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1 Introduction

This report will mainly explore the relaxation times of finite space reversible
ergodic Markov chains, both in discrete time and continuous time. More specif-
ically, we shall explore the convergence of these Markov chains to their equilib-
rium states, ie:- their (unique) limiting distributions.
To achieve the aforementioned goals, we introduce the notion of Dirichlet forms
on Markov chains, which allow us to give an extremal characterization of the
spectral properties of the Markov chain, ultimately enabling us to show that
the speed with which a reversible ergodic Markov chain attains its equilibrium
is controlled by the second largest eigenvalue (‘τ2’) of a particular symmetric
matrix associated to any reversible ergodic Markov chain.
Finally, we shall conclude the report by calculating the value of τ2 for various
common Markov chains.
The references for this report are [1, Chapter 3], [1, Chapter 5]. A freely avail-
able online copy can be found here.

2 Notation and Convention

Throughout this report, we’ll deal with time-homogenous Markov chains only.
We shall also canonically identify the time set T of our Markov chain with
N0 := N ∪ {0} (the discrete-time case) or with R≥0 (the continuous-time case).
Our Markov chain shall be represented as X := (Xt : t ∈ T), where the state
space of X is denoted by R, which we will take to be finite. We shall also
represent the transition function of our Markov chain with P = (pij)i,j∈R, for
the discrete-time case.
Further, we shall only deal with irreducible ergodic reversible Markov chains,
and there we shall denote the (unique) stationary distribution on X by π. Note
that reversibility implies

πipij = πjpji ∀ i, j ∈ R

by the so-called detailed balance equations. Also, the Chapman-Kolmogorov
equations then imply

πip
(n)
ij = πjp

(n)
ji ∀ i, j ∈ R, n ∈ N

where p
(n)
ij := P(Xn = j|X0 = i). Note that p

(n)
ij = (Pn)ij .

We shall denote by Eρ [·] the expectation of a random variable constituted by
{Xt, t ∈ T}, where the initial distribution, ie:- the distribution of X0, is taken
to be ρ. Further, if our Markov chain begins at some state i 1, then the corre-
sponding expectation is denoted as Ei [·].
We now define the main quantity of interest in this report, namely hitting times.
Let i ∈ R. Then the hitting time of i is defined as

Ti := inf{t ∈ Z≥0 : Xt = i}
1ie:- our initial distribution ρ is δi
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Note that Ti depends on the initial distribution of the Markov chain.

2.1 A Brief Introduction to Continuous TimeMarkov chains

Continuous-time Markov Chains (CTMCs) are complex entities, which we shall
not need in their full generality in this report. Instead, we define only the no-
tions of our interest.
In particular, throughout this report, we shall be repeatedly switching our per-
spectives from the discrete-time case to the continuous-time case, and thus
the CTMCs in which we are interested are those which can be generated from
Discrete-Time Markov Chains (DTMCs) by continuizing them.
Thus, with that viewpoint in mind, let P be the transition matrix of our DTMC.
Now, when we are at any state r ∈ R, we wait for a time given by an expo-
nential random variable with parameter 1, and then we jump to another state
according to the probability distribution dictated by (the rth row of) P. Thus,
our time parameter now takes values in R≥0, since exponential random variables
are real-valued. Moreover, note what the trajectory of our CTMC looks like:
Suppose we start from some state r0 ∈ R. Then the trajectory is

Xt =


r0, t ∈ [0, t1)

r1, t ∈ [t1, t1 + t2)

r2, t ∈ [t1 + t2, t1 + t2 + t3)

. . .

where t1, t2, t3, . . . are i.i.d Exp(1) random variables, and (r0, r1, r2, . . .) are a
particular trajectory of the DTMC governed by P. Indeed, the jump-and-hold
description of a CTMC makes apparent the correspondence between a DTMC
and a CTMC: One can take a particular trajectory of a DTMC, and separate its
points with i.i.d exponential random variables to get a corresponding trajectory
for the CTMC.
The description given above is known as the jump-and-hold description of a
CTMC. However, for computational purposes, it is often convenient to work with
another, equivalent, description of a CTMC, which is known as the infinitesimal
description of a CTMC. That goes as follows: Suppose we have a CTMC which
is generated in a jump-and-hold manner from a stochastic matrix P. Then
we associate a transition matrix Q := P − I to our CTMC, which has the
interpretation that, for any i ̸= j, i, j ∈ R,

qij = lim
h↘0

P(Xh = j|X0 = i)

h

or equivalently,
P(Xh = j|X0 = i) = qijh+ o(h)

Also note that for i = j, qii = −
∑

j ̸=i qij , thus making
∑

j∈R qij = 0 for every
i ∈ R. Consequently, if π is the stationary distribution of a continuous-time
Markov chain, then

∑
i∈R πiqij = 0 ∀j ∈ R.
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The reason the infinitesimal description is useful is that it can be shown that

P(Xt = j|X0 = i) =: Pi(Xt = j) = q
(t)
ij is equal to (exp(Qt))ij .

