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Introduction

The goals of this presentation are:
• We’ll explore the relaxation times of finite space Reversible

Ergodic Markov (REM) chains, both in discrete time and
continuous time.

• We introduce the notion of Dirichlet forms on Markov chains,
which enable us to show that the speed with which a REM chain
attains equilibrium is controlled by the second largest eigenvalue
(‘τ2’) of a particular symmetric matrix.
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Notation and Convention

Throughout the report, we shall be working in the setting described
below.

REM Chains
Our time homogenous Markov chain shall be represented as
X := (Xt : t ∈ T), where the state space of X is denoted by R, which
take to be finite.
Further, our Markov chain is irreducible, ergodic, and reversible, and
we denote the (unique) stationary distribution on X by π.

We shall denote by Eρ [·] the expectation of a random variable
constituted by {Xt , t ∈ T}, where the initial distribution, ie:- the
distribution of X0, is taken to be ρ. Further, if our Markov chain begins
at some state i , then the corresponding expectation is denoted as Ei [·].
Note that if the distribution of X0 is π, then our Markov chain is a
stationary stochastic process.

Arpon Basu (IITB) Dirichlet Forms on REM Chains April 27, 2023 3 / 35



For the discrete-time case, we represent the transition function of our
Markov chain with P = (pij)i,j∈R.
The consequence of reversibility, then, is

Detailed Balance Equations

πipij = πjpji ∀ i , j ∈ R

We also define

Hitting Time

Ti := inf{t ∈ Z≥0 : Xt = i}
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Continuous Time Markov Chains

Let P be the transition matrix of our DTMC. For computational
purposes, we work with the infinitesimal description of a CTMC. That
goes as follows: We associate a transition matrix Q := P − I to our
CTMC, which has the interpretation that, for any i ̸= j , i , j ∈ R,

qij = lim
h↘0

P(Xh = j |X0 = i)
h

or equivalently,
P(Xh = j |X0 = i) = qijh + o(h)

Also, for i = j , we set qii = −
∑

j ̸=i qij .

It can be shown that P(Xt = j |X0 = i) =: Pi(Xt = j) = q(t)
ij is equal to

(exp(Qt))ij .
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Continuous Time Chapman Kolmogorov Equations

Let {ρj(t)}j∈R denote the probability distribution on R at time t . Then

P(Xt+h = j) =
∑
i∈R

P(Xt+h = j |Xt = i)P(Xt = i)

=
∑
i ̸=j

(qijh + o(h))ρi(t) + P(Xt+h = j |Xt = j)P(Xt = j)

Consequently,

lim
h↘0

P(Xt+h = j)− P(Xt = j)
h

=
∑
i ̸=j

qijρi(t)− ρj(t) lim
h↘0

P(Xt+h ̸= j |Xt = j)
h

=
∑
i ̸=j

qijρi(t)− ρj(t)
∑
k ̸=j

qjk︸ ︷︷ ︸
=−qjj

=
∑
i∈R

qijρi(t)

Arpon Basu (IITB) Dirichlet Forms on REM Chains April 27, 2023 6 / 35



But note that

lim
h↘0

P(Xt+h = j)− P(Xt = j)
h

=
dρj(t)

dt

Consequently, we arrive at the continuous version of the
Chapman-Kolmogorov theorem, namely, for any j ∈ R,

dρj(t)
dt

=
∑
i∈R

qijρi(t)
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An Important Distinction b/w CTMCs and DTMCs

It is very important to mention that although many properties of
DTMCs have natural analogs in the continuous-time case, one
property where there is a notable difference is periodicity: Indeed, note
that for CTMCs, for any i ∈ R, the set {t : q(t)

ii > 0} is a subset of R≥0
in general, and consequently we can’t take the greatest common
divisor of this set in the usual sense. Thus, the concept of periodicity is
not defined in the continuous time paradigm.
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Spectral Representation of Reversible Markov Chains

We define the quantity

sij := pij

√
πi

πj

for all i , j ∈ R. Furthermore, by the detailed balance equations, since
we have πipij = πjpji , we get that sij = sji , ie:- the matrix S := (sij)i,j∈R
is a real symmetric matrix. Consequently, we can diagonalize S to
obtain

