CS406 Project The Goldreich-Levin Theorem

Arpon Basu and Hastyn Doshi

Department of Computer Science & Engineering IIT Bombay

April 28, 2023

Arpon Basu and Hastyn Doshi CS406 Project 1 / 19

< □ > < 向

< E > < E >

One-Way Functions

A family of functions $f_n : \{0, 1\}^n \mapsto \{0, 1\}^{k(n)}$ are called one-way functions if they are computable in polynomial time and for every non-uniform PPT adversary \mathcal{A} ,

$$\Pr_{x \leftarrow \{0,1\}^n}(f_n(\mathcal{A}(f_n(x))) = f_n(x)) = \operatorname{negligible}(n)$$

where negligible(n) is a function which decays super-polynomially with n.

Hard-Core Predicate

A predicate $h: \{0,1\}^* \to \{0,1\}$ is called a hard-core predicate for a one-way function $f: \{0,1\}^n \mapsto \{0,1\}^{k(n)}$ if h is computable in polynomial time and for every non-uniform PPT adversary \mathcal{A}

$$\Pr_{x \leftarrow \{0,1\}^n}(\mathcal{A}(1^n, f(x)) = h(x)) = \frac{1}{2} + \mathsf{negligible}(n)$$

Theorem (Goldreich-Levin Theorem)

Let f be a one-way function with domain $\{0,1\}^n$. Note that for any $r \in \{0,1\}^n$, g(x,r) := (f(x),r) is a one-way function too. Then $h(x,r) := \langle x,r \rangle$ is a hard-core predicate for g, where $\langle x,r \rangle$ denotes the dot product of x and r (in \mathbb{F}_2).

We proceed via contradiction: Consider a PPT adversary which can guess the hardcore bit with non-negligible probability over $\frac{1}{2}$. We shall construct a PPT adversary which can invert f with non-negligible probability.

However establishing the theorem requires some lemmata, which we shall now prove.

Sac

Lemma 1

Lemma

Let ${\mathcal A}$ be any PPT adversary, let $\delta > 0$. Define

$$G_{\mathcal{A},\delta} := \left\{ x : \Pr_{r \leftarrow \{0,1\}^n} (\mathcal{A}(f(x), r) = \langle x, r \rangle) \ge \frac{1+\delta}{2} \right\}$$

If $\Pr_{x,r \leftarrow \{0,1\}^n}(\mathcal{A}(f(x),r) = \langle x,r \rangle) \ge \frac{1}{2} + \delta$, then $\Pr_{x \leftarrow \{0,1\}^n}(x \in \mathcal{G}_{\mathcal{A},\delta}) \ge \frac{\delta}{2}.$

Arpon Basu and Hastyn Doshi CS406 Project 6 / 19

•

500

< ≣ > < <u>≡ ></u>

The Proof

Note that

$$\Pr_{x,r \leftarrow \{0,1\}^n} (\mathcal{A}(f(x),r) = \langle x,r \rangle) = \Pr_{x,r \leftarrow \{0,1\}^n} (\mathcal{A}(f(x),r))$$
$$= \langle x,r \rangle | x \in G_{\mathcal{A},\delta}) \Pr_{x \leftarrow \{0,1\}^n} (x \in G_{\mathcal{A},\delta}) + \Pr_{x,r \leftarrow \{0,1\}^n} (\mathcal{A}(f(x),r))$$
$$= \langle x,r \rangle | x \notin G_{\mathcal{A},\delta}) \Pr_{x \leftarrow \{0,1\}^n} (x \notin G_{\mathcal{A},\delta})$$
$$\leq 1 \cdot \Pr_{x \leftarrow \{0,1\}^n} (x \in G_{\mathcal{A},\delta}) + \frac{1+\delta}{2} \cdot 1$$

Since $\Pr_{x,r \leftarrow \{0,1\}^n}(\mathcal{A}(f(x),r) = \langle x,r \rangle) \geq \frac{1}{2} + \delta$, we get our desired result.

