that the distance between the message encoded by p(X) and some RS
codeword is ≤ e.

Remark. The fact that the number of errors has been given to us may trouble some readers, since in real life the exact
number of errors in the received codeword is usually not known.
However, if we can find a polynomial (in n) time algorithm for any permissible e, we can simply run that algorithm
over all possible values of e in {1, . . . , ⌊d−k

2 ⌋}.
Also, note that the polynomial p(X), if it exists, is unique, so we needn’t worry about getting different answers for
different values of e. When e is smaller than the actual number of errors, our algorithm must not give any answer
(ie:- our algorithm should throw an error), while for any e greater than or equal to the actual number of errors, our
algorithm should give us the correct answer.
Thus, if we start iterating for e in {1, . . . , ⌊d−k

2 ⌋}, we will get errors for initial values of e, and then when we arrive at
the correct e, we will receive our answer p(X), at which point we can stop.
Thus WLOG we can assume that we know e.

8.1.1. Motivation for the Berlekamp-Welch Algorithm

Before describing the Berlekamp-Welch algorithm for decoding noisy vectors, we first set up some motivation for it.
Supposewe knew the polynomial p(X): Thenwe could calculate forwhich i ∈ [n], yi ̸= p(αi). These are precisely the
indices for which an error has occurred. In particular, we could encode these indices into an error locator polynomial
‘E’, ie:-

E(X) :=
∏

i∈[n]:yi ̸=p(αi)

(X − αi)

Now, note that yiE(αi) = p(αi)E(αi) for every i ∈ [n]: Indeed, if yi = p(αi), then the equality holds trivially. If
yi ̸= p(αi), then E(αi) = 0, and then also equality holds.
Thus, if we define the polynomial N(X) := p(X)E(X), then N(αi) = yip(αi) for every i ∈ [n].
Consequently, if we knew N(X) and E(X), where N(X) satisfies the aforementioned constraint, then we could
calculate p(X) by N(X)

E(X) .
Now, the sketch above can become a proper algorithmonly if two of ourwishes are satisfied: We somehowfind away
of calculatingN(X) andE(X) given just the data in Section 8.1. We then certify that theseN(X) andE(X)will give
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rise to a unique p(X), ie:- we won’t have a situation where we have (N1, E1) and (N2, E2) where Nj(αi) = yiEj(αi)
for all i ∈ [n], j ∈ [2], yet N1

E1
̸= N2

E2
.

We now prove that our wishes are indeed true.

Lemma 8.1. Suppose we have polynomials (N1(X), E1(X)) and (N2(X), E2(X)) where Nj(αi) = yiEj(αi) for all
i ∈ [n], j ∈ [2], and where deg(E1) = deg(E2) = e, and deg(N1),deg(N2) ≤ e+ k − 1.
Then N1(X)E2(X) = N2(X)E1(X).

Proof. Consider the polynomial R(X) := N1(X)E2(X) − N2(X)E1(X). Then deg(R) ≤ max(deg(N1) + deg(E2),
deg(N2) + deg(E1)) ≤ 2e+ k − 1. Since e ≤ n−k

2 , deg(R) ≤ n− 1.
But R(αi) = 0 for every i ∈ [n]. Since a non-zero polynomial of degree t over a field can have at most t roots, we get
that R must be the zero polynomial, implying that N1(X)E2(X) = N2(X)E1(X), as desired. ■

Now, note that N(X), E(X) are our creations: Thus one may worry that there can be a situation where there exists
some p(X) corresponding to a messagem at a distance of at most n−k

2 from our received codeword y, yet there don’t
exist N,E satisfying the requisite constraints, in which case our algorithm may fail to find p.
Fortunately, we show that that is not the case.

Lemma 8.2. Suppose y is the received word at a distance e ≤ n−k
2 away from some codeword. Then there exist

N∗(X), E∗(X) satisfyingN∗(X) = E∗(X)p(X), deg(E∗) = e, deg(N∗) ≤ e+ k− 1, andN∗(αi) = yiE
∗(αi) for every

i ∈ [n].

