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�1. Convergence of Markov Chains: Classical Techniques

In this chapter, we will see various functional analytic ways of proving the convergence of Markov chains.
Let Ω be the state space of a Markov chain. We will assume Ω to be finite, and write n := |Ω|. Suppose π is a
probability distribution on Ω such that π(x) > 0 for all x ∈ Ω. Let P ∈ [0, 1]Ω×Ω be the transition operator of our
Markov chain, i.e. for any x, y ∈ Ω, P (x, y) gives us the probability that ourMarkov chainmoves from x to y. Clearly,
we must have

∑
y∈Ω P (x, y) = 1 for all x ∈ Ω, i.e. P1 = 1. 1

Now, suppose P is reversible w.r.t. π, i.e. for any x, y ∈ Ω, we have:

π(x)P (x, y) = π(y)P (y, x) (1.1)

The above condition is also known as the detailed balance condition. Note that reversibility implies stationarity, 2 i.e.

πTP = πT

Indeed, (πTP )x =
∑

y∈Ω π(y)P (y, x) =
∑

y∈Ω π(x)P (x, y) = π(x)
∑

y∈Ω P (x, y) = π(x).
Since P is reversible w.r.t. π, P is self-adjoint w.r.t. the inner product defined by π. Indeed, for u, v ∈ RΩ, define:

⟨u, v⟩π :=
∑
x∈Ω

π(x)u(x)v(x)

Also, let Dπ := diag(π), i.e. Dπ ∈ RΩ×Ω is a diagonal matrix such that Dπ(x, x) := π(x). Then Eq. (1.1) implies that

DπP = PTDπ ⇐⇒ D1/2
π PD−1/2

π = D−1/2
π PTD1/2

π

Thus the matrix Q := D
1/2
π PD

−1/2
π is symmetric. Thus, Q has real eigenvalues. Furthermore, since P is similar to

Q, the spectra of P and Q are exactly identical, i.e. P and Q have the same eigenvalues with the same multiplicities.
Thus, let λ1, λ2, . . . , λn be the eigenvalues of P , and let v(1), . . . , v(n) be the corresponding eigenvectors. Since
P is self-adjoint w.r.t. ⟨·, ·⟩π , we can choose v(1), . . . , v(n) to be orthonormal w.r.t. the ⟨·, ·⟩π inner product, i.e.
⟨v(i), v(j)⟩π = δij ⇐⇒ v(i)Dπv

(j) = δij , where δij is the Kronecker delta. Furthermore, observe that u(i) := D
1/2
π v(i)

are orthonormal eigenvectors of Q, with eigenvalues λi. Thus, by the spectral theorem,

Q =

n∑
i=1

λiu
(i)(u(i))T =⇒ P =

n∑
i=1

λiv
(i)(v(i))TDπ

Now, since P1 = 1, WLOG we assume λ1 = 1, v(1) = 1. 3 Thus

P = 11
TDπ +

n∑
i=2

λiv
(i)(v(i))TDπ =⇒ P t = 11

TDπ +

n∑
i=2

λt
iv

(i)(v(i))TDπ

Note that P t is the t-fold application of the Markov chain kernel. Thus, to analyze convergence, we need to ‘test’ it
against some initial distribution µ on Ω. Thus, let µ be a distribution on Ω. Then

µTP t − πT = (µT
11

TDπ − πT) +

n∑
i=2

λt
iµ

Tv(i)(v(i))TDπ

Note that µT
1 = 1, and 1TDπ = πT, and thus

µTP t − πT =

n∑
i=2

λt
i

(
µTv(i)

)
·
(
(v(i))TDπ

)
1non-negative matrices M which satisfy M1 = 1 are known as stochastic
2We treat π as a vector in RΩ

3note that 1 is a unit vector in the ⟨·, ·⟩π inner product: Indeed, ⟨1,1⟩π =
∑

x∈Ω π(x) = 1
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Write q := D−1
π µ. Then rewriting the above expression yields