S = UΛUT

where U is an orthonormal matrix, and Λ is the diagonal matrix
containing the eigenvalues of S in decreasing order, ie:- Λii = λi , and
λ1 ≥ . . . ≥ λn.
Finally, a little linear algebra reveals that S and P have the same
eigenvalues.
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Spectral Representation

Since our Markov chain X is irreducible, the transition matrix P is a
stochastic irreducible matrix. Consequently, by the Perron-Frobenius
theorem, we have 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn ≥ −1.
Further, note that

St = UΛtUT =⇒ s(t)
ij =

n∑
k=1

λt
kuikujk

Further, the Chapman-Kolmogorov equations yield p(t)
ij = s(t)

ij

√
πj
πi

.
Thus, we can combine these two equations to yield the spectral
representation formula, which goes as

Theorem (Spectral Representation formula)
We have

P(Xt = j |X0 = i) =
√

πj

πi

n∑
k=1

λt
kuikujk
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Relaxation Time

This result can be easily continuized: If Q is the transition matrix of our
CTMC X, then P = Q + I is the transition matrix for some DTMC Y.
Consequently, if the DTMC has an eigenvalue λ, then the
corresponding CTMC has the eigenvalue 1 − λ.
Thus from this point onwards, we’ll freely interchange between the
spectral representations in the discrete and continuous time cases,
such that λ(c) = 1 − λ(d), where c,d denote continuous and discrete
respectively.

Relaxation Time

τ2 :=

{
1/λ2, for continuous-time Markov chains
1/(1 − λ2), for discrete-time Markov chains

As we shall see throughout this report, τ2 controls how fast the Markov
chain converges towards its stationary distribution π.
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Dirichlet Forms

Let X be an ergodic reversible Markov chain on a finite state space R
with stationary distribution π. We define

E(g,g) := 1
2

∑
i,j∈R

πipij(g(j)− g(i))2

for any function g : R 7→ R, where we replace pij by qij in the
continuous time analogue.
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Some Basic Lemmata

Lemma

For the discrete-time case, we have

E(g,g) = 1
2
Eπ

[
(g(X1)− g(X0))

2
]
= Eπ [g(X0)(g(X0)− g(X1))]

Proof.
Note that

Eπ

[
(g(X1)− g(X0))

2
]
=
∑
i,j∈R

(g(j)− g(i))2P(X1 = j ,X0 = i)

=
∑
i,j∈R

(g(j)− g(i))2P(X1 = j |X0 = i)P(X0 = i) =
∑
i,j∈R

(g(j)− g(i))2pijπj
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Proof.
Furthermore,

1
2
Eπ

[
(g(X1)− g(X0))

2
]
=

1
2
Eπ

[
g(X1)

2 + g(X0)
2 − 2g(X0)g(X1)

]
Since we are taking expectation over a stationary distribution, we have
E
[
g(X1)

2] = E
[
g(X0)

2], yielding

1
2
Eπ

[
g(X1)

2 + g(X0)
2 − 2g(X0)g(X1)

]
= Eπ

[
g(X0)

2 − g(X0)g(X1)
]
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Continuous Time Analogue

Lemma

For the continuous-time case, we have

E(g,g) := −
∑
i,j∈R

πiqijg(i)g(j)

Proof.
Note that for any h > 0

Eπ

[
(g(Xh)− g(X0))

2
]
=
∑
i,j∈R

(g(j)− g(i))2P(Xh = j ,X0 = i)

=
∑
i,j∈R

(g(j)− g(i))2P(Xh = j |X0 = i)πi
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Proof.
Thus

lim
h↘0

1
h
Eπ

[
(g(Xh)− g(X0))

2
]
=
∑
i,j∈R

πi(g(j)−g(i))2 lim
h↘0

P(Xh = j |X0 = i)
h

=
∑
i,j∈R

πi(g(j)− g(i))2qij = 2E(g,g)

On the other hand,

1
2
lim
h↘0

Eπ

[
(g(Xh)− g(X0))

2]
h

= − lim
h↘0

Eπ [g(X0)(g(Xh)− g(X0))]

h

as in the discrete-time case. But the above expression equals

−
∑
i,j∈R

g(i)(g(j)− g(i))P(X0 = i) lim
h↘0

P(Xh = j |X0 = i)
h
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Proof.

