STOCHASTIC DIFFERENTIAL EQUATIONS

Arpon Basu

Last updated November 30, 2023

Contents

1	Brownian Motion	2
2	Itô Integral	3
3	Itô's Formula	4
4	Stochastic Differential Equations	4

§1. Brownian Motion

For any $x, y \in \mathbb{R}^n$, and $t \in \mathbb{R}_{>0}$, define

$$p(t, x, y) := (2\pi t)^{-n/2} \cdot \exp\left(-\frac{\|x - y\|_2^2}{2t}\right)$$

For t = 0, set p(0, x, y) to be the Dirac Delta centred at x.

We can now define Brownian motion as follows: Brownian motion over \mathbb{R}^n centered at 0 is a stochastic process $\{B_t\}_{t \in [0,\infty)}$, such that for *any* $0 \le t_1 \le t_2 \le \cdots \le t_n$, we have:

$$\Pr(B_{t_1} \in F_1, \dots, B_{t_n} \in F_n) = \int_{F_1 \times \dots \times F_n} p(t_1, 0, x_1) p(t_2 - t_1, x_1, x_2) \cdots p(t_n - t_{n-1}, x_{n-1}, x_n) dx_1 \cdots dx_n$$
(1.1)

where F_1, \ldots, F_n are arbitrary measurable subsets of \mathbb{R}^n .

Note that *a priori*, it is not clear that such a stochastic process even exists, just based on Eq. (1.1) alone. However, **Kolmogorov's extension theorem** guarantees that such a process exists.

A few properties of Brownian motion are as follows:

- 1. Observe that B_t is a Gaussian Random vector with mean 0 and covariance tI_n , i.e. $\mathbb{E}[B_t] = 0$, and $\mathbb{E}[B_tB_t^{\mathsf{T}}] = tI_n$, for all $t \ge 0$.
- 2. In general, for any $0 < t_1 \le t_2 \le \cdots \le t_k$, $Z := (B_{t_1}, B_{t_2}, \dots, B_{t_k}) \in \mathbb{R}^{nk}$ is a Gaussian random vector in \mathbb{R}^{nk} .
- 3. $\mathbb{E}[B_s B_t^{\mathsf{T}}] = \min\{t, s\} \cdot I_n$, i.e. the covariance of B_s and B_t equals $\min\{t, s\} \cdot I_n$. Thus, B_t and B_s are not independent (otherwise their covariance would have been 0). We present the derivation for n = 1, the calculation for higher dimensions is analogous. Also, assume $s \ge t$.

$$\mathbb{E}\left[B_s B_t\right] = \int_{\mathbb{R}^n \times \mathbb{R}^n} x_1 x_2 p(t, 0, x_1) p(s - t, x_1, x_2) dx_1 dx_2$$

Substitute $x_2 = x_1 + z$. Then the above integral equals

$$\begin{split} \int_{\mathbb{R}^n \times \mathbb{R}^n} x_1(x_1 + z) p(t, 0, x_1) p(s - t, x_1, x_1 + z) dx_1 dz &= \underbrace{\int_{\mathbb{R}^n \times \mathbb{R}^n} x_1^2 p(t, 0, x_1) p(s - t, 0, z) dx_1 dz}_{=:I_1} \\ &+ \underbrace{\int_{\mathbb{R}^n \times \mathbb{R}^n} x_1 z p(t, 0, x_1) p(s - t, 0, z) dx_1 dz}_{=:I_2} \end{split}$$

where we notice that $p(s - t, x_1, x_1 + z) = p(s - t, 0, z)$. Now,

$$I_{1} = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} x_{1}^{2} p(t, 0, x_{1}) p(s - t, 0, z) dx_{1} dz = \int_{\mathbb{R}^{n}} x_{1}^{2} p(t, 0, x_{1}) dx_{1} \cdot \int_{\mathbb{R}^{n}} p(s - t, 0, z) dz = t \cdot 1 = t$$
$$I_{2} = \int_{\mathbb{R}^{n}} x_{1} p(t, 0, x_{1}) dx_{1} \cdot \int_{\mathbb{R}^{n}} z p(s - t, 0, z) dz = 0 \cdot 0 = 0$$

as desired.

4. For any s, t, h, h' > 0 such that $s \ge t + h'$, $B_{s+h} - B_s$ and $B_{t+h'} - B_t$ are independent. Indeed,

$$\mathbb{E}\left[(B_{s+h} - B_s)(B_{t+h'} - B_t)\right] = \mathbb{E}\left[B_{s+h}B_{t+h'}\right] - \mathbb{E}\left[B_sB_{t+h'}\right] - \mathbb{E}\left[B_{s+h}B_t\right] + \mathbb{E}\left[B_sB_t\right] \\ = t + h' - (t+h') - t + t = 0$$

Since $B_{s+h} - B_s$ and $B_{t+h'} - B_t$ are both Gaussian RVs, and since for Gaussian RVs uncorrelatedness implies independence, we're done.