Proof. One can verify that
E∗(X) :=

∏
i:yi ̸=p(αi)

(X − αi)

N∗(X) := E∗(X)p(X)

work. ■

We are now ready to state the Berlekamp-Welch algorithm. We explain below how the constraints yiE(αi) = N(αi)

Algorithm 2: Berlekamp-Welch algorithm
Data: n ≥ k ≥ 1, e ≤ n−k

2 , y, (α1, . . . , αn) ∈ Fn
q ,

Result: p(X) of degree ≤ k − 1 or FAIL
1 Compute E(X), N(X) such that yiE(αi) = N(αi) for every i ∈ [n];
2 if such E,N don’t exist then
3 return FAIL
4 if E(X) ∤ N(X) then
5 return FAIL
6 p(X)← N(X)

E(X) ;
7 Let m be message corresponding to p(X);
8 if ∆(m, y) > e then
9 return FAIL

10 return p(X)

for every i ∈ [n] are satisfied.
Now, WLOG E can be assumed to be a monic polynomial, and thus E(X) = Xe + λ1X

e−1 + . . .+ λe. Similarly, set
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N(X) = µ0X
e+k−1 + µ1X

e+k−2 + . . .+ µe+k−1.
Then yiE(αi) = N(αi) is a set of n linear equations on 2e+ k − 1 ≤ n− 1 variables.
We can solve this system of linear equations by Gaussian elimination in O(n3) time: If there is no solution to this
system, that means that the number of errors is greater than e, and our algorithm returns ‘FAIL’.
If there is any solution, then (N∗, E∗) (as defined in Lemma 8.2) are a solution, and their ratio is the correct polyno-
mial p(X). Thus any solution of our linear system yields the same p(X) by Lemma 8.1.
Furthermore, note that this algorithm is polynomial time since both Gaussian elimination and polynomial division
can be done in poly(n) time (In fact, O(n3) time).

Theorem 8.3. Error correction (if possible) of a [n, k] RS code can be done in O(en3) time, where e ≤ n−k
2 is the

number of errors in the transmitted codeword.

8.2. List Decoding of Reed-Solomon Codes

We present an algorithm here for list decoding Reed-Solomon codes, up to an extent allowed by the Johnson bound
(Lemma 7.1).
By Lemma 7.2, Jq(δ) ≥ 1−

√
1− δ ≥ 1−

√
R. The algorithm described below list-decodes RS codes up to 1−

√
R-

fraction of errors.
Before that, we introduce some mathematical notions.

Lemma 8.4 (Bivariate Polynomials can be efficiently factorized). Given a bivariate polynomial Q(X,Y ) ∈ Fq[X,Y ]
of degree n, Q(X,Y ) can be factorized in poly(n) time.

Proof. Refer [Kal85]. ■

Thus, from now on, we shall assume that we have all our bivariate polynomials in factorized form.
We also generalize our notion of degree.

Definition 8.1. Consider a bivariate polynomial Q(X,Y ) ∈ Fq[X,Y ]. The (a, b)-degree of Q is said to be the degree
of the (univariate) polynomial Q(Xa, Xb). We shall denote the (a, b)-degree of a polynomial as deg(a,b)(Q).

Remark. Note that deg(Q) = deg(1,1)(Q), degX(Q) = deg(Q(X, 1)) = deg(1,0)(Q).
A very easy lemma which follows directly from the definition goes as follows.

Lemma 8.5. Let Q(X,Y ) be a bivariate polynomial such that deg(1,w)(Q) = D. Let P (X) be a polynomial of degree
≤ w. Then deg(Q(X,P (X))) ≤ D.

Finally, we define the notion of multiplicity for bivariate polynomials.

Definition 8.2. Note that Q(X,Y ) has r roots at (0, 0) if Q(X,Y ) doesn’t have any monomial with degree ≤ r − 1.
We alternatively say that (0, 0) is a root of Qwith multiplicity r.
If (α, β) is a root of some Q(X,Y ), the multiplicity of (α, β) is defined to be the multiplicity of (0, 0) as a root of
Q(X − α, Y − β).
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Before we formally state our list decoding algorithm, we first give an overview of it’s structure:
1. Interpolation step: In this step, we calculate a bivariate polynomialQ(X,Y ) such thatQ(αi, yi) = 0 for all i ∈ [n].

