Exercises in Galois Theory

Arpon Basu

April 22, 2024

1 Basic Algebra

Exercise 1.1. Show that $p(X) := X^3 - nX + 2$ is irreducible over \mathbb{Q} for $n \neq -1, 3, 5$.

Proof. Since *p* is a primitive polynomial, by Gauss's lemma it is enough to prove that *p* is irreducible on $\mathbb{Z}[X]$ to show it is irreducible on $\mathbb{Q}[X]$.

If *p* is irreducible, it must either factor into a quadratic and a linear polynomial, or three linear polynomials. In either case, it must have a rational root.

By the rational root theorem, if a/b is a root of p, then $a \mid 2$, and $b \mid 1$. Consequently, $\pm 1, \pm 2$ can be the only rational roots of p. Substituting these 4 values into p yield n = -1, 3, 5, and thus if $n \neq -1, 3, 5$, then p is irreducible over \mathbb{Q} .

Exercise 1.2. Let G be a p-group, i.e. $|G| = p^n$ for some prime p. Then G admits a normal series decomposition, i.e.

 $G = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_0 = 1$

where G_{i+1} is a normal subgroup of G_i , and $|G_i| = p^{n-i}$.

Proof. We build inductively. Thus, suppose G_k is a normal subgroup of G of order p^k , k < n. It is clear that G_0 exists. Now, G/G_k is a p-group, and thus by standard class theory arguments, $Z(G/G_k) \neq 1$. Thus, by Cauchy's theorem, there exists $v \in Z(G/G_k)$ such that ord(v) = p. Consider the subgroup $H := \langle v \rangle \subseteq Z(G/G_k)$. Since H is a subgroup of $Z(G/G_k)$, H is a normal subgroup of G/G_k . Now, by the third isomorphism theorem, if K is a group and N is a normal subgroup of K, then the normal subgroups of K and K/N correspond through the projection epimorphism $\pi : K \mapsto K/N$ (i.e. all the normal subgroups of K/N may be obtained by projecting the normal subgroups of K).

Thus, the pullback of $H \subseteq G/G_k$ into G is a normal subgroup of G. But the pullback of H into G has size = $|H| \cdot |G_k| = p \cdot p^k = p^{k+1}$, as desired.

2 Field Extensions

Exercise 2.1. Calculate the minimal polynomial of $\sqrt[4]{-2}$ over $\mathbb{Q}(\sqrt[4]{2})$.

Proof. Note that the minimal polynomial of $\sqrt[4]{-2}$ over \mathbb{Q} is $X^4 + 2$. Consequently, it's minimal polynomial over $\mathbb{Q}(\sqrt[4]{2})$ must be a divisor of $X^4 + 2$. Now, consider the factorization of $X^4 + 2$ over $\mathbb{Q}(\sqrt[4]{2})$:

$$X^4 + 2 = (X^2 - 2^{3/4}X + \sqrt{2})(X^2 + 2^{3/4}X + \sqrt{2})$$

 $\sqrt[4]{-2}$ satisfies the first polynomial. Since $\sqrt[4]{-2} \notin \mathbb{Q}(\sqrt[4]{2})$, the minimal polynomial is of degree ≥ 2 , and consequently, $X^2 - 2^{3/4}X + \sqrt{2}$ is the desired polynomial.

Exercise 2.2. Show that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .

Proof. It is enough to show that $\sqrt{2}$, $\sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Indeed, $(\sqrt{2}+\sqrt{3})^2 = 5+2\sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, and thus $\sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, and consequently, $5-2\sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. However, $5-2\sqrt{6} = (\sqrt{3}-\sqrt{2})^2 = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, and consequently $\sqrt{3}-\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, which yields that $\sqrt{2}$, $\sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, as desired.

If we substitute $X = \sqrt{2} + \sqrt{3}$, then $X^2 = 5 + 2\sqrt{6}$, and thus $(X^2 - 5)^2 = 24 \implies X^4 - 10X^2 + 1 = 0$. Now,

$$X^{4} - 10X^{2} + 1 = (X - (\sqrt{2} + \sqrt{3}))(X - (-\sqrt{2} + \sqrt{3}))(X - (\sqrt{2} - \sqrt{3}))(X - (-\sqrt{2} - \sqrt{3}))$$

Clearly, no linear polynomial in $\mathbb{Q}[X]$ divides $X^4 - 10X^2 + 1$, so if at all $X^4 - 10X^2 + 1$ factorizes over \mathbb{Q} , it must split into 2 quadratic polynomials. However, by checking all 6 combinations of two numbers $\alpha, \beta \in \{\pm\sqrt{2} \pm \sqrt{3}\}$, we see that either $\alpha + \beta \notin \mathbb{Q}$, or $\alpha\beta \notin \mathbb{Q}$.

Consequently, $X^4 - 10X^2 + 1$ is irreducible over \mathbb{Q} , and thus is the minimal polynomial of $\sqrt{2} + \sqrt{3}$.

Aliter. Note that $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})]$. Since $\sqrt{3}$ satisfies $X^2 - 3$, we have $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] \le 2$. Since $\sqrt{3} \notin \mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}], [\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] \neq 1$. Thus $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 2$, as desired.

Exercise 2.3. Prove that $X^n - 2$ is irreducible over \mathbb{Q} for $n \ge 2$. Conclude that $[\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$. Deduce that $\overline{\mathbb{Q}}/\mathbb{Q}$, \mathbb{R}/\mathbb{Q} aren't finite extensions.

Proof. The irreducibility follows from Eisenstein's criterion.

Exercise 2.4. Let *F* be a finite field. Prove that $|F| = p^n$ for some prime *p*.

Proof. Consider the ring homomorphism $\phi : \mathbb{Z} \mapsto F$, i.e. $\phi(1) = 1$. Now, ker(ϕ) $\subseteq \mathbb{Z}$ can't be (0), because otherwise ϕ would be injective, which isn't possible, since \mathbb{Z} is infinite, and F is finite. Thus ker(ϕ) = (p) (since the only non-trivial ideals of \mathbb{Z} are (p) for primes p).

Then, by the first isomorphism theorem, we have an injection $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$. Now, we claim that *F* is a $\mathbb{Z}/p\mathbb{Z}$ -vector space: Indeed, (F, +, 0) is an abelian group (since *F* is a field). Furthermore, for any $\overline{m} \in \mathbb{Z}/p\mathbb{Z}$, $x \in F$, define $\overline{m} \cdot x := mx$. Then it is easy to verify the axioms of a vector space (see this).

Exercise 2.5. Suppose α is such that deg_{*F*}(α) is odd. Prove that $F(\alpha) = F(\alpha^2)$.

Proof. Note that $F(\alpha) = F[\alpha]$. Furthermore, if deg_{*F*}(α) = *n*, then 1, α , ..., α^{n-1} form a basis of $F(\alpha)$ (as a *F*-vector space). Since *n* is odd, {(2*k*) mod *n* : $0 \le k \le n-1$ } = {*k* : $0 \le k \le n-1$ }, and thus we're done.

Exercise 2.6. Let *F* be a field of characteristic $\neq 2$. Let $a, b \in F$, where *b* is not a perfect square in *F*. Prove that $\sqrt{a} + \sqrt{b}$ can be expressed as $\sqrt{m} + \sqrt{n}$, with $m, n \in F$, if and only if $a^2 - b$ is a square in *F*.

Proof. If $\sqrt{a} + \sqrt{b} = \sqrt{m} + \sqrt{n}$, then $a + \sqrt{b} = m + n + 2\sqrt{mn}$. Now, $\sqrt{mn} \notin F$, since otherwise we would have $\sqrt{b} \in F$. Now, the degree of $a + \sqrt{b}$ over F is 2 (it can't be 1, and $a + \sqrt{b}$ satisfies $X^2 - 2aX + (a^2 - b) \in F[X]$). Similarly, $m + n + 2\sqrt{mn}$ also has degree 2 over F. Since $a + \sqrt{b} = m + n + 2\sqrt{mn}$, they must have the same minimal polynomial. Now, the other root of the minimal polynomial of $m + n + 2\sqrt{mn}$ is $m + n - 2\sqrt{mn}$, which must necessarily equal $a - \sqrt{b}$. Thus $a \pm \sqrt{b} = m + n \pm 2\sqrt{mn}$ (the signs correspond), and thus $\sqrt{b} = 2\sqrt{mn}$. Consequently we have b = 4mn, a = m + n.

Conversely, if $a^2 - b$ is a square, then by setting $m = (a + \sqrt{a^2 - b})/2$, $n = (a - \sqrt{a^2 - b})/2$, and doing some algebra we see $\sqrt{a + \sqrt{b}} = \sqrt{m} + \sqrt{n}$.

Exercise 2.7. Let E/k, F/k be finite field extensions, with both E, F being contained in some larger field. Show that:

- 1. $[EF:k] \le [E:k][F:k].$
- 2. If [E:k], [F:k] are relatively prime, then [EF:k] = [E:k][F:k].
- 3. Does [EF:k] divide the product [E:k][F:k]?

Proof. The proofs are as follows:

- 1. Let $\{e_1, \ldots, e_n\}$ be a basis of *E* as a *k*-vector space, and let $\{f_1, \ldots, f_m\}$ be a basis of *F* as a *k*-vector space. Since $\{e_i\}_{i \in [n]}, \{f_j\}_{j \in [m]}$ are algebraic, $k(e_i, f_j)$ is a finite (and hence algebraic) extension of *k*, consequently, since $e_if_j \in k(e_i, f_j), e_if_j$ is algebraic over *k* too. Thus, $k(\{e_if_j\}_{i \in [n], j \in [m]})$ is a finite (and hence algebraic) extension of *k*. Now, note that every element of *EF* can be written as $\sum_r \varepsilon_r \phi_r / \sum_s \varepsilon'_s \phi'_s$, where the ε 's belong to *E*, and the ϕ 's belong to *F*. But $\varepsilon_r \phi_r, \varepsilon'_s \phi'_s$ can be written as a linear combination of $\{e_if_j\}$, and thus $EF \subseteq k(\{e_if_j\}_{i \in [n], j \in [m]})$. But note that $k(\{e_if_j\}_{i \in [n], j \in [m]}) = k[\{e_if_j\}_{i \in [n], j \in [m]}]$, and $\dim_k(k[\{e_if_j\}_{i \in [n], j \in [m]}]) \leq mn = \dim_k(E) \dim_k(F)$, and thus $\dim_k(EF) \leq \dim_k(E) \dim_k(F)$.
- 2. Note that [EF : k] = [EF : E][E : k], and thus [E : k] | [EF : k]. Similarly, [F : k] | [EF : k]. Since [E : k], [F : k] are co-prime, [E : k][F : k] | [EF : k]. However, $[EF : k] \le [E : k][F : k]$, and thus we're done.
- 3. No. Let $k = \mathbb{Q}, E = \mathbb{Q}(\sqrt[3]{2}), F = \mathbb{Q}(\sqrt[3]{2}\omega)$, where both *E* and *F* are embedded naturally in \mathbb{C} . Then $EF = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Now, the minimal polynomial of ω over \mathbb{Q} is $X^2 + X + 1$. Thus $[EF : \mathbb{Q}] = [EF : \mathbb{Q}(\sqrt[3]{2})] \cdot [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3[EF : \mathbb{Q}(\sqrt[3]{2})]$. Once again, $[EF : \mathbb{Q}(\sqrt[3]{2})] \le 2$, and it can't be 1 since $\omega \notin \mathbb{Q}(\sqrt[3]{2})$. Thus [EF : k] = 6, while $[E : k] \cdot [F : k] = 9$, and 6 doesn't divide 9.