µTP t − πT =

 n∑
i=2

λt
i⟨q, v(i)⟩π(v(i))T


︸ ︷︷ ︸

=:yT

Dπ

Thus
∥µTP t − πT∥1 = ∥yTDπ∥1 =

∑
x∈Ω

π(x)|y(x)| = Ex∼π|y(x)|
Jensen
≤

√
Ex∼πy(x)2

But note that Ex∼πy(x)
2 =

∑
x∈Ω π(x)y(x)2 = ⟨y, y⟩π = ∥y∥2π , where ∥·∥π is the norm associated with the inner

product ⟨·, ·⟩π . Thus
∥µTP t − πT∥1 ≤ ∥y∥π

Now,

∥y∥2π =

n∑
i=2

λ2t
i ⟨q, v(i)⟩2π ≤ λ2t

n∑
i=2

⟨q, v(i)⟩2π

where λ := supi≥2 |λi|. Now, note that q =
∑n

i=1⟨q, v(i)⟩πv(i). Thus
n∑

i=2

⟨q, v(i)⟩2π ≤
n∑

i=1

⟨q, v(i)⟩2π = ∥q∥2π

Consequently,
∥y∥π ≤ λt∥q∥π

Now, q = D−1
π µ. Thus q(x) = µ(x)/π(x). Consequently,

∥q∥2π =
∑
x∈Ω

µ(x)2

π(x)
≤ 1

πmin

∑
x∈Ω

µ(x)2 ≤ 1

πmin

where πmin := minx∈Ω π(x).
Putting everything together, we get:

∥µTP t − πT∥TV =
1

2
∥µTP t − πT∥1 ≤ λt

2
√
πmin

where ∥·∥TV is the total variation distance. Recall that for any measurable space (Ω,B), given two finite measures
µ1, µ2 on Ω, we define their total variation distance to be:

∥µ1 − µ2∥TV := sup
A∈B

|µ1(A)− µ2(A)|

In case Ω is finite, ∥µ1 − µ2∥TV = ∥µ1 − µ2∥1/2.
We finally define the notion of mixing time:

Definition 1.1. Fix ε > 0. Let Ω be the state space of our Markov chain, and let P be its transition kernel. Suppose
P is reversible w.r.t. π. Let µ be the initial distribution of our Markov chain. Then we define:

tmix(P, ε;µ) := inf
t>0

{
∥P t[µ]− π∥TV ≤ ε

}
where P t[µ] := (µTP t)T.

We also define the spectral gap of our Markov chain:
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Definition 1.2. LetP be aMarkov transition kernel. SupposeP is reversiblew.r.t. π, where π ∈ (0, 1]Ω is a probability
distribution. Let λ := supi≥2 |λi|, where 1, λ2, . . . , are the eigenvalues of P . Then the spectral gap of P , denoted γ,
is defined to be 1− λ.

Remark. It is easy to see that λ ≤ 1: Indeed, let λi be any eigenvalue of P . Then by the Gerschgorin circle theorem,

|λi−P (x, x)| ≤

∣∣∣∣∣∣
∑
y ̸=x

P (x, y)

∣∣∣∣∣∣ =
∑
y ̸=x

P (x, y) = 1−P (x, x) =⇒ |λi|−|P (x, x)| ≤ |λi−P (x, x)| ≤ 1−P (x, x) =⇒ |λi| ≤ 1

We summarize the above discussion below:

Theorem 1.1. Let Ω be a finite set, and let P be a transition matrix over Ω. Suppose P is reversible w.r.t. π, where π
is a probability distribution over Ω. Let γ be the spectral gap of P . Let πmin := minx∈Ω π(x), and suppose πmin > 0.
Then for any distribution µ over Ω, and any ε ∈ (0, 1/2), we have:

tmix(P, ε;µ) ≤

⌈
log(2ε

√
πmin)

log(1− γ)

⌉
≤

⌈
1

γ
·
(
log

1

2ε
+

1

2
log

1

πmin

)⌉
= O

(
1

γ
·
(
log

1

ε
+ log

1

πmin

))

Remark. The above theorem establishes the central role of spectral gaps in the convergence of Markov chains.

One Small Patch: Lazy Markov Chains

Note that we proved that the spectral gap of a Markov chain is non-negative. However, if the spectral gap of a
Markov chain is 0, then the above mixing time bound is useless. Now, the spectral gap does turn out to be 0 in some
important cases. For example, let G be a d-regular bipartite graph. Consider a random walk on this graph, where
given any vertex, we move to one of its neighbors, uniformly. Thus, the transition matrix for this random walk is
A/d, whereA is the adjacencymatrix ofG. Now, sinceG is bipartite,A/d has−1 as an eigenvalue, and consequently,
λ = 1, and γ = 0.
The reason the above phenomenon happened is because the transition matrix was periodic, i.e. if our initial distri-
bution was completely localized in one component of the bipartite graph, then no matter howmany times we apply
the transition matrix, the random walk will not spread over completely to the graph.
To remedy this, we introduce the notion of lazy random walks:

Definition 1.3. Let P be a transition matrix. Then P ′ := (I + P )/2 is the lazy version of P .