Arpon Basu and Hastyn Doshi CS406 Project 7 / 19

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

∢ ≣ ▶

Lemma

Let $X_1, X_2, \dots, X_{m'}$ be pairwise independent Bernoulli random variables with parameter p. Define $X := \sum_{i=1}^{m'} X_i$. Then $\Pr(|X - \mathbb{E}[X]| \ge m'\delta) \le \frac{1}{4m'\delta^2}$

Arpon Basu and Hastyn Doshi CS406 Project 8 / 19

500

The Proof

Denote by μ the value of $\mathbb{E}[X]$. Note that

$$\begin{aligned} \operatorname{Var}(X) &= \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2 - 2\mu X + \mu^2] \\ &= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \\ &= \mathbb{E}\left[\sum_{i=1}^{m'} X_i^2 + 2\sum_{1 \le i < j \le m'} X_i X_j\right] - 2\mu \mathbb{E}[X] + \mu^2 \\ &= \sum_{i=1}^{m'} \mathbb{E}[X_i^2] + 2\sum_{1 \le i < j \le m'} \mathbb{E}[X_i X_j] - 2\mu^2 + \mu^2 \end{aligned}$$

Arpon Basu and Hastyn Doshi CS406 Project 9/19

< □ >

P

4 ◄ ٨

Ш ◄ ≡ ▶ I

The Proof

Since X_i, X_j are pairwise independent for $i \neq j$, $\mathbb{E}[X_iX_j] = \mathbb{E}[X_i]\mathbb{E}[X_j] = p^2$. Moreover, $\mathbb{E}[X_i^2] = p$. Consequently

$$\operatorname{Var}(X) = \sum_{i=1}^{m'} p + 2 \sum_{1 \le i < j \le m'} p^2 - \mu^2 = m' p (1-p)$$

where the last equality follows since $\mu = m'p$. The desired result then follows by invoking Chebyshev's inequality and noting that $p(1-p) \leq \frac{1}{4}$ for every $p \in [0,1]$.

Sac

The Proof (Continued)

Now, let $\delta = \frac{1}{\text{poly}(p)} > 0$ be the advantage of our adversary \mathcal{A} in calculating the hardcore bit, ie:- $\Pr_{x,r \leftarrow \{0,1\}^n}(\mathcal{A}(f(x),r) = \langle x,r \rangle) \geq \frac{1}{2} + \delta.$ Set $m := \lfloor \frac{2n}{3^2} \rfloor, k := 1 + \lfloor \log_2(m) \rfloor$. Uniformly choose k random vectors $t_1, t_2, ..., t_k$ from $\{0, 1\}^k$. Now, let $S \subseteq \{1, 2, \dots, k\} =: [k]$ be any non-empty set. Then we define r_S as $r_S := \sum_{i \in S} t_i$. This way we can generate $2^k - 1 = m' \ge m$ random vectors. Note that all the vectors r_{5} are themselves distributed uniformly in $\{0,1\}^n$ since a linear combination of uniform random vectors from $\{0, 1\}^n$ is itself a uniform random vector¹.

¹this can be seen through induction

Arpon Basu and Hastyn Doshi

The Proof (Continued)

Note that for any two sets $S_1 \neq S_2$, r_{S_1} , r_{S_2} are independent. Consequently, all our m' random vectors are pairwise independent. Now assume we already know the correct values of $\langle x, t_i \rangle$ for every $i \in [k]$. Then we know the values $\langle x, r_S \rangle$ for every $S \subseteq [k]$, since $\langle x, r_S \rangle = \langle x, \sum_{i \in S} t_i \rangle = \sum_{i \in S} \langle x, t_i \rangle.$ Let e_i be the i^{th} unit vector of $\{0,1\}^n$. For any $S \subseteq [k]$, since r_S are uniformly random, we get that $r_S \oplus e_i$ is uniformly random too. Moreover, note that $\langle x, r_{S} \oplus e_{i} \rangle - \langle x, r_{S} \rangle = \langle x, e_{i} \rangle = x_{i}$. Consequently, for every $S \subseteq [k]$, calculate the value of $\mathcal{A}(f(x), r_{S} \oplus e_{i}) - \langle x, r_{S} \rangle$, where \mathcal{A} is the adversary calculating the hardcore bit, obtain m' votes for the value of x_i , and take the majority vote of these values 2 .

