
The Goldreich-Levin Theorem

Arpon Basu (Roll No: 200050013)

April 29, 2023

Contents

1 Some Definitions 1

2 Theorem Statement 2

3 The Proof 2

4 Connection with local list decoding of Hadamard Codes 4

5 Applications of the Goldreich-Levin Theorem 5

1 Some Definitions

We recap some basic definitions of cryptography before stating and proving
the Goldreich-Levin theorem.

Definition 1 (One-Way Function). A family of functions fn : {0, 1}n 7→
{0, 1}k(n) are called one-way functions if they are computable in polynomial
time and for every non-uniform PPT adversary A,

Pr
x←{0,1}n

(fn(A(fn(x))) = fn(x)) = negligible(n)

where negligible(n) is a function which decays super-polynomially with n.

Definition 2 (Hard-Core Predicate). A predicate h : {0, 1}∗ → {0, 1} is
called a hard-core predicate for a one-way function f : {0, 1}n 7→ {0, 1}k(n)
if h is computable in polynomial time and for every non-uniform PPT ad-
versary A

Pr
x←{0,1}n

(A(1n, f(x)) = h(x)) =
1

2
+ negligible(n)

We extensively referred to [1], [2], and [3] for our report.

1

2 Theorem Statement

The Goldreich-Levin theorem goes as follows:

Theorem 2.1 (Goldreich-Levin Theorem). Let f be a one-way function
with domain {0, 1}n. Note that for any r ∈ {0, 1}n, g(x, r) := (f(x), r) is a
one-way function too. Then h(x, r) := ⟨x, r⟩ is a hard-core predicate for g,
where ⟨x, r⟩ denotes the dot product of x and r (in F2).

3 The Proof

We proceed via contradiction: Consider a PPT adversary which can guess
the hardcore bit with non-negligible probability over 1

2 . We shall construct
a PPT adversary which can invert f with non-negligible probability.
However establishing the theorem requires some lemmata, which we shall
now prove.

Lemma 3.1. Let A be any PPT adversary, let δ > 0. Define

GA,δ :=

{
x : Pr

r←{0,1}n
(A(f(x), r) = ⟨x, r⟩) ≥ 1 + δ

2

}
If Prx,r←{0,1}n(A(f(x), r) = ⟨x, r⟩) ≥ 1

2 + δ, then Prx←{0,1}n(x ∈ GA,δ) ≥ δ
2 .

Proof. Note that

Pr
x,r←{0,1}n

(A(f(x), r) = ⟨x, r⟩) = Pr
x,r←{0,1}n

(A(f(x), r) = ⟨x, r⟩|x ∈ GA,δ) Pr
x←{0,1}n

(x ∈ GA,δ)

+ Pr
x,r←{0,1}n

(A(f(x), r) = ⟨x, r⟩|x ̸∈ GA,δ) Pr
x←{0,1}n

(x ̸∈ GA,δ)

≤ 1 · Pr
x←{0,1}n

(x ∈ GA,δ) +
1 + δ

2
· 1

Since Prx,r←{0,1}n(A(f(x), r) = ⟨x, r⟩) ≥ 1
2+δ, we get our desired result.

Lemma 3.2. Let X1, X2, . . . , Xm′ be pairwise independent Bernoulli ran-
dom variables with parameter p. Define X :=

∑m′

i=1Xi. Then

Pr(|X − E[X]| ≥ m′δ) ≤ 1

4m′δ2

Proof. Denote by µ the value of E[X].
Note that

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + µ2 = E

 m′∑
i=1

X2
i + 2

∑
1≤i<j≤m′

XiXj

− 2µE[X] + µ2

2

=

m′∑
i=1

E[X2
i] + 2

∑
1≤i<j≤m′

E[XiXj]− 2µ2 + µ2

SinceXi, Xj are pairwise independent for i ̸= j, E[XiXj] = E[Xi]E[Xj] = p2.
Moreover, E[X2

i] = p. Consequently

Var(X) =
m′∑
i=1

p+ 2
∑

1≤i<j≤m′

p2 − µ2 = m′p(1− p)

where the last equality follows since µ = m′p.
The desired result then follows by invoking Chebyshev’s inequality and not-
ing that p(1− p) ≤ 1

4 for every p ∈ [0, 1].

