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Basic Definitions

One-Way Functions
A family of functions fn : {0, 1}n 7→ {0, 1}k(n) are called
one-way functions if they are computable in polynomial time
and for every non-uniform PPT adversary A,

Pr
x←{0,1}n

(fn(A(fn(x))) = fn(x)) = negligible(n)

where negligible(n) is a function which decays
super-polynomially with n.
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Basic Definitions

Hard-Core Predicate
A predicate h : {0, 1}∗ → {0, 1} is called a hard-core predicate
for a one-way function f : {0, 1}n 7→ {0, 1}k(n) if h is
computable in polynomial time and for every non-uniform PPT
adversary A

Pr
x←{0,1}n

(A(1n, f (x)) = h(x)) =
1

2
+ negligible(n)
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The Goldreich-Levin theorem

Theorem (Goldreich-Levin Theorem)

Let f be a one-way function with domain {0, 1}n. Note that for
any r ∈ {0, 1}n, g(x , r) := (f (x), r) is a one-way function too.
Then h(x , r) := ⟨x , r⟩ is a hard-core predicate for g , where ⟨x , r⟩
denotes the dot product of x and r (in F2).
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The Proof

We proceed via contradiction: Consider a PPT adversary which
can guess the hardcore bit with non-negligible probability over 1

2 .
We shall construct a PPT adversary which can invert f with
non-negligible probability.
However establishing the theorem requires some lemmata, which
we shall now prove.
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Lemma 1

Lemma

Let A be any PPT adversary, let δ > 0. Define

GA,δ :=

{
x : Pr

r←{0,1}n
(A(f (x), r) = ⟨x , r⟩) ≥ 1 + δ

2

}
If Prx ,r←{0,1}n(A(f (x), r) = ⟨x , r⟩) ≥ 1

2 + δ, then

Prx←{0,1}n(x ∈ GA,δ) ≥ δ
2 .
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The Proof

Note that

Pr
x ,r←{0,1}n

(A(f (x), r) = ⟨x , r⟩) = Pr
x ,r←{0,1}n

(A(f (x), r)

= ⟨x , r⟩|x ∈ GA,δ) Pr
x←{0,1}n

(x ∈ GA,δ) + Pr
x ,r←{0,1}n

(A(f (x), r)

= ⟨x , r⟩|x ̸∈ GA,δ) Pr
x←{0,1}n

(x ̸∈ GA,δ)

≤ 1 · Pr
x←{0,1}n

(x ∈ GA,δ) +
1 + δ

2
· 1

Since Prx ,r←{0,1}n(A(f (x), r) = ⟨x , r⟩) ≥ 1
2 + δ, we get our desired

result.
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Lemma 2

Lemma

Let X1,X2, . . . ,Xm′ be pairwise independent Bernoulli random
variables with parameter p. Define X :=

∑m′

i=1 Xi . Then

Pr
(
|X − E[X ]| ≥ m′δ

)
≤ 1

4m′δ2
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The Proof

Denote by µ the value of E[X ].
Note that

Var(X ) = E[(X − µ)2] = E[X 2 − 2µX + µ2]

= E[X 2]− 2µE[X ] + µ2

= E

 m′∑
i=1

X 2
i + 2

∑
1≤i<j≤m′

XiXj

− 2µE[X ] + µ2

=
m′∑
i=1

E[X 2
i ] + 2

∑
1≤i<j≤m′

E[XiXj ]− 2µ2 + µ2
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The Proof

Since Xi ,Xj are pairwise independent for i ̸= j ,
E[XiXj ] = E[Xi ]E[Xj ] = p2. Moreover, E[X 2

i ] = p. Consequently

Var(X ) =
m′∑
i=1

p + 2
∑

1≤i<j≤m′

p2 − µ2 = m′p(1− p)

where the last equality follows since µ = m′p.
The desired result then follows by invoking Chebyshev’s inequality
and noting that p(1− p) ≤ 1

4 for every p ∈ [0, 1].
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The Proof (Continued)

Now, let δ = 1
poly(n) > 0 be the advantage of our adversary A in

calculating the hardcore bit, ie:-
Prx ,r←{0,1}n(A(f (x), r) = ⟨x , r⟩) ≥ 1

2 + δ. Set

m := ⌈2n
δ2
⌉, k := 1 + ⌈log2(m)⌉. Uniformly choose k random

vectors t1, t2, . . . , tk from {0, 1}k . Now, let
S ⊆ {1, 2, . . . , k} =: [k] be any non-empty set. Then we define rS
as rS :=

∑
i∈S ti . This way we can generate 2k − 1 = m′ ≥ m

random vectors. Note that all the vectors rS are themselves
distributed uniformly in {0, 1}n since a linear combination of
uniform random vectors from {0, 1}n is itself a uniform random
vector 1.

1this can be seen through induction
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The Proof (Continued)

Note that for any two sets S1 ̸= S2, rS1 , rS2 are independent.
Consequently, all our m′ random vectors are pairwise independent.
Now assume we already know the correct values of ⟨x , ti ⟩ for every
i ∈ [k]. Then we know the values ⟨x , rS⟩ for every S ⊆ [k], since
⟨x , rS⟩ = ⟨x ,

∑
i∈S ti ⟩ =

∑
i∈S⟨x , ti ⟩.