Exercise 2.8. Let α , β be algebraic over F, such that the degrees of α , β are relatively co-prime. Let g(X) be the minimal polynomial of β over F. Then g(X) remains irreducible even in $F(\alpha)[X]$.

Proof. Let $G = F(\alpha, \beta)$. Then $[F(\alpha) : F] | [G : F] \implies \deg_F(\alpha) | [G : F]$. Similarly, $\deg_F(\beta) | [G : F]$. Since the degrees are relatively co-prime, $\deg_F(\alpha) \cdot \deg_F(\beta) | [G : F]$. Since $[G : F] = [F(\alpha, \beta) : F(\alpha)] \cdot \deg_F(\alpha)$, we have $\deg_{F(\alpha)}(\beta) = [F(\alpha, \beta) : F(\alpha)] \ge \deg_F(\beta) \ge \deg_{F(\alpha)}(\beta)$. Thus $\deg_F(\beta) = \deg_{F(\alpha)}(\beta)$, and consequently, g(X) is irreducible over $F(\alpha)[X]$ too.

Exercise 2.9. Show that there are no (non-identity) ring homomorphisms from \mathbb{R} to itself. Conclude that \mathbb{R} is not a finite extension of any proper subfield.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be a ring homomorphism. By standard Cauchy equation analysis, $f|_{\mathbb{Q}} = \text{id.}$ Now, if $x \ge 0$, then $f(x) = f(\sqrt{x})^2 \ge 0$, thus, for any $a \le b$, we have $f(a) \le f(b)$, since f(b - a) = f(b) - f(a). Now, let $x \in \mathbb{R}$ be any real number. Let $\{q_n\}_{n \in \mathbb{N}}$ be a sequence of rationals converging to x from below, and let $\{r_n\}_{n \in \mathbb{N}}$ be a sequence of rationals converging to x from above. We know that $f(x - q_n) \ge 0 \implies f(x) \ge q_n$. Similarly, $f(x) \le r_n$. Thus $q_n \le f(x) \le r_n$, and applying the squeeze theorem yields f(x) = x.

Exercise 2.10. Produce a field k and an embedding $k \hookrightarrow k$ such that the extension k/k is infinite.

Proof. Let *F* be an arbitrary field, and let $k = F(x_1, x_2, ...)$. Consider the embedding $k \hookrightarrow k$ induced by $x_i \mapsto x_{i+1}$ for all $i \in \mathbb{N}$. This extension is infinite, and in fact transcendental.

Exercise 2.11. Produce fields k_1, k_2, k_3, k_4 such that $k_1 \cong k_2, k_3 \cong k_4$, yet the extensions k_1/k_3 and k_2/k_4 aren't isomorphic.

Proof. Take $k_1 = k_2 = k_3 = k(x)$, and $k_4 = k(x^2)$. k_3 is isomorphic to k_4 , as is demonstrated by the embedding induced by $x \mapsto x^2$. However, k_1/k_3 is an extension of degree 1, while k_2/k_4 (where the embedding is the natural inclusion) is an extension of degree 2.

Exercise 2.12. Explain the following apparent paradox: $k(x) \approx k(x^2)$, yet $1 - x^2t^2$ is irreducible in $k(x^2)[t]$, while $1 - x^2t^2 = (1 - xt)(1 + xt)$ is not irreducible in k(x)[t].

Proof. k(x) and $k(x^2)$ are isomorphic, but the natural embedding $k(x^2) \hookrightarrow k(x)$ is *not* an isomorphism; consequently, there is no paradox. Indeed, if one takes the image of the polynomial under the map induced by $x \mapsto x^2$, then one gets $1 - x^4t^2 = (1 - x^2t)(1 + x^2t)$, which is obviously not irreducible (and factorizes in the same way $1 - x^2t^2$ factorizes in k(x)[t]).

Exercise 2.13. *Given any* $n \in \mathbb{N}$ *, produce a field extension of degree n.*

Proof. The field extension $k(x^{1/n})/k(x)$, where the embedding is the natural inclusion, has degree *n*. Note that $k(x^{1/n}) := k(x)[t]/(t^n - x)$.

Exercise 2.14. Let *k* be an infinite field. If E/k is an algebraic extension, then the cardinality of *E* equals the cardinality of *k*. Conclude that \mathbb{R} is not algebraic over \mathbb{Q} .

Proof. By the embedding theorem, any algebraic E embeds in \overline{k} , so it suffices to show $|\overline{k}| = |k|$ (because we have $|k| \le |E| \le |\overline{k}|$). To do that, we shall construct a surjection $\phi : (k[X] - k) \times \mathbb{N} \mapsto \overline{k}$. For any $p \in k[X] - k$, let $\alpha_0, \ldots, \alpha_{n-1}$ (the ordering is arbitrary) be the roots of p in \overline{k} . Define $\phi(p, m) := \alpha_{m \mod n}$. This is surjective, because \overline{k} is algebraic over k, and thus for every $\alpha \in \overline{k}$, there is some $p \in k[X] - k$ such that $p(\alpha) = 0$. Thus $|(k[X] - k) \times \mathbb{N}| \ge |\overline{k}| \ge |k|$. But $|(k[X] - k) \times \mathbb{N}| = |k[X] - k| = |k|$, as desired.

Remark. *A few remarks are in order:*

- 1. Cardinal arithmetic: If A, B are infinite sets, then $|A \times B| = \max\{|A|, |B|\}$.
- 2. $|\overline{k}| = |k|$ for infinite fields k.

Exercise 2.15. If [E : F] = p (*p* is a prime), then $E = F(\alpha)$ for any $\alpha \in E \setminus F$.

Proof. $[F(\alpha) : F]$ must divide p. It can't be 1, since $\alpha \notin F$. Thus $[F(\alpha) : F] = p$, implying $E = F(\alpha)$.

Exercise 2.16. Let *E*/*F* be an extension. This extension is algebraic if and only if every subring of E containing F is a field.

Proof. Suppose E/F is algebraic. Let $K \supseteq F$ be a subring, and let $\alpha \in K \setminus F$. Let $g(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ be the minimal polynomial of α over F. Since g(X) is irreducible, $a_0 \neq 0$. But note that

$$\alpha^{-1} = (-a_0)^{-1}(\alpha^{n-1} + a_{n-1}\alpha^{n-1} + \dots + a_1) \in F[\alpha] \subseteq K$$

Thus, if $\alpha \in K$, then $\alpha^{-1} \in K$, and thus, *K* is a field.

Conversely, suppose E/F is not algebraic. Then we have some $t \in E$ which is transcendental over F. Then note that F[t] is a ring containing F, but F[t] is not a field since $t^{-1} \notin F[t]$.

Exercise 2.17. Let k be a field, and let $\alpha = p(X)/q(X)$ be an element of E := k(X), where $p(X), q(X) \in k[X] - k$, p(X), q(X) are co-prime. Show that $E/k(\alpha)$ is a finite extension, with $[E : k(\alpha)] = \max(\deg(p), \deg(q))$.

Proof. Consider the polynomial $f(T) := p(T) - \alpha q(T) \in k(\alpha)[T]$. Note that f(X) = 0, and thus $X \in E$ is algebraic over $k(\alpha)$, with degree at most deg $(f) = \max(\deg(p), \deg(q))$. Since *E* is generated by *X* over *k* (and hence $k(\alpha)$), $[E : k(\alpha)] \leq \deg(f)$. Consequently, if we can show that *f* is irreducible in $k(\alpha)[T]$, then *f* would be the minimal polynomial of *X*, and we would have $[E : k(\alpha)] = \deg(f) = \max(\deg(p), \deg(q))$.

Now, by Gauss's lemma, to show that *f* is irreducible in $k(\alpha)[T]$, it is enough to show that it is irreducible in $k[\alpha][T] \cong k[T][\alpha]$. But note that α is a prime element in $k[T][\alpha]$, and consequently, by Eisenstein's criterion applied on *f* with the prime α , we get that it is irreducible.

Exercise 2.18. Let E = F(x), where x is transcendental over F. Let K be a subfield of E containing F such that $K \neq F$. Then x is algebraic over K.

Proof. Direct corollary of Exercise 2.17.

Exercise 2.19. *Prove that every element is a sum of two squares in* \mathbb{F}_{p} *.*

Proof. Note that $\#\{x^2 : x \in \mathbb{F}_p\} = (p+1)/2$. Indeed, the group $(\mathbb{F}_p^{\times}, \cdot, 1)$ has (p-1)/2 squares, since it is cyclic (and hence exactly the even powers of the generator are squares), and 0 is also a square. Thus, given any $x \in \mathbb{F}_p$, consider the set $\{x - y^2 : y \in \mathbb{F}_p\}$. This set also has size (p+1)/2. Consequently, by the pigeonhole principle, the sets $\{x - y^2 : y \in \mathbb{F}_p\}$ and $\{z^2 : z \in \mathbb{F}_p\}$ intersect, i.e. $x - y_0^2 = z_0^2$ for some $y_0, z_0 \in \mathbb{F}_p$. But that means $x = y_0^2 + z_0^2$, as desired.

Exercise 2.20. A field is called formally real if -1 is not a sum of squares in it. Let k be a formally real field. Let K/k be an odd extension. Prove that K is formally real.