Yet another viewpoint of CTMCs, which is also equivalent to the jump-and-
hold and infinitesimal descriptions is the observation that if X is a DTMC, then
Yt ∼ XPoisson(t) is the corresponding CTMC corresponding to Q = P − I. We
shall employ this fruitfully in some of our derivations below.
Furthermore, let {ρj(t)}j∈R denote the probability distribution on R at time t.
Then

Pr(Xt+h = j) =
∑
i∈R

Pr(Xt+h = j|Xt = i) Pr(Xt = i)

=
∑
i ̸=j

(qijh+ o(h))ρi(t) + Pr(Xt+h = j|Xt = j) Pr(Xt = j)

Consequently,

lim
h↘0

Pr(Xt+h = j)− Pr(Xt = j)

h
=
∑
i ̸=j

qijρi(t)+Pr(Xt = j)︸ ︷︷ ︸
=ρj(t)

lim
h↘0

Pr(Xt+h = j|Xt = j)− 1

h

=
∑
i̸=j

qijρi(t)− ρj(t) lim
h↘0

Pr(Xt+h ̸= j|Xt = j)

h
=
∑
i̸=j

qijρi(t)− ρj(t)
∑
k ̸=j

qjk︸ ︷︷ ︸
=−qjj

=
∑
i∈R

qijρi(t)

But note that

lim
h↘0

P(Xt+h = j)− P(Xt = j)

h
=

dρj(t)

dt

Consequently, we arrive at the continuous version of the Chapman-Kolmogorov
theorem, namely, for any j ∈ R,

dρj(t)

dt
=
∑
i∈R

qijρi(t)

Before concluding this section, it is very important to mention that although
many properties of DTMCs have natural analogs in the continuous-time case,
one property where there is a notable difference is periodicity : Indeed, note that

for CTMCs, for any i ∈ R, the set {t : p(t)ii > 0} is a subset of R≥0 in general,
and consequently we can’t take the greatest common divisor of this set in the
usual sense. Thus, the concept of periodicity is not defined in the continuous
time paradigm.
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3 Spectral Representation of Reversible Markov
Chains

Let |R| =: n. Note that in this case, the ergodicity of our Markov chain is
ensured simply if we assume that our Markov chain is irreducible, so we shall
assume irreducibility. We also assume reversibility.
We can define the quantity

sij := pij

√
πi

πj

for all i, j ∈ R. Note that since our Markov chain is irreducible, π is strictly
positive everywhere on R and thus the above equation is consistently defined.
Furthermore, by the detailed balance equations, since we have πipij = πjpji,
we get that sij = sji, ie:- the matrix S := (sij)i,j∈R is a real symmetric matrix.
Consequently, we can diagonalize S to obtain

S = UΛUT

where U is an orthonormal matrix, and Λ is the diagonal matrix containing the
eigenvalues of S in decreasing order, ie:- Λii = λi, and λ1 ≥ . . . ≥ λn. Now, we
observe that the eigenvalues of S are the same as the eigenvalues of P: Indeed,
if we have Px = λx for some λ ∈ R, x ∈ Rn, then we have Sx̃ = λx̃, where
x̃j =

√
πj ·xj , and thus for any eigenvalue λ we have the bijection x 7→ Πx, where

Πij =
√
πiδij , between the eigenspaces of P,S corresponding to the eigenvalue

λ. Also, keep in mind that the columns of U are the eigenvectors of S.
But note that since our Markov chain X is irreducible, the transition matrix
P is a stochastic irreducible matrix. Consequently, by the Perron-Frobenius
theorem, we have 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn ≥ −1.
Further note that

St = UΛtUT =⇒ s
(t)
ij =

n∑
k=1

λt
kuikujk

Further, the Chapman-Kolmogorov equations yield p
(t)
ij = s

(t)
ij

√
πj

πi
. Thus, we

can combine these two equations to yield the spectral representation formula,
which goes as