In the Berlekamp-Welch algorithm, we hadQ(X,Y ) = Y E(X)−N(X). As in the Berlekamp-Welch algorithm,
this Q will be calculated by solving a system of linear equations (through Gaussian elimination). As it turns
out, if the number of variables in this linear system is greater than the number of constraints, then we are able
to find a non-trivial Q 14. Note that in the Berlekamp-Welch algorithm, the situation was opposite: There we
had more constraints than variables.

2. Root Finding Step: In this step, we calculate all factors ofQ(X,Y ) (thanks to Lemma 8.4) of the form Y −P (X),
and if P (X) is close enough to our message, we output it. Now, in order to ensure that all eligible P ’s show
up in the factors of Q, we will need Q to have some special properties. For example, in the Berlekamp-Welch
algorithm, we required that deg(E) = e, deg(N) ≤ e + k − 1. We shall see soon what impositions on Q are
required in order to enable list decoding.

We are now ready to state our list decoding algorithm.
There is a lot to unpack in this algorithm. We go about it one by one.

Algorithm 3: List-decoding algorithm for RS codes
Data: n ≥ k ≥ 1, e = n− t, y = (y1, . . . , yn), (α1, . . . , αn) ∈ Fn

q ,
Result: (Possibly empty) list of polynomials p(X) of degree ≤ k − 1 or FAIL

1 r ← 2(k − 1)n;
2 D ←

⌈√
(k − 1)nr(r − 1)

⌉
;

3 Compute non-zero Q(X,Y ) such that deg(1,k−1)(Q) ≤ D and Q(αi, yi) = 0with multiplicity r for every
i ∈ [n];

4 if such Q doesn’t exist then
5 return FAIL
6 L← ∅;
7 for every factor Y − P (X) of Q(X,Y ) do
8 Letm be message corresponding to p(X);
9 if ∆(m, y) ≤ e and deg(p) ≤ k − 1 then
10 Add p(X) to L

11 return L

8.2.1. Computation of bivariate polynomials with given degree and multiplicity conditions

Here we will justify Line 3 of Algorithm 3.

Lemma 8.6. Let N :=
∣∣{(i, j) : i, j ≥ 0, i+ (k − 1)j ≤ D}

∣∣. Then N ≥ D(D+2)
2(k−1) .

Proof. Set ℓ :=
⌊

D
k−1

⌋
.

Note that

N :=

ℓ∑
j=0

D−(k−1)j∑
i=0

1 =

ℓ∑
j=0

(D − (k − 1)j + 1) =
1 + ℓ

2
(2D + 2− (k − 1)ℓ) ≥ 1 + ℓ

2
(D + 2) ≥ D(D + 2)

2(k − 1)

as desired. ■
14this fact is not immediately apparent; it requires proof, which we won’t give
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Lemma 8.7. We can compute a non-zero bivariate polynomial Q(X,Y ) ∈ Fq[X,Y ] such that deg(1,k−1)(Q) ≤ D and
Q(αt, yt) = 0with multiplicity r for every t ∈ [n], in poly(n) time, provided such a polynomial exists.

Proof. Let
Q(X,Y ) =

∑
i+(k−1)j≤D

ci,jX
iY j

By Lemma 8.6, Q has ≥ D(D+2)
2(k−1) coefficients.

Define
Qα,β(X,Y ) = Q(X + α, Y + β) =

∑
i+(k−1)j≤D

cα,βi,j XiY j

Now, by comparing coefficients we get that

cα,βi,j =
∑

i′≥i,j′≥j

ci′,j′

(
i′

i

)(
j′

j

)
αiβj

Now, fix α = αt, β = yt for some t ∈ [n]. Then Q(X + α, Y + β) has a root at (0, 0) of multiplicity r, implying that it
has no monomials of degree≤ r−1, further implying that cα,βi,j = 0 for all (i, j) ∈ I := {(i, j) : i, j ≥ 0, i+ j ≤ r−1}.
Now, note that the equation cα,βi,j = 0 translates into a linear equation on the coefficients of Q. Also, note that
|I| =