Proof. Note that char(k) = 0, because positive characteristics contain \mathbb{F}_p , and -1 is a sum of squares in \mathbb{F}_p . Thus K/k is a finite separable extension, and hence simple. Thus, let $K = k(\alpha)$. We induct on $deg_k(\alpha)$. The base case is trivial. Assume for the sake of contradiction that -1 is a sum of squares in K. Then

$$-1 = \sum_{i} p_i(\alpha)^2 \implies 1 + \sum_{i} p_i(\alpha)^2 = 0$$

where p_i 's are polynomials such that $\deg(p_i) < \deg_k(\alpha)$. Define

$$p(X) := 1 + \sum_{i} p_i(X)^2$$

Denote the minimal polynomial of α over k as f(X). Since α is a root of p, f(X) | p(X). Denote q(X) := p(X)/f(X). Now, note that $\deg(p) \leq 2(\deg_k(\alpha) - 1)$, and thus $\deg(q) \leq \deg_k(\alpha) - 2$. We also claim that the degree of p is even: Indeed, let the highest degree of any of the p_i 's be m, and suppose p_{i_1}, \ldots, p_{i_r} have degree m. Then the coefficient of X^{2m} is $c_{i_1}^2 + \cdots + c_{i_r}^2$, where c_{i_*} is the coefficient of X^m in p_{i_*} . However, since k is formally real, $c_{i_1}^2 + \cdots + c_{i_r}^2 \neq 0$ since $c_{i_*} \neq 0$. Thus, $\deg(q)$ is an odd number which is at most $\deg_k(\alpha) - 2$. Consequently, factorizing q over k, we get that q must have an irreducible divisor of odd degree. Let β be a root of that divisor. Then $k(\beta)$ is formally real by the induction hypothesis,

an irreducible divisor of odd degree. Let β be a root of that divisor. Then $k(\beta)$ is formally real by the induction hypothesis, and β is a root of p. But then p expresses -1 as a sum of squares in $k(\beta)$, which is a contradiction.

Remark: If
$$c_1^2 + \cdots + c_r^2 = 0$$
 for some $c_1, \ldots, c_r \in \mathbb{F} \setminus \{0\}$, then $(c_1/c_r)^2 + \cdots + (c_{r-1}/c_r)^2 = -1$.

3 Splitting Fields and Normal Extensions

Exercise 3.1. Find the splitting fields of the following polynomials over \mathbb{Q} : $X^4 - 2$, $X^4 + 2$, $X^4 + X^2 + 1$, $X^6 - 4$, $X^6 + X^3 + 1$.

Proof. The splitting fields are as follows:

- 1. $X^4 2$: $\mathbb{Q}(\sqrt[4]{2}, i)$: $\mathbb{Q}[= 8$: Indeed, adjoining $\sqrt[4]{2}$ to \mathbb{Q} makes the degree 4. *i* doesn't belong to it, because *i* is non-real. Thus adjoining *i* doubles the degree.
- 2. $X^4 + 2$: $\mathbb{Q}(\sqrt[4]{2}, i)$.
- 3. $X^4 + X^2 + 1$: $\mathbb{Q}(i\sqrt{3}), [\mathbb{Q}(i\sqrt{3}) : \mathbb{Q}] = 2$.
- 4. $X^6 4$: $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}), [\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}] = 6.$
- 5. $X^6 + X^3 + 1$: $\mathbb{Q}(\zeta)$, where $\zeta = e^{2i\pi/9}$. $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 9$.

Exercise 3.2. Let $\alpha = 5^{1/4}$. Prove that:

- 1. $\mathbb{Q}(i\alpha^2)$ is normal over \mathbb{Q} .
- 2. $\mathbb{Q}((1+i)\alpha)$ is normal over $\mathbb{Q}(i\alpha^2)$.
- 3. $\mathbb{Q}((1+i)\alpha)$ is not normal over \mathbb{Q} .

Proof. The proofs are as follows:

- 1. $\mathbb{Q}(i\alpha^2) = \mathbb{Q}(i\sqrt{5})$ is the splitting field of $X^2 + 5$ over \mathbb{Q} .
- 2. Note that $\beta := (1 + i)\alpha = \sqrt{2} \cdot \sqrt[4]{-5}$. Thus $\beta^2 = 2i\sqrt{5} = 2i\alpha^2$, and thus $\mathbb{Q}(\beta)$ is the splitting field of $X^2 2i\alpha^2$ over $\mathbb{Q}(i\alpha^2)$.
- 3. $X^4 + 20$ has $(1 + i)\alpha$ as its root; however, $(1 i)\alpha$ is also a root of $X^4 + 20$, yet $(1 i)\alpha \notin \mathbb{Q}((1 + i)\alpha)$. Since $X^4 + 20$ is irreducible over \mathbb{Q} , $\mathbb{Q}((1 + i)\alpha)$ is not normal over \mathbb{Q} . To see how $(1 i)\alpha \notin \mathbb{Q}((1 + i)\alpha)$, note that if $(1 i)\alpha$ were in $\mathbb{Q}((1 + i)\alpha)$, then we would have $i, \alpha \in \mathbb{Q}((1 + i)\alpha)$, implying that $\mathbb{Q}(i, \alpha) \subseteq \mathbb{Q}((1 + i)\alpha)$. However, $[\mathbb{Q}(i, \alpha) : \mathbb{Q}] = 8$, while $[\mathbb{Q}((1 + i)\alpha) : \mathbb{Q}] = 4$.

Exercise 3.3. Let $f \in k[X]$ be a polynomial of degree d. Let L be the splitting field of f over k. Then [L:k] divides d!.

Proof. We proceed by induction. d = 1 is easy to verify. So assume the statement is true for all d < n. Thus, assume deg(f) = n. Now, we make cases:

1. Suppose *f* is irreducible over *k*. Let $\alpha \in L$ be a root of *f*. Then $f(X) = (X - \alpha)g(X)$, with deg(*g*) = *n* - 1.

Exercise 3.4. Find the splitting field of $X^{p^n} - 1$ over \mathbb{F}_p .

Proof. Note that $(X - 1)^{p^n} = X^{p^n} + (-1)^{p^n}$ over \mathbb{F}_p . If p is odd, $(-1)^{p^n} = -1$, in which case the splitting field is \mathbb{F}_p itself. If p = 2, $(-1)^{p^n} = 1$, but we also have -1 = 1, so once again the splitting field is $\mathbb{F}_p = \mathbb{F}_2$. Thus the splitting field of $X^{p^n} - 1$ over \mathbb{F}_p is \mathbb{F}_p , for all primes p, and all $n \ge 1$.

Exercise 3.5. Prove that for any prime p and any $n \ge 1$, we have a finite field of order p^n . Furthermore, all finite fields of order p^n are \mathbb{F}_p -isomorphic to each other.

Proof. We shall prove that the splitting field of $X^{p^n} - X$ over \mathbb{F}_p is a finite field of order p^n .

Firstly, note that the splitting field of $X^{p^n} - X$ over \mathbb{F}_p must be finite since the splitting field can be obtained by adjoining the finitely many roots of $X^{p^n} - X$ (in $\overline{\mathbb{F}}_p$) to \mathbb{F}_p . Furthermore, by taking formal derivatives, we can see that all roots of $X^{p^n} - X$ are distinct.

Now, also note that the roots of $X^{p^n} - X$ form a field: Indeed, if α, β are roots, then $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n} = \alpha + \beta$. Furthermore, $(\alpha\beta)^{p^n} = (\alpha^{p^n})(\beta^{p^n}) = \alpha\beta$, and if $\alpha \neq 0$, then $(\alpha^{-1})^{p^n} = (\alpha^{p^n})^{-1} = \alpha^{-1}$. Finally, for any α , $(-\alpha)^{p^n} = (-1)^{p^n} \alpha$. If p is odd, then we obtain that $-\alpha$ is also a root of the polynomial $X^{p^n} - X$. If p = 2, then $-\alpha = \alpha$. Thus, for any α (which is a root of $X^{p^n} - X$), $-\alpha$ is also a root of $X^{p^n} - X$. Thus the roots of $X^{p^n} - X$ form a field, and furthermore, this field contains \mathbb{F}_p . Thus, this field is the splitting field of

Thus the roots of $X^{p^n} - X$ form a field, and furthermore, this field contains \mathbb{F}_p . Thus, this field is the splitting field of $X^{p^n} - X$ over \mathbb{F}_p . It is clear that this field contains exactly p^n elements. Furthermore, all splitting fields are \mathbb{F}_p -isomorphic to each other.

Exercise 3.6. *Prove that every finite extension of a finite field is normal.*

Proof. Let K/F be a field extension, with |K| = q. Then all elements of K satisfy the equation $X^q = X$, and thus K is the splitting field of F w.r.t the polynomial $X^q - X \in F[X]$.

Exercise 3.7. Prove that every algebraic extension of a finite field is normal.

Proof. Let K/F be a field extension, where F is finite. Suppose $f \in F[X]$ has a root $\alpha \in K$. Since α is algebraic over F, $F(\alpha)/F$ is a finite extension and hence is a normal extension by the above exercise. Since f has a root in $F(\alpha)$, and since $F(\alpha)/F$ is normal, f splits completely over $F(\alpha)$, and hence K. Thus K/F is normal.

Exercise 3.8. Let K/k be a normal extension, and let $f(X) \in k[X]$ be irreducible over k, such that f(X) = g(X)h(X) over K, where $g(X), h(X) \in K[X]$ are irreducible over K. Prove that there exists an k-automorphism σ of K such that $h = \sigma(g)$. State a counterexample to this assertion when K/k is not normal.

Proof. Let *F* be the splitting field of *f* over *k*. Let α be a root of *g* in *F*, and let β be a root of *h* in *F*. Note that we can choose $\beta \neq \alpha$: Indeed, all roots of *g* and *h* are distinct, since if *g* and *h* had any common root, they would have a non-trivial gcd over *F* (and hence *K*), contradicting their irreducibility over *K*. Now, since α , β are both roots of the irreducible polynomial *f* over *k*, there exists an *k*-embedding $\tau : k(\alpha) \mapsto k(\beta)$ sending α to β . Now, consider the following diagram:

Let ι be the inclusion $k(\beta) \hookrightarrow \overline{k}$, and consider the map $k(\alpha) \xrightarrow{\iota \circ \tau} \overline{k}$. Since \overline{k} is algebraic over $k(\alpha)$, and since \overline{k} is algebraically closed, there exists a $k(\alpha)$ -embedding σ from \overline{k} to \overline{k} such that $\sigma|_{k(\alpha)} = \iota \circ \tau$. Furthermore, $\sigma(K) = K$ since K is normal

over *k*, and thus $\sigma|_K$ is a *k*-automorphism. Consequently, $\sigma(g)$ is also a polynomial in *K*[*X*], and furthermore, $\sigma(g)$ has $\sigma(\alpha) = \beta$ as a root. On the other hand, since σ is a *k*-automorphism and since $f \in k[X]$, $\sigma(f) = f$. Thus, $\sigma(g)$ is an irreducible (over *K*) factor of *f* having β as a root. Since *h* is the only irreducible factor of *f* having β as a root, $\sigma(g) = h$, as desired.

For a counterexample, consider $K = \mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} , and let $f(X) = X^3 - 2 \in \mathbb{Q}[X]$. Then $f(X) = (X - \sqrt[3]{2})(X^2 + \sqrt[3]{2} \cdot X + \sqrt[3]{4})$ over K. Both $(X - \sqrt[3]{2})$ and $(X^2 + \sqrt[3]{2} \cdot X + \sqrt[3]{4})$ are irreducible over K, but they are obviously not images of each other through some automorphism.