Note that:

1. P ′ is also a legitimate transition matrix.

2. If P is reversible w.r.t. π, then so is P ′.

3. λi(P
′) = (1 + λi(P ))/2 for all i ∈ [n]. Since λi(P ) ≥ −1 for all i, we get that λi(P

′) ≥ 0 for all i, i.e. all
eigenvalues of P ′ are non-negative. In particular, λ(P ′) = supi≥2 |λi(P

′)| = supi≥2 λi(P
′) = λ2(P

′), i.e. λ(P ′)
is just the second-largest eigenvalue of P ′.

4. If the multiplicity of 1 as an eigenvalue of P is 1, then the multiplicity of 1 as an eigenvalue of P ′ is also 1,
and consequently, λ(P ′) < 1. Now, if P is irreducible, i.e. for every x, y ∈ Ω, there exists n ≥ 1 such that
Pn(x, y) > 0, then the multiplicity of 1 as an eigenvalue of P is 1. Consequently, the lazy version of an irreducible
transition matrix has a non-zero spectral gap.
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5. If the spectral gap of P is γ, then the spectral gap of P ′ is ≥ γ/2. Thus, making a chain lazy doesn’t (up to
constants) hurt the time bound given by Theorem 1.1.

1.1. Poincaré Inequality

Let us revisit the definition of variance: For some distribution π, and a function f : Ω 7→ R, we define the variance
of f to be:

Varπ(f) := Ex∼π

[
f(x)2

]
− Ex∼π

[
f(x)

]2
= Ex∼π

[(
f(x)−

(
Ey∼πf(y)

))2]
Let us give a more ‘probabilistic’ interpretation of the above definition.

Proposition 1. Let X,Y ∼ π be two i.i.d random variables. Then

Var(f(X)) =
1

2
E
[
(f(X)− f(Y ))2

]

Proof.
E
[
(f(X)− f(Y ))2

]
= E

[
f(X)2

]
+ E

[
f(Y )2

]
− 2E

[
f(X)f(Y )

]
= 2E

[
f(X)2

]
− 2E

[
f(X)

]2
where the last equality follows from the fact E

[
f(X)2

]
= E

[
f(Y )2

]
(since X,Y are identically distributed), and

E
[
f(X)f(Y )

]
= E

[
f(X)

]
E
[
f(Y )

]
(since X,Y are independent). ■

Motivated by this, we define a quadratic form over RΩ (which is the space of functions mapping Ω to R):

Definition 1.4 (Dirichlet Forms). Let Ω be a finite set, and let f, g ∈ RΩ be functions. Let P be a Markov transition
kernel, and let π be a distribution over Ω. Then define

E(f, g) := 1

2
E X∼π
Y∼P (X,·)

[
(f(X)− f(Y ))(g(X)− g(Y ))

]
=

1

2

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

Remark. Note that X and Y are not independent. Also note that E(f, g) = E(g, f), i.e. E is a symmetric functional.
We now prove that E(·, ·) is very much like variance, but with a crucial difference: In Proposition 1, X and Y were
identically distributed independent random variables. In the following lemma, both X and Y are still distributed as
π, but Y ∼ P (X, ·), and thus they are no longer independent.

Proposition 2. Let X ∼ π, Y ∼ P (X, ·). Let f ∈ RΩ. Then

E(f, f) = 1

2
E
[
(f(X)− f(Y ))2

]
= E

[
f(X)2

]
− E

[
f(X)f(Y )

]

Proof.