(
r+1
2

). Thus, collecting all the equations of the form cα,βi,j = 0 for every permissible i, j, and every t ∈ [n], we
have a total of n(r+1

2

) different linear equations on c·,·’s.
Finally, note that for D =

⌈√
(k − 1)nr(r − 1)

⌉
, D(D+2)

2(k−1) > n
(
r+1
2

). Thus variables outnumber the constraints, and
thus we can find our desired Q in polynomial time, by the discussion above for the “interpolation step”. ■

8.2.2. Correctness of Root Finding Step

Suppose we have found a Q. We now have to argue that Lines 7-10 will give us the correct list L. To do so, we go
through the following chain of lemmata first.

Lemma 8.8. Let Q be a non-zero bivariate polynomial satisfying the conditions in Line 3 of Algorithm 3.
Suppose (Y − P (X))

∣∣∣∣Q(X,Y ). Define R(X) := Q(X,P (X)). Suppose for some i we have yi = P (αi). Then (X −

αi)
r

∣∣∣∣R(X).

Proof. Define Pαi,yi
(X) := P (X + αi)− yi, Qαi,yi

(X,Y ) := Q(X + αi, Y + yi), Rαi
(X) := R(X + αi). Then

Rαi
(X) = R(X + αi) = Q(X + αi, P (X + αi)) = Q(X + αi, Pαi,yi

(X) + yi) = Qαi,yi
(X,Pαi,yi

(X))

Now, since P (αi) = yi, Pαi,yi(0) = 0, and thus Pαi,yi(X) = Xg(X), where g is a polynomial of degree at most k − 2
15.
Thus we can write

Rαi
(X) = Qαi,yi

(X,Pαi,yi
(X)) =

∑
i′,j′

cαi,yi

i′,j′ X
i′Pαi,yi

(X)j
′
=
∑
i′,j′

cαi,yi

i′,j′ X
i′+j′g(X)j

′

15note that in the algorithm we only care about those polynomials p which are of degree at most k − 1, that’s why this assumption is justified
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Now, recall that Qαi,yi(X,Y ) had no monomial of degree < r since (αi, yi) was a root of Q(X,Y ) with multiplicity
r. Consequently, for every i′, j′ such that cαi,yi

i′,j′ ̸= 0, we must have i′ + j′ ≥ r. But that implies that Rαi(X) has no
monomial of degree< r, and consequently,Xr

∣∣∣∣Rαi
(X). Now, it is easy to see that (X−αi)

r

∣∣∣∣R(X)⇐⇒ Xr

∣∣∣∣Rαi
(X),

from which the lemma follows. ■

Lemma 8.9. Let Q be a non-zero bivariate polynomial satisfying the conditions in Line 3 of Algorithm 3.
Let P (X) be a polynomial of degree ≤ k − 1 such that P (αi, yi) = 0 for ≥ t values of i in [n]. If t > D

r , then
(Y − P (X))

∣∣∣∣Q(X,Y ).

Proof. Let R(X) := Q(X,P (X)) as usual. By Lemma 8.5, deg(R) ≤ D. By Lemma 8.8, R(X) has atleast t · r roots
(counted with multiplicity). But t · r > D. Since a non-zero polynomial of degree w over a field can’t have more
than w roots, we get that R(X) ≡ 0, and the lemma follows. ■

Now, note that to ensure the correctness of the root finding step, we have to ensure that if P (X) is a polynomial
which agrees with y in ≥ n − e = t entries, then Y − P (X) divides Q(X,Y ). But this is precisely what Lemma 8.9
shows, and thus, every “correct” polynomial appears as a factor of Q and thus our list L is correct.
Now, note that we have already chosen D =

⌈√
(k − 1)nr(r − 1)

⌉
. Furthermore, recall that we wanted to this list

decoding algorithm to work for 1 −
√
R fraction of errors: Since the number of errors e = n − t, we want t ∼

√
kn.