4 Separable Extensions

Exercise 4.1. Let char(k) = p. Let $f(X) \in k[X]$ be an irreducible polynomial. Then f is not separable iff $f(X) = g(X^p)$ for some $g(X) \in k[X]$. Consequently, for any irreducible polynomial $f(X) \in k[X]$, $f(X) = h(X^{p^n})$ for some separable irreducible polynomial $h(X) \in k[X]$ and $n \ge 0$.

Proof. If f(X) is not separable, then f(X) has repeated roots, and thus there is some $\alpha \in \overline{k}$ such that $f(\alpha) = f'(\alpha) = 0$. Now, if $f' \neq 0$, then f, f' have a non-trivial gcd over \overline{k} and hence k (recall that gcd is a field invariant entity), which is not possible since f is irreducible. Thus f' = 0. But f' can be 0 only when the only non-zero coefficients of f are associated with powers of X^p , i.e. $f(X) = g(X^p)$.

Conversely, if $f(X) = g(X^p)$, then f' = 0, i.e. all roots of f are identical. Since f is irreducible over k, deg(f) > 1, and consequently, f is not separable over k.

Remark. If f is an irreducible polynomial over K (where K is an arbitrary field) with $f'(X) \neq 0$, then all roots of f(X) (over K) are distinct. Indeed, $X - \alpha$ divides f(X), f'(X), where $\alpha \in \overline{K}$, then f(X), f'(X) would have a non-trivial gcd in \overline{K} . But the gcd of two polynomials is the same regardless of the field, so the gcd of f, f' would be non-trivial even over K. But f(X) is irreducible over K, and can only have a non-trivial gcd with polynomials p for which f divides p. However, $\deg(f') < \deg(f)$, and thus f can't divide f'.

Exercise 4.2. Let char(K) = p > 0. Then:

- 1. Let L/K be a finite field extension, and let char(K) = p. Prove that L is a separable extension if [L : K] is relatively prime to p.
- 2. Prove that a has a p^{th} root in k iff X^{p^n} a is not irreducible over k for any $n \in \mathbb{N}$.
- 3. Let $\alpha \in \overline{k}$. α is separable over k iff $k(\alpha) = k(\alpha^{p^n})$ for all $n \in \mathbb{N}$.
- 4. *k* is perfect iff every element of *k* has a *p*th root in *k*, i.e. $k = k^p$, where $k^p := \{x^p : x \in k\}$ is the image of *k* under the Frobenius map. Recall that a field *k* is said to be perfect if \overline{k}/k is separable.

Proof. The proofs are as follows:

- 1. Write n := [L : K], and let $\alpha \in L$. Then $\deg_K(\alpha) \mid n$, and thus $\deg_K(\alpha)$ is relatively prime to p. Consequently, if $f(X) = X^d + \cdots$ is the minimal polynomial of α over K, then $f'(X) = dX^{d-1} + \cdots \neq 0$. Since $f'(X) \neq 0$, f(X) and f'(X) are co-prime, and consequently, all roots of f are distinct.
- 2. Let $\alpha_n \in \overline{k}$ be such that $\alpha_n^{p^n} = a$. Then $X^{p^n} a = (X \alpha_n)^{p^n}$, i.e. $X^{p^n} a$ has exactly one root in \overline{k} . Now, if $a = b^p$ for some $b \in k$, then $X^{p^n} - a = (X^{p^{n-1}} - b)^p$, and thus $X^{p^n} - a$ is not irreducible over k for any $n \in \mathbb{N}$. Conversely, suppose $f(X) := X^{p^n} - a$ is not irreducible over k. Let g(X) be the minimal polynomial of α_n over k,

and let $f(X) = g(X)^m h(X)$, where $g(X) \nmid h(X)$. Since g(X) is the minimal polynomial, $m \ge 1$. However, note that the only root f has is α_n , and consequently, the only root h has is α_n . However, any polynomial over k[X] which has α_n as a root must be divisible by g(X), which is a contradiction, and thus $f(X) = g(X)^m$. Comparing degrees leads to $m = p^{n-u}$, deg $(g) = p^u$ for some $u \le n - 1$. Note that $u \ne n$ since f is not irreducible. Also note that $g(X) = (X - \alpha_n)^{p^u} = X^{p^u} - \alpha_n^{p^u}$, and thus $\alpha_n^{p^u} \in k$, since $g(X) \in k[X]$. Set $b := (\alpha_n^{p^u})^{p^{n-1-u}} = \alpha^{p^{n-1}} \in k$. Clearly, $b^p = a$, as desired.

3. Let *f* be the minimal polynomial of α over *k*.

Suppose α is not separable, i.e. f is not separable. Then by Exercise 4.1, $f(X) = g(X^p)$ for some irreducible polynomial $g(X) \in k[X]$, and consequently, $\deg_k(\alpha^p) = \deg_k(\alpha)/p$, which implies that $\deg_k(\alpha^p) \neq \deg_k(\alpha)$. But then $k(\alpha^p) \neq k(\alpha)$, since $[k(\alpha^p) : k] = \deg_k(\alpha^p) \neq \deg_k(\alpha) = [k(\alpha) : k]$.

Conversely, suppose α is separable. Let $r(X) \in k(\alpha^{p^n})[X]$ be the minimal polynomial of α over $k(\alpha^{p^n})$. Now, note that α satisfies $X^{p^n} - \alpha^{p^n} \in k(\alpha^{p^n})[X]$, and consequently, $r(X) | X^{p^n} - \alpha^{p^n}$. But note that $X^{p^n} - \alpha^{p^n}$ has a single root in \overline{k} , and consequently, r also has a single root in \overline{k} . Furthermore, since α is separable over k, it is also separable over $k(\alpha^{p^n})$. Consequently, the degree of r must be 1. But that implies that $\alpha \in k(\alpha^{p^n})$, which implies $k(\alpha^{p^n}) = k(\alpha)$, as desired.

4. Suppose k is perfect. For any $a \in k$, consider the polynomial $f(X) := X^p - a \in k[X]$. Note that f(X) has the unique root $a^{1/p} \in \overline{k}$, and thus if $a^{1/p} \notin k$, then the algebraic extension $k(a^{1/p})/k$ wouldn't be separable, leading to a contradiction.

Conversely, suppose every element of k has a p^{th} root. Let $f(X) \in k[X]$ be an irreducible polynomial that is not separable. Then $f(X) = g(X^p)$ for some polynomial $g \in k[X]$. But

$$f(X) = g(X^p) = \sum a_i (X^p)^i = \left(\sum a_i^{1/p} X^i\right)^p$$

This contradicts the fact that f was irreducible over k.

Remark: By the *p*th root condition, it is easy to see that if *F* is a characteristic *p* field, then the largest perfect subfield of *F* is $\bigcap_{i=0}^{\infty} F^{p^i}$.

Exercise 4.3. Let k be a field of characteristic p. Let $\alpha \in \overline{k}$ be separable, and let $\alpha_1, \ldots, \alpha_d$ be the conjugates of α , i.e. $\alpha_1, \ldots, \alpha_d$ are the roots of the minimal polynomial of α over k. Prove that $\alpha_1^{p^n}, \ldots, \alpha_d^{p^n}$ are the conjugates of α^{p^n} .

Proof. Let $f(X) = \sum_{i=0}^{d} a_i X^i \in k[X]$ be the minimal polynomial of α over k (note that $a_d = 1$). Then f(X) has $\alpha_1, \ldots, \alpha_d$ as its roots. Now, we claim that

$$g(X) = \sum_{i=0}^{d} a_i^{p^n} X^i$$

has $\alpha_1^{p^n}$, $\alpha_2^{p^n}$, . . . , $\alpha_d^{p^n}$ as its roots. Indeed,

$$(-1)^{d-i}\frac{a_i}{a_d} = \sum_{S \in \binom{[n]}{d-i}} \prod_{j \in S} \alpha_j$$

Thus,

$$\sum_{S \in \binom{[n]}{d-i}} \prod_{j \in S} \alpha_j^{p^n} = \left(\sum_{S \in \binom{[n]}{d-i}} \prod_{j \in S} \alpha_j \right)^{p^n} = ((-1)^{p^n})^{d-i} \frac{a_i^{p^n}}{a_d^{p^n}}$$

For odd p, $(-1)^{p^n} = -1$. For p = 2, -1 = 1. In either case, we're done. Consequently, $\deg_k(\alpha^{p^n}) \le d$. At the same time, since α is separable, $k(\alpha) = k(\alpha^{p^n})$, which means $d = \deg_k(\alpha) = \deg_k(\alpha^{p^n})$, and consequently g(X) is the minimal polynomial of α^{p^n} . But that means that the conjugates of α^{p^n} are $\alpha_1^{p^n}, \ldots, \alpha_d^{p^n}$, as desired.

Exercise 4.4. f is irreducible over k. $h(X) = f(X^{p^n})$ has a root β which is separable over k. Show that $h(X) = f_1(X)^{p^n}$ for some $f_1(X) \in k[X]$.

Proof. Let β_1, \ldots, β_r be the conjugates of β . By the previous exercise, $\beta_1^{p^n}, \ldots, \beta_r^{p^n}$ are the conjugates of β^{p^n} . Consequently,

$$\operatorname{irr}(\beta^{p^n}, k) = \prod_{i=1}^r (X - \beta_i^{p^n})$$

Then

$$h(X) = f(X^{p^n}) = \prod_{i=1}^r (X^{p^n} - \beta_i^{p^n}) = \left(\prod_{i=1}^r (X - \beta_i)\right)^{p^n} = \operatorname{irr}(\beta, k)^{p^n}$$

Exercise 4.5. Consider the field extension $k(X, Y)/k(X^p, Y^p)$, where char(k) = p. Prove that:

- 1. The degree of the extension is p^2 .
- 2. There are infinitely many intermediate fields between $k(X^p, Y^p)$ and k(X, Y). Consequently, by the Primitive Element Theorem, k(X, Y) is not simple over $k(X^p, Y^p)$.