Theorem 3.1 (Spectral Representation formula). We have

Pr(Xt = j|X0 = i) =

√
πj

πi

n∑
k=1

λt
kuikujk

This result can be easily continuized to obtain a corresponding result for continuous-
time Markov chains. Indeed, if Q is the transition matrix of our CTMC X, then
P = Q+ I is the transition matrix for some DTMC Y. Consequently, if the
DTMC has an eigenvalue λ, then the corresponding CTMC has the eigenvalue
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1− λ.
Another way to obtain the above result is to use the Poisson method for con-
tinuizing DTMCs. Thus to extend our result in the continuous time domain,
we simply set

P(Xt = j|X0 = i) = Pi(Xt = j) =

√
πj

πi

n∑
k=1

λt
kuikujk

=

√
πj

πi

n∑
k=1

uikujk

∞∑
ν=0

λν
k

e−ttν

ν!
=

√
πj

πi

n∑
k=1

e−(1−λk)tuikujk

Thus from this point onwards, we’ll freely interchange between the spectral
representations in the discrete and continuous time cases, such that λ(c) =
1− λ(d), where c, d denote continuous and discrete respectively.
We also define the relaxation time τ2 of our Markov chain at this point, which
is

τ2 :=

{
1/λ2, for continuous-time Markov chains

1/(1− λ2), for discrete-time Markov chains

As we shall see throughout this report, τ2 will denote how fast the Markov chain
converges towards its stationary distribution π.

4 Extremal Characterizations

4.1 Definition of E(g, g)
Let X be an ergodic reversible Markov chain on a finite state space R with
stationary distribution π. We define

E(g, g) := 1

2

∑
i,j∈R

πipij(g(j)− g(i))2

for any function g : R 7→ R, where we replace pij by qij in the continuous time
analogue.

Lemma 4.1. For the discrete-time case, we have

E(g, g) = 1

2
Eπ

[
(g(X1)− g(X0))

2
]
= Eπ [g(X0)(g(X0)− g(X1))]

Proof. Note that

Eπ

[
(g(X1)− g(X0))

2
]
=
∑
i,j∈R

(g(j)− g(i))2P(X1 = j,X0 = i)

=
∑
i,j∈R

(g(j)− g(i))2P(X1 = j|X0 = i)P(X0 = i) =
∑
i,j∈R

(g(j)− g(i))2pijπj
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Furthermore,

1

2
Eπ

[
(g(X1)− g(X0))

2
]
=

1

2
Eπ

[
(g(X1)

2 + g(X0)
2 − 2g(X0)g(X1))

]
Since we are taking expectation over a stationary distribution, we have E

[
g(X1)

2
]
=

E
[
g(X0)

2
]
, yielding

1

2
Eπ

[
(g(X1)

2 + g(X0)
2 − 2g(X0)g(X1))

]
= Eπ

[
(g(X0)

2 − g(X0)g(X1))
]

Lemma 4.2. For the continuous-time case, we have

E(g, g) := −
∑
i,j∈R

πiqijg(i)g(j)

Proof. Note that

Eπ

[
(g(Xh)− g(X0))

2
]
=
∑
i,j∈R

(g(j)− g(i))2P(Xh = j,X0 = i)

=
∑
i,j∈R

(g(j)− g(i))2P(Xh = j|X0 = i)πi

Thus

lim
h↘0

1

h
Eπ

[
(g(Xh)− g(X0))

2
]
=
∑
i,j∈R

πi(g(j)− g(i))2 lim
h↘0

P(Xh = j|X0 = i)

h

=
∑
i,j∈R

πi(g(j)− g(i))2qij = 2E(g, g)

On the other hand,

1

2
lim
h↘0

Eπ

[
(g(Xh)− g(X0))

2
]

h
= − lim

h↘0

Eπ [g(X0)(g(Xh)− g(X0))]

h

as in the discrete-time case. But the above expression equals

−
∑
i,j∈R

g(i)(g(j)− g(i))P(X0 = i) lim
h↘0

P(Xh = j|X0 = i)

h

= −
∑
i,j∈R

g(i)(g(j)− g(i))πiqij = −
∑
i,j∈R

g(i)g(j)πiqij +
∑
i,j∈R

g(i)2πiqij

But ∑
i,j∈R

g(i)2πiqij =
∑
i∈R

g(i)2πi

∑
j∈R

qij

 = 0

as desired.
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Finally, we come to the reason why E was defined in the first place: When we
want to quantify how fast a changing probability distribution (the canonical ex-
ample of which is the continuous-time Markov chain) is tending to its stationary
distribution, the E function arises naturally.