= −
∑
i,j∈R

g(i)(g(j)− g(i))πiqij = −
∑
i,j∈R

g(i)g(j)πiqij +
∑
i,j∈R

g(i)2πiqij

But ∑
i,j∈R

g(i)2πiqij =
∑
i∈R

g(i)2πi

∑
j∈R

qij

 = 0

as desired.

Arpon Basu (IITB) Dirichlet Forms on REM Chains April 27, 2023 17 / 35



A Closer Look at Dirichlet Forms

When we want to quantify how fast a changing probability distribution
(the canonical example of which is the continuous-time Markov chain)
is tending to its stationary distribution, Dirichlet forms arise naturally.
But before we can measure how fast our Markov chain is tending to
equilibrium, we need to be able to define the distance between two
probability distributions.

Statistical Distance between Probability Distributions
Let µ be a probability distribution on R. Then we define

∥µ− π∥2
2 :=

(∑
i∈R

µ2
i
πi

)
− 1
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Theorem

Let ρ(t) be the distribution over R at time t. Then

d∥ρ(t)− π∥2
2

dt
= −2E(f (t), f (t))

where fj(t) := ρj(t)/πj , j ∈ R.

Proof.
Note that

d
dt

∥ρ(t)− π∥2
2 =

∑
j∈R

1
πj

d
dt

ρj(t)2 =
∑
j∈R

2
πj
ρj(t)

∑
i∈R

ρi(t)qij

= 2
∑
i,j∈R

ρj(t)
πj

ρi(t)
πi

πiqij = −2E(f (t), f (t))
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Extremal Characterization of τ2

We now define the extremal characterization of relaxation times.
Although this might seem disconnected from the previous content, we
shall tie everything together soon.

Theorem (Extremal characterization of τ )

τ2 = sup
g ̸≡0∑

i∈R g(i)πi=0

∥g∥2
2

E(g,g)

where ∥g∥2
2 is defined to be

∑
i∈R πig(i)2 = Eπ

[
g(X0)

2].
Proof.
Let A be any real symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ . . . ≥ µn.
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Proof.
Then from the Rayleigh characterization of eigenvalues, we have

µ2 = sup
x ̸=0

⟨x ,v⟩=0

xTAx
∥x∥2

2
= sup

x ̸=0
⟨x ,v⟩=0

∑
xiaijxj∑

x2
i

where v is an eigenvector of A corresponding to µ1.
We apply this to our spectral matrix S := (sij)i,j∈R. Note that the
eigenvector corresponding to the highest eigenvalue µ1 was v , where
vi =

√
πi . Then setting xi =

√
πig(i) yields

µ2 = sup∑√
πi xi=0

∑
xisijxj∑

x2
i

= sup∑
πi g(i)=0

∑
xisijxj∑
πig(i)2

= sup∑
πi g(i)=0

∑
πipijg(i)g(j)
∥g∥2

2
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Proof.

= sup∑
πi g(i)=0

Eπ [g(X0)g(X1)]

∥g∥2
2

= sup∑
πi g(i)=0

Eπ

[
g(X0)

2]− E(g,g)
∥g∥2

2

But Eπ

[
g(X0)

2] = ∥g∥2
2, following which the desired result easily

follows.
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An useful Corollary

Corollary

Suppose we collapse a subset A ⊆ R into a singleton {a}. Let τA
2 be

the relaxation time of this collapsed chain. Then τA
2 ≤ τ2.