Proof. Note that $k(X^p, Y^p) \subset k(X, Y^p) \subset k(X, Y)$. The degree of both the extensions is p, and thus the total degree is p^2 . Indeed, $[k(X, Y) : k(X, Y^p)] = p$: Indeed, Y is a root of $T^p - Y^p \in k(X, Y^p)[T]$. By Gauss's lemma, it is enough to show the irreducibility of $T^p - Y^p \in k[X, Y^p][T]$. But note that Y^p is a prime element in $k[X, Y^p]$, and consequently, by Eisenstein's criterion, $T^p - Y^p$ is irreducible. The proof of the fact $[k(X, Y^p) : k(X^p, Y^p)] = p$ follows similarly. We claim that $\{F(X + zY) : z \in F\}$ are all distinct intermediate fields, where $F := k(X^p, Y^p)$. Indeed, if $F(X + z_1Y) = p$

 $F(X + z_2Y)$ (for $z_1 \neq z_2$), then $X + z_1Y \in F(X + z_2Y)$, which implies $Y \in F(X + z_1Y)$, which implies $X \in F(X + z_1Y)$, which implies $F(X + z_1Y) = k(X, Y)$. However, that can't be the case since $[F(X + z_1Y) : F] = p$, while $[k(X, Y) : F] = p^2$. To see why $[F(X + z_1Y) : F] = p$, note that $(X + z_1Y)^p = X^p + z_1^p Y^p \in F$, and thus $\deg_F(X + z_1Y) \mid p$, implying $\deg_F(X + z_1Y) = 1, p$. But $\deg_F(X + z_1Y) \neq 1$, since that would imply $X + z_1Y \in F$, which can't be the case: Indeed, if

$$X + z_1 Y = X + Y \cdot \frac{h(X,Y)}{\ell(X,Y)} = \frac{f(X,Y)}{g(X,Y)} \implies Xg(X,Y)\ell(X,Y) + Yh(X,Y)g(X,Y) = f(X,Y)\ell(X,Y)$$

Note that the degree of all terms on the RHS is divisible by p, while the LHS contains terms whose degrees are not divisible by p, leading to a contradiction.

Exercise 4.6. Let
$$k = \mathbb{F}_p(X, Y)$$
, and consider $h(T) := T^{p^2} + XT^p + Y \in k[T]$. Let β be a root of h in \overline{k} . Prove that:

- 1. β is not separable over k.
- 2. $[k(\beta) : k]_i = p$.
- 3. Let $E = k^{\text{insep}} \cap k(\beta)$. Then E = k.
- 4. One can not decompose the extension $k(\beta)/k$ into a separable and a purely inseparable extension.

Proof. Note that h(T) is irreducible: Indeed, it suffices to show its irreducibility in $\mathbb{F}_p[X, Y][T] \cong \mathbb{F}_p[X, T][Y]$, but h is a linear polynomial in $\mathbb{F}_p[X, T][Y]$, and hence irreducible. Since h is irreducible and monic, it is the minimal polynomial of β over k. Furthermore, h'(T) = 0. Thus, since $h(\beta) = h'(\beta) = 0$, β is not separable over k. Furthermore, $[k(\beta) : k] = p^2$. Now, note that β^p is a root of $g(T) := T^p + XT + Y \in k[T]$, and furthermore, $g'(T) \neq 0$. Consequently, β^p is separable. Now, we claim that $k^{\text{sep}} \cap k(\beta) = k(\beta^p)$, i.e. the separable closure of k inside $k(\beta)$ equals $k(\beta^p)$. Indeed, note that $[k^{\text{sep}} \cap k(\beta) : k] = 1, p, p^2$, since $[k(\beta) : k] = p^2$. However, since β is not separable over k, $k(\beta)$ is not separable over k, and thus $[k^{\text{sep}} \cap k(\beta) : k] = 1, p$. At the same time, β^p is separable over k, and $\beta^p \notin k$ (since g is irreducible, and hence the minimal polynomial of β^p over k). Consequently, $[k^{\text{sep}} \cap k(\beta) : k] = p$, and thus $[k(\beta) : k]_s = p$, implying that $[k(\beta) : k]_i = p$.

Since $[k(\beta) : k]_s = p > 1$, $E \subsetneq k(\beta)$, and thus [E : k] = 1, p. Suppose [E : k] = p, and let $r := irr(\beta, E)$. Then $deg(r) = [k(\beta) : E] = p$. Now, since $[E : k]_i = [E : k] = p$, $e^p \in k$ for all $e \in E$. Consequently, $r(T)^p \in k[T]$. Furthermore, $r(\beta)^p = 0$, and $deg(r^p) = p^2$. Consequently, $r(T)^p = h(T)$. Now, if

$$r(T) := T^p + r_{p-1}T^{p-1} + \dots + r_1T + r_0 \implies h(T) = r(T^p) = T^{p^2} + r_{p-1}^p T^{p(p-1)} + \dots + r_1^p T^p + r_0^p$$

Thus $r_0^p = Y$, $r_1^p = X$, and thus $X^{1/p}$, $Y^{1/p} \in E$, implying that $\mathbb{F}_p(X^{1/p}, Y^{1/p}) \subseteq E$. But by Exercise 4.5, $[\mathbb{F}_p(X^{1/p}, Y^{1/p}) : \mathbb{F}_p(X, Y)] = p^2$, which contradicts the fact that [E : k] = p. Thus [E : k] = 1, i.e. E = k. Suppose $k(\beta)/k$ could be decomposed into $k(\beta)/F$, F/k, where $k(\beta)/F$ was separable, and F/k was purely inseparable.

Suppose $k(\beta)/k$ could be decomposed into $k(\beta)/F$, F/k, where $k(\beta)/F$ was separable, and F/k was purely inseparable. Since F/k is purely inseparable, $F \subseteq k^{\text{insep}} \cap k(\beta) = E = k$, and thus F = k. But $k(\beta)/F = k(\beta)/k$ is not separable.

Exercise 4.7. Let k be a field and let K/k be an algebraic extension such that every non-constant polynomial in k has a root in K. Then K is algebraically closed.

Proof. Fix an algebraic closure \overline{k} , and WLOG assume $K \subseteq \overline{k}$. We will show that $K = \overline{k}$. It suffices to show that for every $\beta \in \overline{k}$, we have $\beta \in K$. Now, let β_1, \ldots, β_n be the conjugates of β , and let $F := k(\beta_1, \ldots, \beta_n)$ be the splitting field of irr (β, k) in \overline{k} . Since F/k is normal, we have $F = F_1F_2$, where $F_1 := k^{\text{insep}} \cap F$, $F_2 := k^{\text{sep}} \cap F$. Consequently, it suffices to show that $F_1 \subseteq K$, $F_2 \subseteq K$. We now proceed case by case:

- 1. $F_1 \subset K$ is obvious: Indeed, if $\alpha \in F_1$, then $irr(\alpha, k) \in k[X]$ has α as a unique root in \overline{k} , which must belong to K by the problem hypothesis.
- 2. $F_2 \subset K$: Note that F_2/k is a finite separable field extension, and thus is simple by the primitive element theorem. Thus, let $F_2 = k(\gamma)$ for some $\gamma \in \overline{k}$. Now, if $\gamma_1, \ldots, \gamma_r$ are the conjugates of γ , then we claim that $k(\gamma_i) = k(\gamma)$: Indeed, note that F_2 is normal, and hence $\gamma_i \in F = k(\gamma) \implies k(\gamma_i) \subseteq k(\gamma)$. However, since γ_i is a conjugate of γ , $[k(\gamma_i) : k] = [k(\gamma) : k]$, and thus $k(\gamma_i) = k(\gamma)$. Now, consider $\operatorname{irr}(\gamma, k) \in k[X]$. By the problem hypothesis, some root of this polynomial must lie in K, i.e. $\gamma_i \in K$ for some i, i.e. $k(\gamma_i) \subset K \iff F_2 \subset K$, as desired.

Exercise 4.8. Prove that for every $a \in \mathbb{F}_p^{\times}$, $f(X) := X^p - X + a$ is irreducible over \mathbb{F}_p , and hence separable.

Proof. Let $\alpha \in \overline{\mathbb{F}}_p$ be a root of f(X). Then note that $\alpha + b$, where $b \in \mathbb{F}_p$, is also a root of f, since $b^p = b$. Now suppose f(X) = g(X)h(X) for some $g \in \mathbb{F}_p[X]$, where $\deg(g) < p$. Then the roots of g are of the form $\alpha + b_1, \alpha + b_2, \ldots, \alpha + b_{\deg(g)}$. These roots sum up to $\alpha \cdot \deg(g) + b$ for some $b \in \mathbb{F}_p$, and since $g(X) \in \mathbb{F}_p[X]$, $\alpha \cdot \deg(g) + b \in \mathbb{F}_p$, implying that $\alpha \in \mathbb{F}_p$, since $\deg(g) < p$ is non-zero. But for any $x \in \mathbb{F}_p$, $x^p - x + a = a \neq 0$, which leads to a contradiction.

Exercise 4.9. *Prove the following statements:*

- 1. $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$ iff $d \mid n$.
- 2. Let q be a prime power, and let $f(X) \in \mathbb{F}_q[X]$ be an irreducible polynomial of degree d. Then $d \mid n$ iff $f(X) \mid (X^{q^n} X)$.
- 3. Let I_d be the set of all monic irreducible polynomials of degree d over \mathbb{F}_q . Then

$$X^{q^n} - X = \prod_{d|n} \prod_{f \in I_d} f(X)$$

4. Given any $n \in \mathbb{N}$ and prime power q, there is a degree n irreducible polynomial over \mathbb{F}_q .

Proof. The proofs are as follows:

1. Let α generate $\mathbb{F}_{p^d}^{\times}$, and β generate $\mathbb{F}_{p^n}^{\times}$. The order of α is $p^d - 1$, while the order of β is $p^n - 1$. Now, write $n = d\ell + k$, where $0 \le k < d$. Then $p^d - 1$ divides $p^{d\ell} - 1$, and hence $p^n - p^k$.

Now, suppose $d \nmid n$, and $(p^d - 1) \mid (p^n - 1)$. Then $(p^d - 1) \mid (p^k - 1)$, which is a contradiction since 0 < k < n. But this also means that $\mathbb{F}_{p^d} \not\subset \mathbb{F}_{p^n}$, since if $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$, then α would have been a power of β , and the order of β would be divisible by the order of α .

Conversely, suppose $d \mid n$. Then $(p^d - 1) \mid (p^n - 1)$, and consequently, $X^{p^n-1} - 1 = (X^{p^d-1})^t - 1$, where $t := (p^n - 1)/(p^d - 1)$. But $X^{p^d-1} - 1$ divides $(X^{p^d-1})^t - 1$, and consequently, all roots of $X^{p^d-1} - 1$ can be found in \mathbb{F}_{p^n} , which is the set of roots of $X^{p^n-1} - 1$. But we also know that the roots of $X^{p^d-1} - 1$ form a field isomorphic to \mathbb{F}_{p^d} , and thus we can take the roots of $X^{p^d-1} - 1$ to form a copy of \mathbb{F}_{p^d} within \mathbb{F}_{p^n} .