Let ei be the i th unit vector of {0, 1}n. For any S ⊆ [k], since rS
are uniformly random, we get that rS ⊕ ei is uniformly random too.
Moreover, note that ⟨x , rS ⊕ ei ⟩ − ⟨x , rS⟩ = ⟨x , ei ⟩ = xi .
Consequently, for every S ⊆ [k], calculate the value of
A(f (x), rS ⊕ ei )− ⟨x , rS⟩, where A is the adversary calculating the
hardcore bit, obtain m′ votes for the value of xi , and take the
majority vote of these values 2.

2since m′ = 2k − 1 is an odd number, a tie is not possible
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The Proof (Continued)

Let ξS be the Bernoulli random variable denoting the probability
distribution of A(f (x), rS ⊕ ei ) correctly calculating ⟨x , rS ⊕ ei ⟩. If
x ∈ GA,δ, then the parameter of ξS is at least 1+δ

2 , by the
definition given in the first lemma.
Consequently, the expected number of correct answers in the m′

votes for the value of xi is at least
m′(1+δ)

2 , and thus if the majority
vote turns up the wrong answer, that implies a deviation from the
mean of more than m′δ

2 . By the second lemma, the probability of
this happening is at most 1

m′δ2
≤ 1

mδ2
≤ 1

2n .
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The Proof (Continued)

Consequently, the probability that any bit is calculated wrongly is
at most 1

2n , which implies, by the union bound, that the probability
that x is determined wrongly is at most 1

2n · n = 1
2 . Note that x is

simply determined by a concatenation of the bits xi for i ∈ [n].
Consequently, we managed to invert f (x) with probability
≥ 1

2 · Pr(x ∈ GA,δ) ≥ δ
4 . However since δ is not negligible, neither

is δ
4 , which implies that with non-negligible probability we can

invert f (x), violating the assumption that it was a one-way
function.
Hence proved, contradiction!
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The Proof: A small catch

We assumed that we know ⟨x , ti ⟩ for every i ∈ [n]. But obviously,
that is not true a priori. We deal with this as follows: We run the
aforementioned algorithm for all 2k = m′ + 1 = poly(n) possible
values of (⟨x , ti ⟩)i∈[k]. Every time, we end up with a possible value
of x , whose correctness we test for by checking if applying f (x) is
the correct answer. Since we know that for the correct values of
(⟨x , ti ⟩)i∈[k], we obtain the correct value of x with probability at

least 1
2 , we can consequently conclude that we will get the correct

answer with probability at least 1
2 by the end of all the 2k

iterations.
The above step blows up our runtime by 2k , but since 2k is
polynomial in n, our algorithm remains polynomial time, and thus
our overall construction of a PPT adversary continues to hold.

Arpon Basu and Hastyn Doshi CS406 Project 15 / 19



Applications

The most immediate and useful applications of this theorem is to
construct pseudo-random generators (PRGs): Indeed, let
f : {0, 1}n 7→ {0, 1}n be a one-way permutation. Then
g(x , r) = f (x)||r ||⟨x , r⟩ is a pseudo-random generator 3. Indeed,
through this construction, the Goldreich-Levin theorem lays the
foundation for constructing a large class of PRGs.

3this can be proved through the equivalence of the definitions of
pseudo-randomness and next-bit unpredictability
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Applications

Theorem

If f is a one-way permutation, then

gN(x , r) := r ||⟨f N(x), r⟩||⟨f (N−1)(x), r⟩|| . . . ||⟨f (x), r⟩||⟨x , r⟩

is a PRG for any N ∼ poly(n), and f k denotes the k-fold
composition of f .
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The Proof

We know that pseudorandomness is equivalent to a next-bit
prediction by Yao’s theorem.
Now assume for the sake of contradiction that g is not a PRG:
Then there would exist i ∈ [N] and a PPT adversary A such that

Pr
(
A(r ||⟨f N(x), r⟩||⟨f N−1(x), r⟩|| . . . ||⟨f i+1(x), r⟩) = ⟨f i (x), r⟩

)
=

1

2
+ε

We describe a PPT adversary B such that given (f (z), r), B tells
us the value of ⟨z , r⟩ with non-negligible probability, thus violating
the Goldreich-Levin theorem.
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The Proof

B chooses an i ∈ [N] randomly. Consider x ∈ {0, 1}n such that
f i (x) = z 4. Note that for ℓ ≥ 1, B can efficiently calculate
f i+ℓ(x) = f ℓ−1(f (z)). Consequently, B can, in polynomial time,
generate the string r ||⟨f N(x), r⟩||⟨f N−1(x), r⟩|| . . . ||⟨f i+1(x), r⟩ on
it’s own and feed it to A as an input, which would then return to
B the value of ⟨z , r⟩ with non-negligible probability, allowing B to
violate the Goldreich-Levin theorem.

4Such a x must necessarily exist since the composition of two permutations
is also a permutation, and consequently every element in our co-domain has a
(unique) pre-image
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