Finally, by the lemma above, we also want t > D
r so that our root finding step correctly calculates L.

One can thus verify that choosing t =

⌈√
(k − 1)n

(
1− 1

r

)⌉ makes t > D
r . Finally, in order to ensure t is as close to

√
kn as possible, we set r = 2(k − 1)n. Then note that

t =


√
(k − 1)n

(
1− 1

r

) =

⌈√
(k − 1)n− 1

2

⌉
>
⌈√

(k − 1)n
⌉

where the last inequality follows since t is an integer.

8.3. A Recapitulation of the List-Decoding algorithm

We first calculate a bivariate polynomial Q interpolating the points (αi, yi). We also require Q to satisfy some
bounded degree requirements, and some multiplicty requirements. While this may look strange at first, by now, I
hope the reader realizes that these properties were required to ensure the correctness of the following “root-finding”
part of the algorithm.
Indeed, once we find such aQ, it can be shown that every desired message occurs as a factor ofQ, and consequently,
by Lemma 8.4, all elements of our list can be calculated in polynomial time, as desired.

8.4. Conclusion

As promised, we saw decoding and list-decoding algorithms for Reed-Solomon codes. Although at first these al-
gorithms might seem very narrow in their utility, they pop up widely in different areas and contexts: For example,
[BRSV17] use the Berlekamp-Welch algorithm in a crucial way to prove some very important results in fine-grained
cryptography. This shouldn’t be too surprising given the fact that Reed-Solomon codes occur widely in theoretical
science, and thus algorithms to decode it can never be too far away.
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�A. Appendix

A.1. Some elementary facts about probability

We state here, without proof some elementary facts about probability theory, which nevertheless can be quite useful,
especially in the analysis of randomized algorithms.

Lemma A.1 (The Union Bound). Let E1, E2, . . . , En be events such that Pr(Ei) ≤ pi for every i ∈ [n], where pi ∈ [0, 1].
Then

Pr

 n∧
i=1

Ei

 ≥ 1−
n∑

i=1

pi

Lemma A.2. Let F be a finite field.
LetG ∈ Fa×b be a uniformly randomly chosen matrix, ie:- the probability that anymatrix in Fa×b gets chosen is 1

|F|ab .
Then for any x ∈ Fb \ {0b}, Gx is uniformly distributed in Fa.

Theorem A.3 (Chernoff Bound). Let X1, . . . , Xm be i.i.d Bernoulli random variables. Let X =
∑m

i=1 Xi. Then

Pr(|X − E[X]| > εE[X]) < 2e−
ε2E[X]

3

Pr(|X − E[X]| > εm) < 2e−
ε2m

2

A.2. The Entropy Function

Definition A.1. Let q ≥ 2 be an integer, and let x ∈ [0, 1] be a real number. Then the q-ary function is defined as

Hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x)

Remark. A few points are in order:
1. When we use the above definition with q = 2, we shall just write H(x) instead of H2(x) for notational clarity.

Furthermore, note that H(x) = −(x log2(x) + (1− x) log2(1− x)).
2. For evaluatingHq at 0 and 1, we replace the functions x logq(x) and (1−x) logq(1−x) by their respective limits,

ie:- for evaluatingHq at 0we replace “0 · logq(0)” by limx↘0 x logq(x) = 0, and for evaluatingHq at 1we replace
“(1− 1) · logq(1− 1)” by limx↗1(1− x) logq(1− x) = 0.

3. Note that Hq(x) ∈ [0, 1] for every x ∈ [0, 1].

4. Hq(x) is an increasing function on
(
0, 1− 1

q

)
, attainsmaxima at 1− 1

q , and is decreasing after that. Furthermore,
Hq(0) = 0, Hq

(
1− 1

q

)
= 1. Consequently,Hq(x) is a bijective function on

[
0, 1− 1

q

]
, which allows us to define

its inverse H−1
q : [0, 1] 7→

[
0, 1− 1

q

]
.
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The entropy function pops up quite often in various locations, which makes it necessary to have various mathemat-
ical inequalities and estimates to deal with it.
However, most of the proofs of the lemmata given below are somewhat tedious, yet a fairly routine application of
basic analysis. Consequently, we just state them without proof, for reference.