Now, let δ = non-negligible(n) > 0 be the advantage of our adversary A
in calculating the hardcore bit, ie:- Prx,r←{0,1}n(A(f(x), r) = ⟨x, r⟩) ≥ 1

2+δ.

Set m := ⌈2n
δ2
⌉, k := 1 + ⌈log2(m)⌉. Uniformly choose k random vectors

t1, t2, . . . , tk from {0, 1}k. Now, let S ⊆ {1, 2, . . . , k} =: [k] be any non-
empty set. Then we define rS as rS :=

∑
i∈S ti. This way we can generate

2k − 1 = m′ ≥ m random vectors. Note that all the vectors rS are them-
selves distributed uniformly in {0, 1}n since a linear combination of uniform
random vectors from {0, 1}n is itself a uniform random vector 1.
Note that for any two sets S1 ̸= S2, rS1 , rS2 are independent. Consequently,
all our m′ random vectors are pairwise independent.
Now assume we already know the correct values of ⟨x, ti⟩ for every i ∈
[k]. Then we know the values ⟨x, rS⟩ for every S ⊆ [k], since ⟨x, rS⟩ =
⟨x,

∑
i∈S ti⟩ =

∑
i∈S⟨x, ti⟩.

Let ei be the ith unit vector of {0, 1}n. For any S ⊆ [k], since rS are uni-
formly random, we get that rS⊕ei is uniformly random too. Moreover, note
that ⟨x, rS ⊕ ei⟩ − ⟨x, rS⟩ = ⟨x, ei⟩ = xi.
Consequently, for every S ⊆ [k], calculate the value of A(f(x), rS ⊕ ei) −
⟨x, rS⟩, where A is the adversary calculating the hardcore bit, obtain m′

votes for the value of xi, and take the majority vote of these values 2.
Let ξS be the Bernoulli random variable denoting the probability distribu-
tion of A(f(x), rS ⊕ ei) correctly calculating ⟨x, rS ⊕ ei⟩. If x ∈ GA,δ, then
the parameter of ξS is at least 1+δ

2 , by the definition given in Lemma 3.1.
Consequently, the expected number of correct answers in the m′ votes for

the value of xi is at least
m′(1+δ)

2 , and thus if the majority vote turns up the

wrong answer, that implies a deviation from the mean of more than m′δ
2 . By

Lemma 3.2, the probability of this happening is at most 1
m′δ2 ≤ 1

mδ2
≤ 1

2n .
Consequently, the probability that any bit is calculated wrongly is at most
1
2n , which implies, by the union bound, that the probability that x is deter-
mined wrongly is at most 1

2n · n = 1
2 . Note that x is simply determined by

1this can be seen through induction
2since m′ = 2k − 1 is an odd number, a tie is not possible

3

a concatenation of the bits xi for i ∈ [n].
Consequently, we managed to invert f(x) with probability ≥ 1

2 · Pr(x ∈
GA,δ) ≥ δ

4 . However since δ is not negligible, neither is δ
4 , which implies

that with non-negligible probability we can invert f(x), violating the as-
sumption that it was a one-way function.
We still have to deal with one small catch: We assumed that we know ⟨x, ti⟩
for every i ∈ [n]. But obviously, that is not true a priori. We deal with this as
follows: We run the aforementioned algorithm for all 2k = m′+1 = poly(n)
possible values of (⟨x, ti⟩)i∈[k]. Every time, we end up with a possible value
of x, whose correctness we test for by checking if applying f(x) is the correct
answer. Since we know that for the correct values of (⟨x, ti⟩)i∈[k], we obtain

the correct value of x with probability at least 1
2 , we can consequently con-

clude that we will get the correct answer with probability at least 1
2 by the

end of all the 2k iterations.
The above step blows up our runtime by 2k, but since 2k is polynomial in n,
our algorithm remains polynomial time, and thus our overall construction
of a PPT adversary continues to hold.