- 5. One can show that $\mathbb{E}\left[|B_t B_s|^4\right] = n(n+2)|t-s|^2$. Consequently, by Kolmogorov's continuity theorem, there exists a stochastic process $\{\widetilde{B}_t\}_{t\in[0,\infty)}$ s.t. $\widetilde{B}_t = B_t$ a.e. for all $t \ge 0$, \widetilde{B}_t satisfies Eq. (1.1), and $t \mapsto \widetilde{B}_t(\omega)$ is continuous for almost all $\omega \in \mathbb{R}$. Thus, WLOG we will assume that the Brownian motion we are working with is the continuous version, whose existence was outlined above.
- 6. Let $0 = t_1 < t_2 < \cdots < t_n = t$ be any partition \mathcal{P} of [0,t]. Define $Y_{\mathcal{P}} := \sum_{k=1}^{n-1} (B_{t_{k+1}} B_{t_k})^2$. Finally, let $\|\mathcal{P}\| := \max\{t_2 t_1, \dots, t_n t_{n-1}\}$ be the "mesh" of \mathcal{P} . Then $\lim_{\|\mathcal{P}\|\to 0} Y_{\mathcal{P}} = t$. Consequently, it can be shown that the total variation of Brownian motion on [0,t] is infinite.
- 7. Let \mathcal{F}_s be the filtration generated by B_t for all $t \in [0, s]$. $\{B_t\}$ is a martingale w.r.t. this filtration, i.e. $\mathbb{E}[B_s | \mathcal{F}_t] = B_t$ for all $s \ge t$.

To quickly summarize the main points,

- 1. $\mathbb{E}[B_t] = 0$, and $\mathbb{E}[B_t B_t^{\mathsf{T}}] = tI_n$, for all $t \ge 0$.
- 2. For any $0 < t_1 \le t_2 \le \cdots \le t_k$, $Z := (B_{t_1}, B_{t_2}, \dots, B_{t_k}) \in \mathbb{R}^{nk}$ is a Gaussian random vector in \mathbb{R}^{nk} .
- 3. $\mathbb{E}\left[B_s B_t^\mathsf{T}\right] = \min\{t, s\} \cdot I_n.$
- 4. Independent Increments: For any s, t, h, h' > 0 such that $s \ge t + h'$, $B_{s+h} B_s$ and $B_{t+h'} B_t$ are independent.
- 5. $t \mapsto B_t(\omega)$ is continuous for almost all $\omega \in \mathbb{R}^n$. In fact, for every $\alpha < 1/2$, there exists a $C_\alpha > 0$ such that $|B_t(\omega) B_s(\omega)| \le C_\alpha |t s|^\alpha$ for all $t \ne s$, and for almost all ω . Conversely, $\frac{|B_t(\omega) B_s(\omega)|}{|t s|^\alpha}$ is unbounded (as $t \rightarrow s$) for all $\alpha \ge 1/2$. In particular, $t \mapsto B_t(\omega)$ is differentiable nowhere.
- 6. $\lim_{\|\mathcal{P}\|\to 0} \sum_{k=1}^{n-1} (B_{t_{k+1}} B_{t_k})^2 = t$. Consequently, the total variation of Brownian motion on [0, t] is infinite.
- 7. Brownian motion is a martingale w.r.t. the filtration it generates.
- 8. $\limsup_{t\to\infty} \frac{B_t}{\sqrt{2t \ln \ln t}} = 1$ almost surely.

§2. Itô Integral

We give meaning to the integral $\int_{S}^{T} f(t, \omega) dB_t(\omega)$. Let $f : [0, \infty) \times \Omega \mapsto \mathbb{R}$ be a measurable function satisfying the following properties:

- 1. $f(t, \omega)$ is \mathcal{F}_t -adapted, i.e. $\omega \mapsto f(t, \omega)$ is \mathcal{F}_t -measurable for all $t \ge 0$.
- 2. $\mathbb{E}\left[\int_{S}^{T} f(t,\omega)^{2} dt\right] < \infty$ for almost all ω .

Then

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{\|\mathcal{P}\| \to 0} \sum_{j} f(t_{j},\omega) \mathbb{1}_{t \in [t_{j},t_{j+1})}$$

Note that *unlike* the Riemann-Stieltjes integral, even if f is Itô-integrable, $\lim_{\|\mathcal{P}\|\to 0} \sum_j f(t_j^*, \omega) \mathbb{1}_{t\in[t_j, t_{j+1})}$ may not equal the Itô integral of f unless $t_j^* = t_j$ for all j, \mathcal{P} . In fact, when $t_j^* = \frac{t_j + t_{j+1}}{2}$, the integral we get is the *Stratonovich integral*, which does *not* equal the Itô integral in general, even when both of them exist.