E
[
(f(X)− f(Y ))2

]
=
∑

x,y∈Ω

Pr(X = x, Y = y)(f(x)− f(y))2 =
∑

x,y∈Ω

Pr(Y = y|X = x) Pr(X = x)(f(x)− f(y))2

=
∑

x,y∈Ω

P (x, y)π(x)(f(x)− f(y))2

The second equality follows by expanding (f(X) − f(Y ))2 and noting that E
[
f(X)2

]
= E

[
f(Y )2

]
since X and Y

are identically distributed. ■
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We are finally ready to introduce the main theorem which justifies the definition of Dirichlet energy:

Theorem 1.2 (Poincaré Inequality). Let Ω be a finite set, and let P be a transition matrix over Ω. Suppose P is
reversible w.r.t. π, where π ∈ (0, 1]Ω is a probability distribution over Ω. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 be the
eigenvalues of P . Then

E(f, f) ≥ (1− λ2)Var(f)

Furthermore, there exists f∗ ∈ RΩ such that E(f∗, f∗) = (1− λ2)Var(f∗), i.e. the above inequality is tight.

Remark. There are a few remarks due:

1. 1− λ2 is also known as the Poincaré constant of the system (P, π).

2. One can think of E(·, ·) as some sort of ‘local variance’ across transitions of our Markov chain. The above
inequality then bounds the ratio between local and ‘global’ variance.

3. Note that Poincaré’s constant is 1−λ2, while the spectral gap ofP is 1−λ, whereλ = supi≥2 |λi| = max{λ2, |λn|}.
Thus, the Poincaré constant and the spectral gap of a system are slightly different quantities. However, as we
saw earlier, for lazy chains these are the same quantity.

4. The above theorem gives a non-linear algebraic way to recover the spectral gap of our transition kernel.

5. We modified the definition of variance to arrive at the definition for Dirichlet forms. We were then able to
recover the notion of spectral gaps by studying the relationship between Dirichlet forms and variance, i.e.
by studying Dirichlet forms, we were able to gain insight into the rate of convergence of our Markov chain.
This raises the question: Can we study any other functional which also gives us insight into Markov chain
convergence? The answer is yes, and we shall deal with it soon.

Proof. We first recall the so-called Rayleigh’s criterion from linear algebra: Let S be a symmetric matrix with eigen-
values µ1 ≥ µ2 ≥ · · · . Let the eigenvector corresponding to µ1 be v1. Then

µ2 = sup
v ̸=0

⟨v,v1⟩=0

vTAv

∥v∥22

Furthermore, equality is attained in the above supremum for v = v2, where v2 is an eigenvector of A corresponding
to the eigenvalue µ2.
Now, recall thematrixQ := D

1/2
π PD

−1/2
π . SinceQ is symmetric, we can apply Rayleigh’s criterion to it. Furthermore,

the eigenvalues of Q are the same as the eigenvalues of P , and the eigenvector of Q corresponding to λ1 = 1 is
√
π,

where
√
π ∈ RΩ is component-wise square root of π. Then by Rayleigh’s criterion,

λ2 = sup∑
x∈Ω

√
π(x)v(x)=0

∑
x,y∈Ω v(x)Q(x, y)v(y)∑

x∈Ω v(x)2

Now, set v(x) =
√
π(x)f(x). Also recall that Q(x, y) = P (x, y)

√
π(x)/π(y). Then

sup∑
x∈Ω

√
π(x)v(x)=0

∑
x,y∈Ω v(x)Q(x, y)v(y)∑

x∈Ω v(x)2
= sup∑

x∈Ω π(x)f(x)=0

∑
x,y∈Ω π(x)P (x, y)f(x)f(y)∑

x∈Ω π(x)f(x)2

Now,
∑

x∈Ω π(x)f(x)2 = ∥f∥2π . Also, if X ∼ π, Y ∼ P (X, ·), then∑
x,y∈Ω

π(x)P (x, y)f(x)f(y) = E[f(X)f(Y )]
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Thus
λ2 = sup∑

x∈Ω π(x)f(x)=0

E[f(X)f(Y )]

∥f∥2π

Now, by Proposition 2, E[f(X)f(Y )] = E[f(X)2]− E(f, f). But E[f(X)2] =
∑

x∈Ω π(x)f(x)2 = ∥f∥2π . Thus

λ2 = sup∑
x∈Ω π(x)f(x)=0

∥f∥2π − E(f, f)
∥f∥2π

=⇒ inf∑
x∈Ω π(x)f(x)=0

E(f, f)
∥f∥2π

= 1− λ2

At this point, we are almost done, except for the fact that we only proved the inequality for functions f for which∑
x∈Ω π(x)f(x) = 0 ⇐⇒ E[f(X)] = 0. Now, let g ∈ RΩ be an arbitrary function. Set f(x) := g(x) − E[g(X)]. Then