Lemma A.4. For small enough ε > 0,

Hq(p) ≤ p+ ε, ∀p ∈
(
0, 1− 1

q

]
⇐⇒ q = 2Ω( 1

ε )

Lemma A.5. Let q ≤ 2, and let p ∈
[
0, 1− 1

q

]
. Then Hq(p) ≥ Hqm(p) for every

m ≥ 1 + (q − 1) logq

(
q

q − 1

)

Corollary A.6. For every q ≥ 3,m ≥ 2 and p ∈
[
0, 1− 1

q

]
we have Hq(p) ≥ Hqm(p).

Lemma A.7. For any q ≥ 2, we have that for small enough ε ≥ 0,

Hq

(
1− 1

q
− ε

)
≤ 1− q2

4(q − 1) ln q
ε2

Remark. For q ≤ 9, the above inequality is true for every ε ∈
[
0, 1− 1

q

]
. For q ≥ 10, if ε gets very close to 1 − 1

q , the
inequality fails.

Lemma A.8. For small enough ε > 0,

Hq(ε) = Θ

(
ε logq

(
1

ε

))

Remark. In fact, much more is true: Hq(x) ≥ x logq
(
1
x

) for every x ∈ [0, 1]. Furthermore, Hq(x)

x logq(
1
x )

is an increasing
function of x such that limx↘0

Hq(x)

x logq(
1
x )

= 1.

Lemma A.9. For every y ∈
[
0, 1− 1

q

]
, and for every small enough ε > 0, there exists a constant cq that depends only

on q, for which we have
H−1

q (y − cqε
2) ≥ H−1

q (y)− ε
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Remark. At the risk of repetition, note that cq doesn’t depend on y, or in other words, the same cq works for every
y ∈

[
0, 1− 1

q

]
.

One of the most important reasons why the notion of q-ary entropy is important is because it is involved in very
important bounds for the volume of the Hamming ball.

A.2.1. Volume of a Hamming Ball

Recall that the volume of a Hamming Ball of radius r, denoted Bq(0
n, r) 16, was∑r

i=0

(
n
i

)
(q − 1)i. Then

Theorem A.10. Let q ≥ 2 be an integer, and let p ∈ [0, 1 − 1
q ] be a real number. Denote by volq,n(r) the volume of

Bq(0
n, r). Then qHq(p)n−o(n) ≤ volq,n(pn) ≤ qHq(p)n.

Proof. Note that

1 = (p+ (1− p))n =

n∑
i=0

(
n

i

)
pi(1− p)n−i ≥

pn∑
i=0

(
n

i

)
pi(1− p)n−i =

pn∑
i=0

(
n

i

)
(q − 1)i

(
p

q − 1

)i

(1− p)n−i =

pn∑
i=0

(
n

i

)
(q − 1)i

(
p

(q − 1)(1− p)

)i

(1− p)n ≥
pn∑
i=0

(
n

i

)
(q − 1)i

(
p

(q − 1)(1− p)

)pn

(1− p)n

where the last inequality follows from the fact that p
(q−1)(1−p) < 1, since p ∈ [0, 1− 1

q ].
Simplifying further yields

pn∑
i=0

(
n

i

)
(q − 1)i

(
p

(q − 1)(1− p)

)pn

(1− p)n =

 pn∑
i=0

(
n

i

)
(q − 1)i


︸ ︷︷ ︸

=volq,n(pn)

(
p

q − 1

)pn

(1− p)(1−p)n︸ ︷︷ ︸
=q−Hq(p)n

Consequently volq,n(pn) ≤ qHq(p)n.
Finally, note that

volq,n(pn) ≥
(
n

pn

)
(q − 1)pn

Now, note that,
√
2πn

(
n
e

)n
e

1
12n+1 < n! <

√
2πn

(
n
e

)n
e

1
12n for every n ∈ N, and consequently,(

n

pn

)
=

n!