- 2. Let *E* be the splitting field of *f* over \mathbb{F}_q . Note that $f(X) \mid (X^{q^n} X)$ is equivalent to $E \subset \mathbb{F}_{q^n}$ ¹. Now, let α be some root of *f*, and consider the field $\mathbb{F}_q(\alpha)$. Since $\mathbb{F}_q(\alpha)$ is an algebraic extension of \mathbb{F}_q , it is normal (we use Exercise 3.7 to conclude this). Since α is the root of an irreducible polynomial *f*, $\mathbb{F}_q(\alpha)$ contains all roots of *f*, and thus $\mathbb{F}_q(\alpha) \supseteq E$. At the same time, $E \supseteq \mathbb{F}_q(\alpha)$, since *E* contains all roots of *f*. Thus $E = \mathbb{F}_q(\alpha)$, and $[E : \mathbb{F}_q] = \deg_{\mathbb{F}_q}(\alpha) = \deg(f) = d$. Now, if $E \subset \mathbb{F}_{q^n}$, then $[E : \mathbb{F}_q] \mid [\mathbb{F}_{q^n} : \mathbb{F}_q] = n$, and consequently, $d \mid n$. Conversely, assume $d \mid n$. As above, $[E : \mathbb{F}_q] = d$, and thus *E* is \mathbb{F}_q -isomorphic to \mathbb{F}_{q^d} . Since $d \mid n$, $\mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^n}$, and consequently, $E \subseteq \mathbb{F}_{q^n}$, as desired.
- 3. Note that for any *d* | *n*, and any *f* ∈ *I_d*, *f*(*X*) | *X^{qⁿ}* − *X*. Furthermore, since all polynomials in the *I_d*'s are irreducible over 𝔽_q, they are co-prime. Consequently, the product of all polynomials in *I_d* for all *d* | *n* must divide *X^{qⁿ}* − *X*. Now, every element in 𝔽_{qⁿ} is algebraic over 𝔽_q, and hence has a minimal polynomial over 𝔽_q. Furthermore, the degree of the minimal polynomial must divide *n*, since [𝔽_{qⁿ} : 𝔽_q] = *n*. Thus, *X^{qⁿ}* − *X*, which equals ∏_{*α*∈𝔽_{qⁿ}(*X* − *α*), must divide ∏_{*d*|*n*} ∏_{*f*∈*I_d} <i>f*(*X*), as can be seen by splitting both polynomials over 𝔽_q. Consequently, *X^{qⁿ}* − *X* = γ ∏_{*d*|*n*} ∏_{*f*∈*I_d} <i>f*(*X*) for some γ ∈ 𝔽_q. But note that all polynomials in *I_{*}* are monic, and hence γ = 1.}</sub></sub>

¹WLOG assume both *E* and \mathbb{F}_{q^n} to be subsets of $\overline{\mathbb{F}}_q$

4. Let $\ell(d) := d \cdot |I_d|$. Then $q^n = \sum_{d|n} \ell(d)$, which, by the Möbius inversion formula, implies that

1

$$\ell(n) = \sum_{d|n} \mu(n/d)q^d = q^n + \sum_{\substack{d|n \\ d \neq n}} \mu(n/d)q^d$$

But

$$\left| \sum_{\substack{d \mid n \\ d \neq n}} \mu(n/d) q^d \right| \le \sum_{\substack{d \mid n \\ d \neq n}} q^d \le \sum_{d=1}^{n-1} q^d = \frac{q^n - 1}{q - 1} < q^n$$

Consequently, $\ell(n) > 0$ for any $n \in \mathbb{N}$, as desired. Furthermore, since $\ell(n) = n \cdot |I_n|, \ell(n) \ge n$.

Remark: The above proofs were first given by Gauss.

Exercise 4.10. Let char(k) = p > 0. A polynomial $f(X) \in k[X]$ is called a p-polynomial if it is of the form:

$$f(X) = a_m X^{p^m} + a_{m-1} X^{p^{m-1}} + \dots + a_1 X^p + a_0 X$$

Let F be the splitting field of f, and let A be the set of roots of f in F. Prove that f is a p-polynomial if and only if $(A, +_F, 0_F)$ is an abelian group and all roots have the same multiplicity p^e .

Proof. Note that

$$f(X) = a_m X^{p^m} + a_{m-1} X^{p^{m-1}} + \dots + a_e X^{p^e} = a_m \left(X^{p^e} \right)^{p^{m-e}} + a_{m-1} \left(X^{p^e} \right)^{p^{m-1-e}} + \dots + a_e X^{p^e} = g(X^{p^e})$$

where g is also a p-polynomial. Furthermore, $g'(X) = a_e \neq 0$, and thus g is separable, and consequently, all roots of f have the same multiplicity p^e . Furthermore, if r, s are roots of f, then for any $x, y \in \mathbb{F}_p$,

$$f(xr + ys) = \sum_{i=0}^{\infty} a_i (xr + ys)^{p^i} = \sum_{i=0}^{\infty} a_i (x^{p^i} r^{p^i} + y^{p^i} s^{p^i}) = \sum_{i=0}^{\infty} a_i (xr^{p^i} + ys^{p^i}) = xf(r) + yf(s) = 0$$

Consequently, the roots of f actually form a \mathbb{F}_p -vector space, which is obviously an abelian group.

Conversely, let A be a subgroup of the additive group of some field of characteristic p. Note that the order of every element of *A* is *p*, and thus by the structure theorem for abelian groups, $A \cong (\mathbb{Z}/p\mathbb{Z})^t \cong \mathbb{F}_p^t$ for some *t*, and thus *A* is a \mathbb{F}_p -vector space. We now induct on t. For t = 1, the roots are $0, \alpha, \dots, (p-1)\alpha$ for some α . Note that $X^p - \alpha^{p-1}X$ has $k\alpha$ as roots for $0 \le k < p$, and thus

$$\prod_{k=0}^{p-1} (X - k\alpha) = X^p - \alpha^{p-1} X$$

Clearly, $X^p - a^{p-1}X$ is a *p*-polynomial. Now, suppose the statement is true up to $t = \ell - 1$, and we want to prove it for $t = \ell$. Thus, let $\alpha_1, \alpha_2, \ldots, \alpha_\ell$ be the generators of *A*, and let h(X) be the *p*-polynomial with roots in the subspace generated by $\alpha_1,\ldots,\alpha_{\ell-1}$. Now,

$$\prod_{k_1=0}^{p-1} \cdots \prod_{k_\ell=0}^{p-1} \left(X - \sum_{i=1}^{\ell} k_i \alpha_i \right) = \prod_{k_\ell=0}^{p-1} \prod_{k_1=0}^{p-1} \cdots \prod_{k_{\ell-1}=0}^{p-1} \left((X - k_\ell \alpha_\ell) - \sum_{i=1}^{\ell-1} k_i \alpha_i \right) = \prod_{k_\ell=0}^{p-1} h(X - k_\ell \alpha_\ell) = \prod_{k_\ell=0}^{p-1} (h(X) - k_\ell h(\alpha_\ell))$$

 $= h(X)^p - h(\alpha_\ell)^{p-1} h(X)$

Since h(X) is a *p*-polynomial, $h(X)^p - h(\alpha_\ell)^{p-1}h(X)$ is also a *p*-polynomial. Finally, if all roots have multiplicity p^e , our *p*-polynomial gets raised to power p^e . But raising a *p*-polynomial to power p^e gives another *p*-polynomial, so we're done.

5 Galois Theory

Exercise 5.1. Calculate the Galois groups of the following polynomials:

- 1. $f(X) := X^3 X t$ over $\mathbb{C}(t)$.
- 2. $f(X) := X^3 + t^2 X t^3$ over $\mathbb{C}(t)$.
- 3. $f(X) := X^n t$ over $\mathbb{C}(t)$.
- 4. $f(X) := (X^2 p_1) \cdots (X^2 p_n)$ over \mathbb{Q} , where p_1, \ldots, p_n are distinct prime numbers.
- 5. $f(X) := X^p 2$ over \mathbb{Q} , where $p \ge 3$ is a prime.

Proof. The groups are as follows:

- 1. We first check the irreducibility of the polynomial over $\mathbb{C}(t)[X]$. By Gauss lemma, it is equivalent to checking irreducibility over $\mathbb{C}[t][X] \cong \mathbb{C}[X,t]$. But f is linear and monic over $\mathbb{C}[X,t]$, and hence irreducible. Now, the discriminant of f is $4 27t^2$. We claim that $4 27t^2$ is not a square in $\mathbb{C}(t)$. Indeed, if $p, q \in \mathbb{C}[t]$ (gcd(p, q) = 1) are such that $p^2/q^2 = 4 27t^2$, then $q^2 \mid p^2$, which can't be, since gcd(p, q) = 1, and thus q is constant. WLOG q is 1, and thus $p^2 = 4 27t^2$. Thus p is a linear polynomial, which leads to a contradiction on comparing coefficients. Thus the Galois group of f is \mathfrak{S}_3 .
- 2. Put X = ct to obtain $t^3(c^3 + c 1) = 0$, and thus $f(X) = (X \lambda_1 t)(X \lambda_2 t)(X \lambda_3 t)$, where $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ are the roots of $c^3 + c 1 = 0$. Thus f splits completely over $\mathbb{C}(t)$, and thus the Galois group is 0.
- 3. The splitting field of f is $\mathbb{C}(t^{1/n})$. Now, if $\sigma \in \text{Gal}(\mathbb{C}(t^{1/n})/\mathbb{C}(t)) =: G$, then $\sigma(t^{1/n}) = t^{1/n} \zeta_n^{k_{\sigma}}$, where ζ_n is the n^{th} root of unity. Thus consider the map $G \mapsto \mathbb{Z}/n\mathbb{Z}$, $\sigma \mapsto k_{\sigma}$. This map is easily verified to be a group homomorphism, and it is injective since if $k_{\sigma} = 0$, then $\sigma = \text{id}$. But $|G| = [\mathbb{C}(t^{1/n}) : \mathbb{C}(t)] = n$ (since $X^n t$ is irreducible over $\mathbb{C}(t)[X]$), and thus the map is surjective, and hence an isomorphism. Thus $\text{Gal}(\mathbb{C}(t^{1/n})/\mathbb{C}(t)) \cong \mathbb{Z}/n\mathbb{Z}$.
- 4. Let K/F be a finite Galois extension, and let $\alpha \in K$. Then $\operatorname{tr}_{K/F}(\alpha) := \sum_{\sigma \in \operatorname{Gal}(K/F)} \sigma(\alpha)$. Note that tr is *F*-linear. Now, suppose *F* is a characteristic 0 field, and let $d \in F \setminus F^2$ be such that $\sqrt{d} \in K$. Then $\operatorname{tr}_{K/F}(\sqrt{d}) = 0$: Indeed, consider $\sigma \in \operatorname{Gal}(K/F)$. Then $\sigma(\sqrt{d}) = \pm \sqrt{d}$. Furthermore, $\sigma(\sqrt{d}) = \sqrt{d}$ if and only if $\sigma \in \operatorname{Gal}(K/F(\sqrt{d}))$. But $[K:F] = 2[K:F(\sqrt{d})]$, and thus exactly half of the automorphisms in $\operatorname{Gal}(K/F)$ map \sqrt{d} to \sqrt{d} , and the other half map it to $-\sqrt{d}$, and thus the trace is 0, as desired.