E[f(X)] = 0, and we have E(f, f) ≥ (1− λ2)Var(f). But note that

Var(g) = Ex∼π

[(
g(x)− Ey∼πg(y)

)2]
= Ex∼π

[
f(x)2

]
= E[f(X)2] = E[f(X)2]− E[f(X)]2 = Var(f)

Also, for any x, y ∈ Ω, g(x)− g(y) = f(x)− f(y). Thus, by the very definition of Dirichlet forms, we have E(g, g) =
E(f, f). Thus we have E(f, f) = E(g, g) ≥ (1− λ2)Var(f) = (1− λ2)Var(g), as desired.
Finally, equality is attained in Poincaré’s inequality: Indeed, if we trace the steps of the derivation, one finds that
equality is attained for f∗ := D

−1/2
π u(2), where u(2) is an eigenvector of Q corresponding to the eigenvalue λ2. ■

Once we have established Poincaré’s inequality, we can in fact derive mixing time bounds again without any linear
algebra. Furthermore, in this derivation, we observe a clear monovariant (apart from the obvious ℓ1 norm).

1.1.1. Dirichlet Energy as Rate of Change of Variance

Let µ be a distribution over Ω. We want to show that µ converges to π in a reasonable amount of time. We showed
that directly by considering ∥P t[µ]− π∥1. However, is there any other proxy by which we can show convergence to
π? The answer is yes, and that ‘proxy’ is variance.
However, we shall now move into continuous time, where certain calculations become much easier.
Let P be the transition matrix of our DTMC (Discrete Time Markov Chain). Now, when we are at any state r ∈
Ω, we wait for a time given by an exponential random variable with parameter 1, and then we jump to another
state according to the probability distribution dictated by (the rth row of) P . Thus, our time parameter now takes
values in R≥0, since exponential random variables are real-valued. Moreover, note what the trajectory of our CTMC
(Continuous Time Markov Chain) looks like: Suppose we start from some state r0 ∈ Ω. Then the trajectory is

Xt =


r0, t ∈ [0, t1)

r1, t ∈ [t1, t1 + t2)

r2, t ∈ [t1 + t2, t1 + t2 + t3)

. . .

where t1, t2, t3, . . . are i.i.d Exp(1) random variables, and (r0, r1, r2, . . .) is a particular trajectory of the DTMC gov-
erned by P , and {Xt}t≥0 is the trajectory of our CTMC. Indeed, the jump-and-hold description of a CTMC makes
apparent the correspondence between a DTMC and a CTMC: One can take a particular trajectory of a DTMC, and
separate its points with i.i.d exponential random variables to get a corresponding trajectory for the CTMC.
The description given above is known as the jump-and-hold description of a CTMC. However, for computational
purposes, it is often convenient to work with another, equivalent, description of a CTMC, which is known as the
infinitesimal description of a CTMC. That goes as follows: Suppose we have a CTMC which is generated in a jump-
and-holdmanner from a stochastic matrix P . Then we associate a transitionmatrix L := P −I 4 to our CTMC, which
has the interpretation that, for any i ̸= j, i, j ∈ Ω,

L(i, j) = lim
h↘0

P(Xh = j|X0 = i)

h

4L is also known as the Laplacian of the system
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or equivalently,
P(Xh = j|X0 = i) = L(i, j)h+ o(h)

Also, note the following facts about L:

1. For i = j, Lii = −
∑

j ̸=i L(i, j), thus making
∑

j∈Ω L(i, j) = 0 for every i ∈ Ω.

2. If P is reversible w.r.t. π, then so is L.

The reason the infinitesimal description is useful is that it can be shown that P(Xt = j|X0 = i) =: Pi(Xt = j) =
(exp(Lt))ij . The set of matrices {exp(tL)}t≥0 is also known as the semigroup generated by L.
We shall now justify all of the above assertions in the theorem below.