(pn)!((1− p)n)!
>

√
2πn

(
n
e

)n
e

1
12n+1

√
2πpn

(
pn
e

)pn
e

1
12pn ·

√
2π(1− p)n

(
(1−p)n

e

)(1−p)n

e
1

12(1−p)n

=
1

ppn(1− p)(1−p)n
· 1√

2πp(1− p)n
· exp

(
1

12n+ 1
− 1

12pn
− 1

12(1− p)n

)
︸ ︷︷ ︸

=ℓ(n)

16strictly speakingBq(0n, r) denotes the ball of radius r centered at the origin, but from the point of view of calculating the volume, the location
of the center is unimportant
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Note that ℓ(n) = e−o(n) = q−o(n), and consequently,

volq,n(pn) ≥
(q − 1)pn

ppn(1− p)(1−p)n︸ ︷︷ ︸
=qHq(p)n

q−o(n) = qHq(p)n−o(n)

■

A.3. Miscellaneous

Lemma A.11. Let v1, v2, . . . , vm ∈ RN \ {0N}.
1. If ⟨vi, vj⟩ ≤ 0 for every 1 ≤ i < j ≤ m, then m ≤ 2N .
2. If vi, i ∈ [m] are all unit vectors, such that ⟨vi, vj⟩ ≤ −ε < 0 for every 1 ≤ i < j ≤ m, then m ≤ 1 + 1

ε .

Proof. The proofs go as follows:
1. We prove the statement by induction on N : The statement is trivially true for N = 1. Thus assume that the

statement is true upto some N < N0 ≥ 2, and assume for the sake of contradiction that the statement fails for
N = N0, ie:- there existm = 2N0 + 1 vectors v1, v2, . . . , vm such that ⟨vi, vj⟩ ≤ 0 for every 1 ≤ i < j ≤ m.
Note that rotating and scaling the vectors doesn’t change their inner products, and thus WLOG assume that
vm = (1, 0, . . . , 0). Since ⟨vi, vm⟩ ≤ 0 for every 1 ≤ i ≤ m − 1, we get that the first coordinates of all vectors
vi, 1 ≤ i ≤ m − 1, is ≤ 0. Further note that there can be at most one vector of the form (−α, 0, . . . , 0), α > 0,
among {v1, . . . , vm−1}, since two such vectors will have a positive dot product.
Now consider the last N0 − 1 coordinates of v2, . . . , vm−1 to get m − 2 vectors {v′2, . . . , v′m−1} in RN0−1. Note
that

⟨v′i, v′j⟩ = ⟨vi, vj⟩ − vi1vj1 ≤ ⟨vi, vj⟩ ≤ 0, ∀i, j ∈ {2, . . . ,m− 1}, i ̸= j

Thus we obtain ≥ 2N0 + 1− 2 = 2N0 − 1 vectors in RN0−1, all at obtuse angles with each other, thus violating
the induction hypothesis.

2. Note that

0 ≤

∥∥∥∥∥∥
m∑
i=1

vi

∥∥∥∥∥∥
2

2

=

m∑
i=1

∥vi∥22 + 2
∑

1≤i<j≤m

⟨vi, vj⟩ ≤ m− 2

(
m

2

)
ε =⇒ m− 2

(
m

2

)
ε ≥ 0 =⇒ m ≤ 1 +

1

ε

■

Lemma A.12. For any non-empty C ⊆ [q]n, there exists a function f : C 7→ Rnq such that:
1. For every c ∈ C, ∥f(c)∥ = 1.

2. For every c1, c2 ∈ C, c1 ̸= c2, ⟨f(c1), f(c2)⟩ = 1− q∆(c1,c2)
n(q−1) .

Proof. Define a function ϕ : [q] 7→ Rq where

ϕ(i) :=

1

q
, . . . ,

1− q

q︸ ︷︷ ︸
ith position

, . . . ,
1

q





Coding Theory 58 / 58 Arpon Basu

We now define f : [q]n 7→ Rqn, where

f(c) = f((c1, c2, . . . , cn)) :=

√
q

n(q − 1)
(ϕ(c1), . . . , ϕ(cn)) ∈ Rnq

The properties mentioned can be now verified easily. ■
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