Definition 1. Let µ be a probability distribution on R. Then we define

∥µ− π∥22 :=

(∑
i∈R

µ2
i

πi

)
− 1

Theorem 4.3. Let ρ(t) be the distribution over R at time t. Then

d∥ρ(t)− π∥22
dt

= −2E(f(t), f(t))

where fj(t) = ρj(t)/πj.

Proof. Note that

d

dt
∥ρ(t)− π∥22 =

∑
j∈R

1

πj

d

dt
ρj(t)

2 =
∑
j∈R

2

πj
ρj(t)

∑
i∈R

ρi(t)qij

= 2
∑
i,j∈R

ρj(t)

πj

ρi(t)

πi
πiqij = −2E(f(t), f(t))

where the last equality follows from Lemma 4.2.

4.2 Extremal Characterization of the Relaxation Time

Let λ2 be the second largest eigenvalue of the spectral matrix S as defined
in the earlier sections. Then we define the relaxation time τ2 to be 1/(1 −
λ2). Informally speaking, τ2 signifies how fast a Markov chain converges to its
stationary distribution starting from an arbitrary one. Then we have a very
neat characterization of τ2 in terms of E .

Theorem 4.4 (Extremal characterization of τ).

τ2 = sup
g ̸≡0∑

i∈R g(i)πi=0

∥g∥22
E(g, g)

where ∥g∥22 is defined to be
∑

i∈R πig(i)
2 = Eπ

[
g(X0)

2
]
.

Proof. Let A be any real symmetric matrix with eigenvalues µ1 ≥ µ2 ≥ . . .2.
Then from the Rayleigh characterization of eigenvalues, we have

µ2 = sup
x̸=0

⟨x,v⟩=0

xTAx

∥x∥22
= sup

x ̸=0
⟨x,v⟩=0

∑
xiaijxj∑

x2
i

2Note that we don’t make any assumptions on the signs of µ1, µ2, and so on. Thus the
order µ1 ≥ µ2 ≥ . . . is the usual order on R, not the order of their magnitudes
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where v is the eigenvector of A corresponding to µ1.
We apply this to our spectral matrix S := (sij)i,j∈R

3. Note that the eigenvector
corresponding to the highest eigenvalue µ1 was v, where vi =

√
πi. Then setting

xi =
√
πig(i) yields

µ2 = sup∑√
πixi=0

∑
xisijxj∑

x2
i

= sup∑
πig(i)=0

∑
xisijxj∑
πig(i)2

= sup∑
πig(i)=0

∑
πipijg(i)g(j)

∥g∥22

= sup∑
πig(i)=0

Eπ [g(X0)g(X1)]

∥g∥22
= sup∑

πig(i)=0

Eπ

[
g(X0)

2
]
− E(g, g)

∥g∥22
where the last equality follows from Lemma 4.1.
But Eπ

[
g(X0)

2
]
= ∥g∥22, following which the desired result easily follows.

This has a very useful corollary, which talks about what happens when we
“short” a set of vertices in R.

Corollary 4.4.1. Suppose we collapse a subset A ⊆ R into a singleton {a}.
Let τA2 be the relaxation time of this collapsed chain. Then τA2 ≤ τ2.

Proof. For any function g on (R \ A) ∪ {a}, we can extend it to a function on
R by setting g(α) = g(a) for every α ∈ A. This doesn’t change ∥g∥,

∑
πig(i)

and E(g, g), and thus τ2 is at least τA2 since for every candidate function in
the supremum for τA2 , the same value is also attained in the corresponding
supremum expression for τ2.

We can also use the above extremal characterization along with the interpre-
tation of E as the rate of convergence of a Markov chain to obtain this very
pleasing result.

Theorem 4.5. Let ρ(t) be the distribution of our continuous-time Markov chain
(whose initial distribution is assumed to be arbitrary). Then

∥ρ(t)− π∥2 ≤ e−t/τ2∥ρ(0)− π∥2

Proof. From Theorem 4.3, we have

d

dt
∥ρ(t)− π∥22 = −2E(f(t), f(t))

where f = ρ/π 4 is as defined in the theorem.
But

−2E(f(t), f(t)) = −2E(f(t)− 1, f(t)− 1) ≤ −2
∥f(t)− 1∥22

τ2
where the last inequality follows from Theorem 4.4. Thus

d

dt
∥ρ(t)− π∥22 ≤ −2

∥f(t)− 1∥22
τ2

=
−2

τ2
∥ρ(t)− π∥22

Integration then yields our desired result.
3remember that sij = pij

√
πi/πj

4the division is taken to be componentwise
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5 Relaxation Times of a Few Common Markov
Chains

We calculate the relaxation times τ2 for various common Markov chains. As
established in the report, the magnitude of τ2 gives us an indication of how fast
the Markov chain attains equilibrium.