4 Connection with local list decoding of Hadamard
Codes

The construction used to generate 2k − 1 pairwise independent random vec-
tors is very similar to the concept of local list decoding for Hadamard codes:
For any x ∈ {0, 1}n, the Hadamard encoding of x, denoted Had(x) is defined
as Had(x) := (⟨x, y⟩)y∈{0,1}n ∈ {0, 1}2n .
In the context of the Goldreich-Levin theorem, the reason why the Hadamard
code is so important is because it is (q, δ, ε) =

(
2, 14 , 0

)
-locally decodable:

What this means is that if y is a noisy/corrupted version of Had(x) such
that ∥y − Had(x)∥1 ≤ δ · n = n

4 , then sampling just 2-bits of y allows us to
recover any bit of x with probability atleast 1

2 + ε = 1
2 .

The recovery technique of the above local decoding is exactly same as how
we obtained the ith bit of x in the proof of the Goldreich-Levin theorem:
For a uniformly random r ∈ {0, 1}n, sample the bit of y corresponding to
⟨x, r⟩ =: yr. Then xi can be computed as yr⊕yr⊕ei , where ei is the standard
ith basis vector, and moreover this calculation is correct with probability
≥ 1

2 + 1
2 − 2δ = 1

2 , as claimed.
Thus the proof of Goldreich-Levin theorem is quite commonly referred to in
literature as being equivalent to the list decoding of the Hadamard code.

4

5 Applications of the Goldreich-Levin Theorem

One of the most immediate and useful applications of this theorem is to
construct pseudo-random generators (PRGs): Indeed, let f : {0, 1}n 7→
{0, 1}n be a one-way permutation. Then g(x, r) = f(x)||r||⟨x, r⟩ is a pseudo-
random generator 3. Indeed, through this construction, the Goldreich-Levin
theorem lays the foundation for constructing a large class of PRGs.
This construction can be easily extended to a stretch of polynomial length.
Indeed,

Theorem 5.1. If f is a one-way permutation, then

gN (x, r) := r||⟨fN (x), r⟩||⟨f (N−1)(x), r⟩|| . . . ||⟨f(x), r⟩||⟨x, r⟩

is a PRG for any N ∼ poly(n), and fk denotes the k-fold composition of f .

Proof. We know that pseudorandomness is equivalent to a next-bit predic-
tion by Yao’s theorem.
Now assume for the sake of contradiction that g is not a PRG: Then there
would exist i ∈ [N] and a PPT adversary A such that

Pr(A(r||⟨fN (x), r⟩||⟨fN−1(x), r⟩|| . . . ||⟨f i+1(x), r⟩) = ⟨f i(x), r⟩) = 1

2
+ ε

We describe a PPT adversary B such that given (f(z), r), B tells us the value
of ⟨z, r⟩ with non-negligible probability, thus violating the Goldreich-Levin
theorem.
B chooses an i ∈ [N] randomly. Consider x ∈ {0, 1}n such that f i(x) = z
4. Note that for ℓ ≥ 1, B can efficiently calculate f i+ℓ(x) = f ℓ−1(f(z)).
Consequently, B can, in polynomial time, generate the string r||⟨fN (x), r⟩||
. . . ||⟨f i+1(x), r⟩ on it’s own and feed it to A as an input, which would then
return to B the value of ⟨z, r⟩ with non-negligible probability, allowing B to
violate the Goldreich-Levin theorem.

References

[1] Arora and Barak. Computational Complexity: A Modern Approach.
2007. url: https://theory.cs.princeton.edu/complexity/book.
pdf.

[2] Omkant Pandey. Hard Core Predicates. 2017. url: https://www3.cs.
stonybrook.edu/~omkant/L05-short.pdf.

[3] Omkant Pandey. Proof of GL Theorem. 2017. url: https://www3.cs.
stonybrook.edu/~omkant/L06.pdf.

3this can be proved through the equivalence of the definitions of pseudo-randomness
and next-bit unpredictability

4Such a x must necessarily exist since the composition of two permutations is also a
permutation, and consequently every element in our co-domain has a (unique) pre-image

5

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://www3.cs.stonybrook.edu/~omkant/L05-short.pdf
https://www3.cs.stonybrook.edu/~omkant/L05-short.pdf
https://www3.cs.stonybrook.edu/~omkant/L06.pdf
https://www3.cs.stonybrook.edu/~omkant/L06.pdf

	Some Definitions
	Theorem Statement
	The Proof
	Connection with local list decoding of Hadamard Codes
	Applications of the Goldreich-Levin Theorem