Lemma 2.1 (Itô isometry). If *f* is Itô-integrable,

$$\mathbb{E}\left[\left(\int_{S}^{T} f(t,\omega) dB_{t}(\omega)\right)^{2}\right] = \mathbb{E}\left[\int_{S}^{T} f(t,\omega)^{2} dt\right]$$

Some properties of the Itô integral:

- 1. $\int_{S}^{T} f dB_{t} = \int_{S}^{U} f dB_{t} + \int_{U}^{T} f dB_{t}$ 2. $\int_{S}^{T} (\lambda f + \mu g) dB_{t} = \lambda \int_{S}^{T} f dB_{t} + \mu \int_{S}^{T} g dB_{t}$ 3. $\mathbb{E} \left[\int_{S}^{T} f dB_{t} \right] = 0$ 4. $\int_{S}^{T} f dB_{t} \text{ is } \mathcal{F}_{T}\text{-measurable}$
- 5. $t \mapsto \int_{S}^{t} f dB_{t}$ is a continuous function
- 6. $t \mapsto \int_{S}^{t} f dB_t$ is a martingale w.r.t. \mathcal{F}_t

§3. Itô's Formula

Let $g: [0,\infty) \times \mathbb{R} \mapsto \mathbb{R}$ be a doubly differentiable function. Let X_t be an Itô process ¹. Let $Y_t = g(t, X_t)$. Then

$$dY_t = (\partial_t g)dt + (\partial_x g)dX_t + \frac{1}{2}(\partial_x^2 g)(dX_t)^2$$

where $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0$, and $(dB_t)^2 = dt$. Finally, $\int_0^t dZ_t = Z_t - Z_0$. Let's see some examples:

- 1. Let $X_t = B_t$, $g(t, x) = x^2/2$, i.e. $Y_t = B_t^2/2$. Then $dY_t = B_t dB_t + \frac{1}{2}dt$. Thus $\int_0^t B_s dB_s = \frac{1}{2}B_t^2 \frac{1}{2}t$. Notice the additional t/2 term.
- 2. Let $X_t = B_t$, g(t, x) = tx, i.e. $Y_t = tB_t$. Then $dY_t = B_t dt + t dB_t$. Thus $\int_0^t s dB_s = tB_t \int_0^t B_s ds$. In general, let c(s) be a differentiable function of s, with no dependence on t. Then $\int_0^t c(s) dB_s = c(t)B_t \int_0^t B_s c'(s) ds$.

§4. Stochastic Differential Equations

Consider the differential equation

$$\frac{dX_t}{dt} = b(t, X_t) + \sigma(t, X_t) W_t$$

where $W_t \sim \mathcal{N}(0, 1)$ is "white noise". Then,

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$

Let's see an example. Consider the stochastic version of the standard exponential-growth differential equation, i.e.

$$\frac{dN_t}{dt} = (r + \alpha W_t)N_t$$

Then

$$dN_t = rN_t dt + \alpha N_t dB_t \implies \frac{dN_t}{N_t} = rdt + \alpha dB_t \implies \int_0^t \frac{dN_t}{N_t} = rt + \alpha B_t$$

Now, apply Itô's formula with $g(t, x) = \ln x, X_t = N_t$. Then

$$d(\ln N_t) = \frac{1}{N_t} \cdot dN_t + \frac{1}{2} \cdot \left(-\frac{1}{N_t^2} (dN_t)^2 \right)$$

Now,

$$\frac{(dN_t)^2 = (rN_t dt + \alpha N_t dB_t)^2}{(dN_t)^2} = r^2 N_t^2 (dt)^2 + 2r\alpha N_t^2 dt dB_t + \alpha^2 N_t^2 (dB_t)^2 = \alpha^2 N_t^2 dt dB_t$$

¹we won't define what an Itô process is, since most "nice" functions satisfy the bill

Thus

and thus

$$d(\ln N_t) = \frac{1}{N_t} \cdot dN_t - \frac{\alpha^2}{2} dt \implies \int_0^t \frac{dN_t}{N_t} = \ln \frac{N_t}{N_0} + \frac{\alpha^2 t}{2}$$

$$N_t = N_0 \exp\left(\left(r - \frac{1}{2}\alpha^2\right)t + \alpha B_t\right)$$

Using the fact that $\mathbb{E}\left[\exp(\alpha B_t)\right] = 1$, we get that $\mathbb{E}\left[N_t\right] = \mathbb{E}\left[N_0\right]e^{rt}$, which matches our intuition.

References

[Oks92] Bernt Oksendal. Stochastic Differential Equations (3rd Ed.): An Introduction with Applications. Springer-Verlag, Berlin, Heidelberg, 1992.