Theorem 1.3 (Infinitesimal Description of CTMCs). Let P be a transitionmatrix, and let µ0 be the initial distribution
of our Markov chain. Let µt be the distribution at time t of the CTMC governed by P . Then

µT
t = µT

0 exp(tL) = µT
0 exp(t(P − I))

Proof. Note that

µT
t =

∞∑
k=0

µT
0P

k · Pr(There are k ‘jumps’ in time t)

The distribution of the number of jumps in time t is actually a Poisson distribution with parameter t! Thus

µT
t = µT

0

∞∑
k=0

P k · e
−ttk

k!
= µT

0 e
−t

∞∑
k=0

(tP )k

k!
= µT

0 e
−t exp(tP ) = µT

0 exp(t(P − I))

■

Remark. A few remarks are due:

1. Yet another viewpoint of CTMCs (which is also highlighted in the proof above), which is equivalent to the
jump-and-hold and infinitesimal descriptions is the observation that if {Xk}k∈N is aDTMC, thenYt ∼ XPoisson(t)
is the CTMC corresponding to L = P − I .

2. P(Xh = j|X0 = i) = (δTi exp(hL))(j), where δi is the Dirac measure at i, i.e. δi ∈ RΩ is the unit vector with 1 at
i and 0 everywhere else. But (δTi exp(hL))(j) = (exp(hL))ij . Now, exp(hL) = I+hL+(hL)2/2!+ · · · , and thus
exp(hL)ij = δij + hL(i, j) + o(h). Consequently, if i ̸= j, then P(Xh = j|X0 = i) = hL(i, j) + o(h), as desired.

Now, let {µt(j)}j∈Ω denote the probability distribution on Ω at time t. Then

Pr(Xt+h = j) =
∑
i∈Ω

Pr(Xt+h = j|Xt = i) Pr(Xt = i)

=
∑
i ̸=j

(L(i, j)h+ o(h))µt(i) + Pr(Xt+h = j|Xt = j) Pr(Xt = j)

Consequently,

lim
h↘0

Pr(Xt+h = j)− Pr(Xt = j)

h
=
∑
i ̸=j

L(i, j)µt(i) + Pr(Xt = j)︸ ︷︷ ︸
=µt(j)

lim
h↘0

Pr(Xt+h = j|Xt = j)− 1

h

=
∑
i ̸=j

L(i, j)µt(i)− µt(j) lim
h↘0

Pr(Xt+h ̸= j|Xt = j)

h
=
∑
i ̸=j

L(i, j)µt(i)− µt(j)
∑
k ̸=j

L(j, k)︸ ︷︷ ︸
=−L(j,j)



Mixing of Markov Chains 9 / 12 Arpon Basu

=
∑
i∈Ω

L(i, j)µt(i)

But note that
lim
h↘0

P(Xt+h = j)− P(Xt = j)

h
=

dµt(j)

dt

Consequently, we arrive at the continuous version of the Chapman-Kolmogorov theorem, namely, for any j ∈ Ω,

dµt(j)

dt
=
∑
i∈Ω

L(i, j)µt(i) (1.2)

Beforewe return toMarkov chainmixing, we prove a useful identity involving E(·, ·) and the Laplacian of the system.

Proposition 3. Let L = P − I . Then:

E(f, g) = −
∑

x,y∈Ω

π(x)L(x, y)f(x)g(y)

Proof. Note that
2E(f, g) =

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

=
∑

x,y∈Ω

π(x)(L(x, y) + δxy)(f(x)g(x)− f(x)g(y)− f(y)g(x) + f(y)g(y))

Now, note that the above expression is symmetric in x and y, since π(x)L(x, y) = π(y)L(y, x). Consequently, the
above expression equals

= 2
∑

x,y∈Ω

π(x)(L(x, y)+δxy)(f(x)g(x)−f(x)g(y)) = 2
∑

x,y∈Ω

π(x)(L(x, y)f(x)g(x)+δxyf(x)g(x)−L(x, y)f(x)g(y)−δxyf(x)g(y))

Note that δxyf(x)g(x) = δxyf(x)g(y). Thus the above expression equals

2
∑

x,y∈Ω

π(x)(L(x, y)f(x)g(x)− L(x, y)f(x)g(y)) = 2
∑

x,y∈Ω

π(x)L(x, y)f(x)(g(x)− g(y))

Thus
E(f, g) =

∑
x,y∈Ω

π(x)L(x, y)f(x)(g(x)− g(y))

Thus if we can show that
∑

x,y∈Ω π(x)L(x, y)f(x)g(x) = 0, then we’ll be done. But

∑
x,y∈Ω

π(x)L(x, y)f(x)g(x) =
∑
x

π(x)f(x)g(x)