We now claim that $[E(\sqrt{p_{i+1}}) : E] = 2$, where $E := \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_i}) = \mathbb{Q}[\sqrt{p_1}, \dots, \sqrt{p_i}]$. To show this, it is enough to show that $\sqrt{p_{i+1}} \notin E$. AFTSOC it is. Now, a typical element of *E* looks like $\sum_{S \subseteq [i]} a_S \sqrt{d_S}$, $d_S := \prod_{j \in S} p_j$. Note that $\sqrt{d_S} \notin \mathbb{Q}$ if $S \neq \emptyset$. Thus,

$$\sqrt{p_{i+1}} = \sum_{S \subseteq [i]} a_S \sqrt{d_S} \implies \operatorname{tr}_{E(\sqrt{p_{i+1}})/E}(\sqrt{p_{i+1}}) = \sum_{S \subseteq [i]} a_S \operatorname{tr}_{E(\sqrt{p_{i+1}})/E}(\sqrt{d_S}) \implies 0 = a_\emptyset$$

Now,

$$p_{i+1} = \sum_{S \neq \emptyset} a_S \sqrt{d_S p_{i+1}} \implies \operatorname{tr}_{E(\sqrt{p_{i+1}})/E}(p_{i+1}) = \sum_{S \subseteq [i]} a_S \operatorname{tr}_{E(\sqrt{p_{i+1}})/E}(\sqrt{d_S p_{i+1}}) \implies p_{i+1} \cdot |\operatorname{Gal}(E(\sqrt{p_{i+1}})/E)| = 0$$

which leads to a contradiction.

Thus, the desired Galois group (say *G*) has order 2^{*n*}. Now, let $\sigma \in G$. Then $\sigma(\sqrt{p_i}) = \pm \sqrt{p_i}$ for all *i*, and thus $\sigma^2 = id$. Thus *G* is a group where every element has order 2. Then by standard group theory, *G* is abelian. Thus, by structure theorem, *G* is isomorphic to the product of cyclic groups. Now, if the size of any of those cyclic groups is > 2, then *G* would have an element of order > 2. Thus, $Gal(\mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$.

5. The splitting field of *f* is $E := \mathbb{Q}(\sqrt[n]{2}, \zeta_p)$. Now, consider the split short exact sequence:

$$1 \longrightarrow \operatorname{Gal}(E/\mathbb{Q}(\zeta_p)) \hookrightarrow \operatorname{Gal}(E/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \longrightarrow 1$$

where the splitting $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \to \operatorname{Gal}(E/\mathbb{Q})$ is just an inclusion (where $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is extended to *E* by setting $\sigma(\sqrt[4]{2}) = \sqrt[6]{2}$). Thus, $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(E/\mathbb{Q}(\zeta_p)) \rtimes \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p^{\times}$. Now, note that $\operatorname{Gal}(f)$ is non-abelian: Indeed, define $\sigma, \tau \in \operatorname{Gal}(f)$ as $\sigma(\zeta_p) = \zeta_p^2, \sigma(\sqrt[4]{2}) = \sqrt[6]{2}, \tau(\zeta_p) = \zeta_p, \tau(\sqrt[6]{2}) = \sqrt[6]{2}\zeta_p$, and note that $\sigma\tau(\sqrt[6]{2}) = \sqrt[6]{2}\zeta_p^2 \neq \sqrt[6]{2}\zeta_p = \tau\sigma(\sqrt[6]{2}) \Longrightarrow \sigma\tau \neq \tau\sigma$. We also claim that there is a unique non-abelian semi-direct product $\mathbb{Z}_p^{\times} \rtimes \mathbb{Z}_p$ (upto isomorphism): Indeed, non-abelian semi-direct products correspond to non-trivial homomorphisms $\mathbb{Z}_p^{\times} \to \operatorname{Aut}(\mathbb{Z}_p) \cong \mathbb{Z}_p^{\times}$. Let G_1 be the semi-direct product corresponding to $\varphi^{(1)} : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$, and G_2 be the semi-direct product corresponding to $\varphi^{(2)} : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$. Suppose $\varphi^{(1)} = x \mapsto x\alpha$ (where $\operatorname{gcd}(\alpha, p - 1) = 1$), where $x\alpha$ corresponds to the automorphism of \mathbb{Z}_p as $y \mapsto x\alpha \cdot y$. Similarly, let $\varphi^{(2)} = x \mapsto x\alpha'$. Then the isomorphism ψ of \mathbb{Z}_p^{\times} sending α to α' induces an isomorphism from G_1 to G_2 : Indeed,

$$\psi((a,b) \cdot_{G_1} (c,d)) = \psi((a\varphi_b^{(1)}(c),bd)) := (\psi(a)\psi(\varphi_b^{(1)}(c)),\psi(b)\psi(d))$$
$$(\psi(a),\psi(b)) \cdot_{G_2} (\psi(c),\psi(d)) = (\psi(a)\varphi_{\psi(b)}^{(2)}(\psi(c)),\psi(b)\psi(d))$$

Thus, if we verify $\psi(\varphi_b^{(1)}(c)) = \varphi_{\psi(b)}^{(2)}(\psi(c))$, we're done. But $\psi(\varphi_b^{(1)}(c)) = \psi(bc\alpha) = \psi(b)\psi(c)\alpha'$, $\varphi_{\psi(b)}^{(2)}(\psi(c)) = \psi(b)\alpha' \cdot \psi(c)$, as desired.

Note that in particular, the non-abelian semi-direct product can be given by the identity $\varphi : \mathbb{Z}_p^{\times} \longrightarrow \mathbb{Z}_p^{\times}$. Thus $\operatorname{Gal}(f) = \mathbb{Z}_p \rtimes_{\varphi} \mathbb{Z}_p^{\times}$, where $\varphi : \mathbb{Z}_p^{\times} \longrightarrow \operatorname{Aut}(\mathbb{Z}_p)$ is the identity homomorphism.

Exercise 5.2. Let $f(X) = X^4 + aX^2 + b \in \mathbb{Q}[X]$ be an irreducible quartic with roots $\pm \alpha, \pm \beta$, where $\alpha, \beta \in \mathbb{C} \setminus \{0\}$. Let *E* be the splitting field of *f*. Prove that:

- 1. $4 \le [E : \mathbb{Q}] \le 8$.
- 2. Gal $(f) = D_8, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 3. Gal $(f) = \mathbb{Z}/4\mathbb{Z}$ if $\alpha/\beta \beta/\alpha \in \mathbb{Q}$.
- 4. $\operatorname{Gal}(f) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ if $\alpha \beta \in \mathbb{Q}$.
- 5. $Gal(f) = D_8$ otherwise.

- *Proof.* 1. Since *f* is irreducible, $\mathbb{Q}[X]/(f(X))$ is a subfield of *E*, and thus $[E : \mathbb{Q}] \ge 4$. Moreover, since *f* is irreducible, $\operatorname{Gal}(f) \le \mathfrak{S}_4$. Now, if $\sigma \in \operatorname{Gal}(f)$, then $\sigma(-\alpha) = -\sigma(\alpha), \sigma(-\beta) = -\sigma(\beta)$. The only permutations in \mathfrak{S}_4 satisfying these conditions are $\mathcal{G} := \{\operatorname{id}, (\alpha, -\alpha), (\beta, -\beta), (\alpha, -\alpha) \cdot (\beta, -\beta), (\alpha, \beta) \cdot (-\alpha, -\beta), (\alpha, \beta, -\alpha, -\beta), (\alpha, -\beta, -\alpha, \beta), (\alpha, -\beta) \cdot (\beta, -\alpha)\}$. Note that $\mathcal{G} \cong D_8$ (since \mathcal{G} is a subgroup of \mathfrak{S}_4 of size 8, i.e. \mathcal{G} is a 2-Sylow subgroup of \mathfrak{S}_4), and thus $\operatorname{Gal}(f) \le D_8$, as desired.
 - 2. Since $\operatorname{Gal}(f) \leq D_8$, and $|\operatorname{Gal}(f)| \geq 4$, $|\operatorname{Gal}(f)| = 4, 8$. The only groups of order 4 are $\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and the only group of order 8 which is also a subgroup of D_8 is of course D_8 itself.
 - 3. Since $\alpha/\beta \beta/\alpha \in \mathbb{Q}$, $\sigma(\alpha)/\sigma(\beta) \sigma(\beta)/\sigma(\alpha) = \alpha/\beta \beta/\alpha$. The only permutations which do that are {id, $(\alpha, -\alpha) \cdot (\beta, -\beta), (\alpha, \beta, -\alpha, -\beta), (\alpha, -\beta, -\alpha, \beta)$ } =: *G*₁. Since $|\operatorname{Gal}(f)| \ge 4$, we must have $\operatorname{Gal}(f) = G_1$. Furthermore, note that $(\alpha, \beta, -\alpha, -\beta) \in G_1$ has order 4. Thus $G_1 \cong \mathbb{Z}/4\mathbb{Z}$.
 - 4. Since $\alpha\beta \in \mathbb{Q}$, $\sigma(\alpha\beta) = \alpha\beta$ for all $\sigma \in \text{Gal}(f)$. The only permutations which do that are $\{\text{id}, (\alpha, -\alpha) \cdot (\beta, -\beta), (\alpha, \beta) \cdot (-\alpha, -\beta), (\alpha, -\beta) \cdot (\beta, -\alpha)\} =: G_2$. Since $|\text{Gal}(f)| \ge 4$, we must have $\text{Gal}(f) = G_2$. Furthermore, note that every element in G_2 has order 2. Thus $G_2 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - 5. The only subgroups of \mathcal{G} of size 4 are G_1, G_2 , {id, $(\alpha, -\alpha) \cdot (\beta, -\beta), (\alpha, -\alpha), (\beta, -\beta)$ } =: G_3 . Note that $Gal(f) \neq G_1, G_2$, since they fix $\alpha/\beta \beta/\alpha$ and $\alpha\beta$ respectively. $Gal(f) \neq G_3$ either, since no element of G_3 takes α to β , and Gal(f) being the Galois group of an irreducible polynomial must act transitively on its roots. Consequently, $Gal(f) \cong D_8$.

Exercise 5.3. Let $f \in k[X]$ be an irreducible quartic such that $|\operatorname{Gal}(f)| = 8$. Then $\operatorname{Gal}(f) = D_8$.

Proof. Note that $Gal(f) \leq \mathfrak{S}_4$. A subgroup of \mathfrak{S}_4 of size 8 must be a 2-Sylow subgroup of \mathfrak{S}_4 . Now, note that all Sylow subgroups of the same cardinality are isomorphic to each other (since they are conjugate to each other), and the 2-Sylow subgroups of \mathfrak{S}_4 are isomorphic to D_8 , so we're done.