Let ξ_S be the Bernoulli random variable denoting the probability distribution of $\mathcal{A}(f(x), r_S \oplus e_i)$ correctly calculating $\langle x, r_S \oplus e_i \rangle$. If $x \in G_{\mathcal{A},\delta}$, then the parameter of ξ_S is at least $\frac{1+\delta}{2}$, by the definition given in the first lemma. Consequently, the expected number of correct answers in the m'votes for the value of x_i is at least $\frac{m'(1+\delta)}{2}$, and thus if the majority vote turns up the wrong answer, that implies a deviation from the mean of more than $\frac{m'\delta}{2}$. By the second lemma, the probability of

this happening is at most $\frac{1}{m'\delta^2} \leq \frac{1}{m\delta^2} \leq \frac{1}{2n}$.

Consequently, the probability that any bit is calculated wrongly is at most $\frac{1}{2n}$, which implies, by the union bound, that the probability that x is determined wrongly is at most $\frac{1}{2n} \cdot n = \frac{1}{2}$. Note that x is simply determined by a concatenation of the bits x_i for $i \in [n]$. Consequently, we managed to invert f(x) with probability $\geq \frac{1}{2} \cdot \Pr(x \in G_{\mathcal{A},\delta}) \geq \frac{\delta}{4}$. However since δ is not negligible, neither is $\frac{\delta}{4}$, which implies that with non-negligible probability we can invert f(x), violating the assumption that it was a one-way function.

Hence proved, contradiction!

< **∃** ► < **∃** ►

We assumed that we know $\langle x, t_i \rangle$ for every $i \in [n]$. But obviously, that is not true a priori. We deal with this as follows: We run the aforementioned algorithm for all $2^k = m' + 1 = \text{poly}(n)$ possible values of $(\langle x, t_i \rangle)_{i \in [k]}$. Every time, we end up with a possible value of x, whose correctness we test for by checking if applying f(x) is the correct answer. Since we know that for the correct values of $(\langle x, t_i \rangle)_{i \in [k]}$, we obtain the correct value of x with probability at least $\frac{1}{2}$, we can consequently conclude that we will get the correct answer with probability at least $\frac{1}{2}$ by the end of all the 2^k iterations.

The above step blows up our runtime by 2^k , but since 2^k is polynomial in *n*, our algorithm remains polynomial time, and thus our overall construction of a PPT adversary continues to hold.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

The most immediate and useful applications of this theorem is to construct *pseudo-random generators* (PRGs): Indeed, let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a one-way permutation. Then $g(x,r) = f(x)||r||\langle x,r \rangle$ is a pseudo-random generator ³. Indeed, through this construction, the Goldreich-Levin theorem lays the foundation for constructing a large class of PRGs.

Arpon Basu and Hastyn Doshi

CS406 Project

16/19

Sac

Theorem

If f is a one-way permutation, then

 $g_N(x,r) := r ||\langle f^N(x), r \rangle ||\langle f^{(N-1)}(x), r \rangle || \dots ||\langle f(x), r \rangle ||\langle x, r \rangle$

is a PRG for any N \sim poly(n), and f^k denotes the k-fold composition of f.

Arpon Basu and Hastyn Doshi CS406 Project 17 / 19

うみつ

We know that pseudorandomness is equivalent to a next-bit prediction by Yao's theorem.

Now assume for the sake of contradiction that g is not a PRG: Then there would exist $i \in [N]$ and a PPT adversary A such that

$$\mathsf{Pr}\Big(\mathcal{A}(r||\langle f^{N}(x),r\rangle||\langle f^{N-1}(x),r\rangle||\dots||\langle f^{i+1}(x),r\rangle)=\langle f^{i}(x),r\rangle\Big)=\frac{1}{2}+\varepsilon$$

We describe a PPT adversary \mathcal{B} such that given (f(z), r), \mathcal{B} tells us the value of $\langle z, r \rangle$ with non-negligible probability, thus violating the Goldreich-Levin theorem.

 \mathcal{B} chooses an $i \in [N]$ randomly. Consider $x \in \{0,1\}^n$ such that $f^i(x) = z^{4}$. Note that for $\ell \geq 1$, \mathcal{B} can efficiently calculate $f^{i+\ell}(x) = f^{\ell-1}(f(z))$. Consequently, \mathcal{B} can, in polynomial time, generate the string $r ||\langle f^N(x), r \rangle || \langle f^{N-1}(x), r \rangle || \dots ||\langle f^{i+1}(x), r \rangle$ on it's own and feed it to \mathcal{A} as an input, which would then return to \mathcal{B} the value of $\langle z, r \rangle$ with non-negligible probability, allowing \mathcal{B} to violate the Goldreich-Levin theorem.