∑
y∈Ω

L(x, y)

 = 0

Where the last equality follows since the rows of the Laplacian do sum to 0 (since the rows of P sum to 1, and the
rows of I also sum to 1). ■

We will finally use this machinery to link Dirichlet energy to the rate of change of variance.
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Lemma 1.4 (Dirichlet Energy as Rate of Change of Variance). Let Ω be a finite set, and let P be a transition matrix
over Ω. Suppose P is reversible w.r.t. π, where π ∈ (0, 1]Ω is a probability distribution over Ω. Let µ ∈ [0, 1]Ω be a
probability distribution over Ω. Let µt be the distribution of the CTMC at time t, governed by P (or more precisely
L) with µ0 = µ. Let gt := µt/π, i.e. gt(x) := µt(x)/π(x). Then

dVarπ(gt)
dt

= −2E(gt, gt)

Remark. Note that if µ = π, then g ≡ 1, and thus Var(g) = 0. Thus Varπ(g) actually acts as some sort of distance
between probability distributions and π.

Proof. Note that

Varπ(gt) =
∑
x∈Ω

π(x)gt(x)
2 −

∑
x∈Ω

π(x)gt(x)

2

=
∑
x∈Ω

µt(x)
2

π(x)
−

∑
x∈Ω

µt(x)

2

=
∑
x∈Ω

µt(x)
2

π(x)
− 1

Thus
dVarπ(gt)

dt
=
∑
x∈Ω

2µt(x)

π(x)

dµt(x)

dt

Eq. (1.2)
=

∑
x∈Ω

2µt(x)

π(x)

∑
y∈Ω

L(y, x)µt(y) = 2
∑

x,y∈Ω

µt(x)

π(x)

µt(y)

π(y)
π(y)L(y, x)

= 2
∑

x,y∈Ω

gt(x)gt(y)π(y)L(y, x) = 2
∑

x,y∈Ω

gt(x)gt(y)π(x)L(x, y)

At this point, we’re done by Proposition 3. ■

Theorem 1.5 (Exponential Decay of Variance). Let P be a transition matrix, π be a distribution, with P reversible
w.r.t. π. Let α be the Poincaré constant of the system. Let µ ∈ [0, 1]Ω be a probability distribution over Ω. Let µt be
the distribution of the CTMC at time t, governed by P with µ0 = µ. Let gt := µt/π. Then

Varπ(gt) ≤ e−2αt Varπ(g0)

Proof. Note that

dVarπ(gt)
dt

Lemma 1.4
= −2E(gt, gt)

Theorem 1.2
≤ −2αVarπ(gt) =⇒ dVarπ(gt)

Varπ(gt)
≤ −2α dt =⇒ dlnVarπ(gt) ≤ −2α dt

Integrating the above inequality yields the desired result. ■

1.2. The Modi�ed Log-Sobolev Inequality

We saw that Poincaré inequality, variance, and the spectral gap of a system are very tightly linked. As asked above,
one might wonder if some other functional might also lead to mixing time bounds.
Since variance is a ‘quadratic form’, onemight like to think of variance as some sort of ‘energy’. We shall now explore
what sort of bounds we get when we use ‘entropy’ as our functional.

Definition 1.5 (Relative Entropy). Let µ, π be two probability distributions on Ω, where Ω is a finite set. Further,
assume µ is absolutely continuousw.r.t π, i.e. π(x) = 0 =⇒ µ(x) = 0 for all x ∈ Ω. Then we define the relative entropy
of µw.r.t. π to be

DKL(µ∥π) :=
∑
x∈Ω

µ(x) ln
µ(x)

π(x)
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Remark. A few remarks are due:

1. DKL(π∥π) = 0 for any distribution π.

2. Relative entropy is also known as informational divergence, or Kullback-Leibler divergence.

3. DKL(µ∥π) should be taken as the ‘entropic’ analog of Varπ(µ/π).

The way Cauchy-Schwartz inequality is the ‘canonical inequality’ for quadratic forms, the same way Pinsker’s in-
equality is the canonical inequality for DKL(·∥·).

Theorem 1.6 (Pinsker’s Inequality). Let µ, π be two probability distributions on Ω, where Ω is a finite set. Further,
assume µ is absolutely continuous w.r.t π. Then

∥µ− π∥TV ≤
√
2DKL(µ∥π)

We will now prove an equivalent of Lemma 1.4 for DKL.