Exercise 5.4. Let p be a prime. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of degree p such that f has exactly two non-real roots. Then the Galois group of f is \mathfrak{S}_p .

Proof. Let E/\mathbb{Q} be the splitting field of f. Note that $\mathbb{Q}[X]/(f(X))$ is a subfield of E with degree p. Consequently, $p \mid [E:\mathbb{Q}] \implies p \mid |\operatorname{Gal}_{\mathbb{Q}}(f)|$. Thus, by Cauchy's theorem, there exists an element of order p in $\operatorname{Gal}_{\mathbb{Q}}(f)$.

Also note that since *f* has exactly two non-real roots, they must be conjugates of each other. Then the automorphism $\iota \mapsto -\iota$ of \mathbb{C} induces an order 2 automorphism of *E* over \mathbb{Q} , i.e. an automorphism which maps one non-real root to the other, and keeps all the real roots fixed. Thus, $\operatorname{Gal}_{\mathbb{Q}}(f)$ has an order 2 element. Furthermore, the order 2 element is actually a transposition, since it must map one non-real root to its conjugate (it is here that we use the fact that there are exactly two non-real roots: If there were more than two non-real roots, then the restriction of complex conjugation could have been a composition of > 1 transpositions).

Finally, also note that $\operatorname{Gal}_{\mathbb{Q}}(f) \leq \mathfrak{S}_p$. Now, since $\operatorname{Gal}_{\mathbb{Q}}(f)$ contains a *p*-cycle and a 2-cycle, it must actually be equal to \mathfrak{S}_p , as desired.

Remark: Recall from group theory that (12...n), (ab) generate \mathfrak{S}_n if and only if gcd(|a-b|, n) = 1. In particular, if p is prime, then a p-cycle and a 2-cycle generate \mathfrak{S}_p .

Exercise 5.5. Let E/k be a finite separable extension of degree p, where p is prime. Let $E = k(\theta)$, and let the conjugates of θ be $\theta = \theta_1, \ldots, \theta_p$. Suppose $\theta_2 \in k(\theta)$. Then E/k is Galois.

Proof. Let $L = k(\theta_1, ..., \theta_p)$ be the normal closure of θ over k. Note that $p \mid [L : k]$, and thus Gal(L/k) has an element σ of order p by Cauchy's theorem. Note that σ is a p-cycle over $\theta_1, ..., \theta_p$, i.e. σ is a cyclic permutation on $\theta_{r_1}, ..., \theta_{r_p}$. Choose t such that $\sigma^t(\theta_1) = \theta_2$. Replace σ by σ^t . Now, since $\theta_2 \in E$, and $deg_k(\theta_2) = p$. Thus $E = k(\theta_2)$. Now, $[\sigma(E) : k] = p$, and $\theta_2 \in \sigma(E)$, and thus $\sigma(E) = k(\theta_2) = E$. Similarly, $\theta_3 \in \sigma(E)$ (since $\theta_2 \in E$), implying $\theta_3 \in E$. Continuing, we get that E = L, as desired.

Exercise 5.6. Let $f(x) \in \mathbb{Q}[X]$ such that $\operatorname{Gal}_{\mathbb{Q}}(f) = \mathfrak{S}_n$, where $n = \operatorname{deg}(f) \ge 3$. Then:

- 1. f is irreducible.
- 2. Aut_Q($\mathbb{Q}(\alpha)$) = {id}.
- 3. $\alpha^n \notin \mathbb{Q}$ if $n \ge 4$.

Proof. The proofs are as follows:

- 1. Let $f(X) = f_1(X)^{n_1} \cdots f_r(X)^{n_r}$ be the decomposition of f into irreducible polynomials, where deg $(f_i) = d_i$. Note that the degree of the splitting field of f over \mathbb{Q} is at most $d_1!d_2! \cdots d_r!$, which is strictly less than n! unless r = 1, $n_r = 1$.
- 2. Let σ be a non-trivial \mathbb{Q} -automorphism of $\mathbb{Q}(\alpha)$. Then σ sends α to $\alpha_2 \neq \alpha$. Since $\alpha_2 \in \mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$, there exists $p(X) \in \mathbb{Q}[X]$ such that $\alpha_2 = p(\alpha)$. Now, pick any element τ in the Galois group of f such that $\tau(\alpha) = \alpha$. Then $\tau(\alpha_2) = \tau(p(\alpha)) = p(\tau(\alpha)) = \alpha_2$. But there are elements of \mathfrak{S}_n which fix α yet move α_2 , leading to a contradiction.
- 3. If $\alpha^n = q \in \mathbb{Q}$, then $p(\alpha) = 0$, where $p(X) := X^n q$. Since p is a monic polynomial of degree n, p is the minimal polynomial of α . Now, the splitting field of p is $\mathbb{Q}(q^{1/n}, \zeta_n)$. But $[\mathbb{Q}(q^{1/n}) : \mathbb{Q}] = n$ (since p is irreducible), and $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$, where $\phi(\cdot)$ is the Euler totient function. Thus $[\mathbb{Q}(q^{1/n}, \zeta_n) : \mathbb{Q}] \le n\phi(n) \le n(n-1) < n!$ for $n \ge 4$, which is a contradiction.

Exercise 5.7. Let $f(X) \in k[X]$ where $k \subseteq \mathbb{R}$. Suppose f is irreducible over k, and suppose f has a non-real root of absolute value 1. Then if $f(\alpha) = 0$, then $f(1/\alpha) = 0$. Furthermore, f is of even degree.

Proof. Suppose $f(\omega) = 1$, with $|\omega| = 1$. Then $f(\overline{\omega}) = 0$, since f has real coefficients. Suppose $f(\alpha) = 0$. Then there exists $\sigma \in \text{Gal}(f)$ such that $\sigma(\alpha) = \omega$. Also write $\beta := \sigma^{-1}(\overline{\omega})$. Then $\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta) = \omega \cdot \overline{\omega} = |\omega|^2 = 1$. Thus $\alpha\beta = 1$, i.e. $\beta = 1/\alpha$. Note that f doesn't have 1 as a root, since it is irreducible over k. Thus, the number of roots of f must be even (simply pair every root of f with its reciprocal).

Exercise 5.8. Let E/k be Galois, and let H be a subgroup of G := Gal(E/k) such that H maps F to itself. Show that H is the normalizer of Gal(E/F) in Gal(E/k).

Proof. Note that $H = \{\sigma \in \text{Gal}(E/k) : \sigma(F) \subseteq F\} = \{\sigma \in \text{Gal}(E/k) : \sigma(F) = F\}$. Suppose $\sigma \in H$. For any $\tau \in \text{Gal}(E/F)$, note that $\sigma(\tau(\sigma^{-1}(x))) = x$ for any $x \in F$. Thus $\sigma\tau\sigma^{-1} \in \text{Gal}(E/F) \implies H \subseteq N_G(\text{Gal}(E/F))$. Conversely, suppose $\sigma \in N_G(\text{Gal}(E/F))$. Let $x \in F, \tau \in \text{Gal}(E/F)$ be arbitrary. Since $\sigma \in N_G(\text{Gal}(E/F))$, $\sigma^{-1}\tau\sigma = \tau' \in \text{Gal}(E/F)$, and thus $\tau\sigma x = \sigma\tau' x$. But $\tau' \in \text{Gal}(E/F) \implies \tau' x = x$, and thus τ fixes $\sigma(x)$ for all $x \in F$, i.e. Gal(E/F) fixes $\sigma(x)$. Thus $\sigma(x) \in F$ by the Galois correspondence, i.e. $\sigma(F) \subseteq F \implies \sigma(F) = F$, as desired.

Exercise 5.9. Let E/k be finite Galois with G := Gal(E/k). Let a be an element such that $\{\sigma(a) : \sigma \in \text{Gal}(E/k)\}$ is a k-basis of E. Let H be a subgroup of G, and let $F = E^H$. Let $\{H\tau\}$ be the right cosets of G over H. Define $S(H\tau) = \sum_{\sigma \in H\tau} \sigma(a)$. Then $\{S(H\tau)\}$ is a k-basis for F.

Proof. Suppose $\{S(H\tau_i) : 1 \le i \le r\}$ is linearly dependent. Then

$$\sum_{i=1}^r \alpha_i S(H\tau_i) = 0 \implies \sum_{i=1}^r \sum_{\sigma \in H\tau_i} \alpha_i \sigma(a) = 0 \implies \alpha_i = 0$$

Furthermore, [F:k] = r, thus the aforementioned set is a basis.

Exercise 5.10. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of degree ≥ 3 . Let *S* be the set of roots of *f* in \mathbb{C} . Then *S* can't contain a non-trivial arithmetic progression.

Proof. Since *f* is irreducible, it has distinct roots. Suppose $\alpha = (\alpha' + \alpha'')/2$, where $\alpha, \alpha', \alpha'' \in S$. Since Gal(*f*) acts transitively on *S*, for all $\beta \in S$, we have $\sigma \in \text{Gal}(f)$ such that $\sigma(\alpha) = \beta$, and thus $\beta = (\sigma(\alpha') + \sigma(\alpha''))/2$. Thus, every element of *S* is an average of two other elements of *S*. This is not possible: Indeed, let $\eta \in S$ have the largest real part. Then the line $x = \Re(\eta)$ has at least two other elements of *S*. Among those elements, take the element with the largest imaginary part. That can't be the average of any two other elements, leading to a contradiction.

Exercise 5.11. *Prove that there doesn't exist a Galois field extension* K/k *such that* $Gal(K/k) \cong \mathbb{R}$.

Proof. AFTSOC not. Choose $\alpha \in K \setminus k$, and let *L* be the normal closure of $k(\alpha)$ over *k*. Since L/k is a finite normal extension, Gal(K/L) is a normal subgroup of Gal(K/k) of finite index. Thus, if we can show that \mathbb{R} has no proper subgroups of finite index, then we'd be done.

Indeed, suppose $H < \mathbb{R}$ such that $|\mathbb{R}/H| = n < \infty$. Choose $x \notin H$. Since the quotient group \mathbb{R}/H has order $n, nx \in H$. Now, consider the set $\{x/n^k : k \in \mathbb{N}\}$. It is infinite, and since H has only finitely many cosets, we must have $x/n^{k_1} - x/n^{k_2} \in H$ for some $k_1, k_2 \in \mathbb{N}$ such that $k_2 > k_1$. But then we have $x(n^{k_2-k_1} - 1) \in H$. At the same time, $nx \in H \implies n^{k_2-k_1}x \in H$. But then $n^{k_2-k_1}x - x(n^{k_2-k_1} - 1) = x \in H$, which leads to a contradiction.

Remark: The above proof works verbatim to show that $Gal(K/k) \not\cong G$, where *G* is a *divisible group*. Recall that an abelian group *G* is called divisible if for every $x \in G$, $x \neq 0$, and every $n \in \mathbb{N}$, there exists $y \in G$ such that ny = x.