Proof.
For any function g on (R \ A) ∪ {a}, we can extend it to a function on
R by setting g(α) = g(a) for every α ∈ A. This doesn’t change
∥g∥,

∑
πig(i) and E(g,g), and thus τ2 ≥ τA

2 since for every candidate
function in the supremum for τA

2 , the same value is also attained in the
corresponding supremum expression for τ2.
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Rate of Decay of Markov Chains to Equilibrium

Theorem
Let ρ(t) be the distribution of our continuous-time Markov chain (whose
initial distribution is assumed to be arbitrary). Then

∥ρ(t)− π∥2 ≤ e−t/τ2∥ρ(0)− π∥2

Proof.
We have

d
dt

∥ρ(t)− π∥2
2 = −2E(f (t), f (t))

where f = ρ/π.
But

−2E(f (t), f (t)) = −2E(f (t)− 1, f (t)− 1) ≤ −2
∥f (t)− 1∥2

2
τ2
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Proof.
Thus

d
dt

∥ρ(t)− π∥2
2 ≤ −2

∥f (t)− 1∥2
2

τ2
=

−2
τ2

∥ρ(t)− π∥2
2

Integration then yields our desired result.
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Some Examples

As promised, we have derived bounds for the rate of convergence of
Markov chains to their equilibrium using extremal characterizations
and Dirichlet forms.
We now see some examples.
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On-off chains

On-off chains
The on-off chain is a Markov chain with two states, say α, β such that
pα,β = 1 − pα,α = p ∈ (0,1), and pβ,α = 1 − pβ,β = q ∈ (0,1).

The transition matrix is given by P =

[
1 − p p

q 1 − q

]
.

• This chain is clearly irreducible, ergodic, and aperiodic. Its
stationary distribution is given by π where πα = q

p+q = 1 − πβ.
• π satisfies the detailed balance equations, and consequently, the

on-off chain is reversible.
Calculating τ2 yields τ2 = 1

p+q .
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Qualitative Interpretation

Note that if both p,q are close to 0, then τ2 is very large: Indeed, note
that p,q are the probabilities that the walk goes from one state to
another state. Consequently, p,q being small means that our on-off
chain is “sticky”, and it will take more time to mix, which tallies with a
larger value of τ2.

Arpon Basu (IITB) Dirichlet Forms on REM Chains April 27, 2023 28 / 35



Random Walks on Graphs

A natural source of interesting finite space ergodic reversible chains is
random walks on weighted graphs. However, we face a problem when
we try to analyze random walks on graphs: Not all graph random walks
are aperiodic. Indeed, consider a bipartite graph where our initial
distribution is (concentrated on) some particular vertex. Then a
random walk on this graph, where from every vertex of our graph we
move to its neighbors, is not ergodic since we are on different
partitions of the bipartite graph on consecutive time instants.
A workaround is to move to continuous time Markov chains on the
same graph. As mentioned before, the concept of periodicity doesn’t
make any sense in the continuous-time régime. Moreover, the spectral
properties of the graph carry over to the continuous-time regime
without any hassle, and consequently, we can analyze the relaxation
times of our graphs without worrying about periodicity.
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The Cycle Graph

Consider the cycle graph Cn on n vertices, where at any given point,
we move to its left/right neighbor with equal probability. This
corresponds to a stochastic matrix P of the form

P =


0 1

2 0 . . . 1
2

1
2 0 1

2 . . . 0
0 1

2 0 . . . 0
...

...
...

. . .
...

1
2 0 0 . . . 0


ie:- pij =

1
2 if and only if i = j ± 1 mod n. The chain is irreducible.

Further, as discussed above, in the continuous time régime, we
needn’t worry about periodicity.
In this case, the stationary distribution π turns out to be identically
equal to 1

n for every i ∈ {0,1, . . . ,n − 1}, which is unsurprising given
the regularity of the graph.
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Moreover, this π satisfies the detailed balance equations too, so we
have reversibility. Also, note that since π is the same for all points in its
sample space, S = P.
Finally, we note that P is a circulant matrix, which has very special
spectral properties. Since we don’t have to completely work it out, we
directly quote

τ2 =
1

1 − cos(2π
n )

∼ n2

2π2

At a qualitative level, it tells us that the Markov chain needs O(n2) time
to “mix thoroughly”. One can’t help but note the similarity with
symmetric 1D random walks, where it takes O(n2) time (in
expectation) to cover a distance of O(n).
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Some Other Special Graphs

We present here the values of τ2 for random walks on some other
special graphs 1.

Graphs τ2
n-path ∼ (2/π2)n2

Complete graph on n vertices (n − 1)/n
Star with n vertices 1
d-dimensional hypercube d /2

1it is not difficult to verify that a random walk on a connected undirected graph is
always irreducible and reversible
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The End
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