5.1 On-off chain

Consider the on-off chain, which is a Markov chain with two states, say α, β
such that pα,β = 1− pα,α = p ∈ (0, 1), and pβ,α = 1− pβ,β = q ∈ (0, 1).

The transition matrix is given by P =

[
1− p p
q 1− q

]
. This chain is irre-

ducible, ergodic, and aperiodic. Its stationary distribution is given by π where
πα = q

p+q = 1 − πβ . Clearly, π satisfies the detailed balance equations, and

consequently, the on-off chain is reversible. Calculating τ2 yields τ2 = 1
p+q .

Note that if both p, q are close to 0, then τ2 is very large: Indeed, note that
p, q are the probabilities that the walk goes from one state to the other state.
Consequently, p, q being small means that our on-off chain is “sticky”, and it
will take more time to mix, which tallies with a larger value of τ2.

5.2 Random Walks on Graphs

A natural source of interesting finite space ergodic reversible chains is random
walks on weighted graphs. However, we face a problem when we try to analyze
random walks on graphs: Not all graph random walks are aperiodic. Indeed,
consider a bipartite graph where our initial distribution is (concentrated on)
some particular vertex. Then a random walk on this graph, where from every
vertex of our graph we move to its neighbors, is not ergodic since we are on
different partitions of the bipartite graph on consecutive time instants.
Typically, in the Markov chain literature, two workarounds to the above dilemma
are presented: The first is to analyze lazy random walks instead, where the walk
stays at its current location with some non-zero probability ε. This destroys the

periodicity of the walk since for any i ∈ R, if p
(n)
ii > 0 for some n ∈ N, then

p
(n+1)
ii ≥ εp

(n)
ii > 0.

In fact, once we have analyzed such a lazy random walk, many of the properties
of the original random walk can be recovered in the limit ε → 0.
The second workaround is to move to continuous time Markov chains on the
same graph. As mentioned before, the concept of periodicity doesn’t make any
sense in the continuous-time régime. Moreover, the spectral properties of the
graph carry over to the continuous-time regime without any hassle, and con-
sequently, we can analyze the relaxation times of our graphs without worrying
about periodicity.
Since we have developed an entire framework of results for the continuous time
case, this is the approach that we’ll choose.
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5.2.1 The Cycle Graph

Consider the cycle graph Cn on n vertices, where at any given point, we move to
its left/right neighbor with equal probability. This corresponds to a stochastic
matrix P of the form

P =


0 1

2 0 . . . 1
2

1
2 0 1

2 . . . 0
0 1

2 0 . . . 0
...

...
...

. . .
...

1
2 0 0 . . . 0


ie:- pij = 1

2 if and only if i = j ± 1 mod n. The chain is irreducible. Further,
as discussed above, in the continuous time régime, we needn’t worry about pe-
riodicity.
In this case, the stationary distribution π turns out to be identically equal to 1

n
for every i ∈ {0, 1, . . . , n− 1}, which is unsurprising given the regularity of the
graph.
Moreover, this π satisfies the detailed balance equations too, so we have re-
versibility. Moreover, note that since π is the same for all points in its sample
space, S = P.
Finally, we note that P is a circulant matrix, which has very special spectral
properties. Since we don’t have to completely work it out, we directly quote

τ2 =
1

1− cos( 2πn )
∼ n2

2π2

At a qualitative level, it tells us that the Markov chain needs O(n2) time to
“mix thoroughly”. One can’t help but note the similarity with symmetric 1D
random walks, where it takes O(n2) time (in expectation) to cover a distance
of O(n).

5.2.2 Some Other Special Graphs

We present here the values of τ2 for random walks on some other special graphs 5.

Graphs τ2
n-path ∼ (2/π2)n2

Complete graph on n vertices (n− 1)/n
Star with n vertices 1
d-dimensional hypercube d/2

5it is not difficult to verify that a random walk on a connected undirected graph is always
irreducible and reversible
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