Lemma 1.7. Let Ω be a finite set, and let P be a transition matrix over Ω. Suppose P is reversible w.r.t. π, where
π ∈ (0, 1]Ω is a probability distribution over Ω. Let µ ∈ [0, 1]Ω be a probability distribution over Ω. Let µt be the
distribution of the CTMC at time t, governed by P with µ0 = µ. Let gt := µt/π, i.e. gt(x) := µt(x)/π(x). Then

dD(µt∥π)
dt

= −E(gt, ln gt)

Proof. Note that

dD(µt∥π)
dt

=
∑
x∈Ω

dµt(x)

dt

(
1 + ln

µt(x)

π(x)

)
Eq. (1.2)
=

∑
x∈Ω

∑
y∈Ω

L(y, x)µt(y)
(
1 + ln gt(x)

)
=
∑

x,y∈Ω

π(y)L(y, x)gt(y)(1+ln gt(x))

=
∑

x,y∈Ω

π(y)L(y, x)gt(y) +
∑

x,y∈Ω

π(y)L(y, x)gt(y) ln gt(x)

The second term equals−E(ln g, g) = −E(g, ln g) byProposition 3, and the first termbecomes zero since
∑

x∈Ω L(y, x)
factors out and becomes 0. ■

Consequently, if we could have an entropic analog of Poincaré’s inequality, we would have the entropic analog of
variance decay.
The inequality we prove is the so-called Modified Log-Sobolev inequality. Before that, we define the entropy of a func-
tion.

Definition 1.6 (Entropy). Let Ω be a set, let π be a probability distribution on Ω, and let f ∈ RΩ
≥0. Then we define

the entropy of f to be:
Entπ(f) := Eπ [f ln f ]− Eπ [f ] · lnEπ [f ]

We now define the so-called Modified Log-Sobolev constant:
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Definition 1.7 (Modified Log-Sobolev Constant). Let P be a transitionmatrix onΩ. Then theModified Log-Sobolev
constant of (P, π) is defined as:

ρ := inf

{
E(f, ln f)
Entπ(f)

: f ∈ RΩ
≥0,Entπ(f) ̸= 0

}

Remark. A few remarks are due:

1. Let ρ be the modified Log-Sobolev constant of P , and let α be the Poincaré constant of P . Then ρ ≤ 2α.
However, in many important situations, ρ and α are of the same order. In that case, the modified Log-Sobolev
constant gives better mixing time bounds, as we shall see now.

2. The reason this is called the ‘modified’ Log-Sobolev constant is that the “original” Log-Sobolev constant was
inf E(

√
f,

√
f)/Entπ(f). However, it was later realized that the ‘modified’ Log-Sobolev constant was more

general, and more useful for a wider variety of Markov chains, so that’s why we only study this.

Once we have defined the Modified Log-Sobolev constant, we can try to derive mixing time bounds from it.

Theorem 1.8. Let Ω be a finite set, and let P be a transition matrix over Ω. Suppose P is reversible w.r.t. π, where π
is a probability distribution over Ω. Let ρ be the modified Log-Sobolev constant of (P, π). Let πmin := minx∈Ω π(x),
and suppose πmin > 0. Then for any distribution µ0 over Ω, we have

∥µt − π∥2TV ≤ 2 log
1

πmin
e−ρt

Although the above result is for CTMCs, we can conclude that for small enough ε > 0, we have:

tmix(P, ε;µ) = O

(
1

ρ
·
(
log

1

ε
+ log log

1

πmin

))

where tmix is the usual mixing time (for DTMCs).

Proof. By Lemma 1.7,
dD(µt∥π)

dt
= −E(gt, ln gt) ≤ −ρEntπ(gt)

With some work one can verify that Entπ(gt) = D(µt∥π). Thus, similarly as in the proof of Theorem 1.5, we obtain
D(µt∥π) ≤ e−ρtD(µ0∥π). By Theorem 1.6, we then have ∥µt − π∥2TV ≤ 2e−ρtD(µ0∥π). Finally, once again with
some thought one sees that D(µ0∥π) ≤ ln 1

πmin
(with equality being achieved by µ0 = δx, where π(x) = πmin), as

desired. ■
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