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Need for Geodesic Convexity

1 Convex optimization (over Rn) very powerful, but not applicable
in many cases

2 Special class of non-convex functions becomes convex once one
imposes a different manifold structure on the underlying domain.
Indeed, consider the function f : Rn

>0 7→ R, where:

f (x1, . . . , xn) := ln(x2
1 x2

2 · · · x2
n + x2n

n ) −

n∑
i=1

ln(xi)

f is clearly not convex. However, under the manifold structure
induced by the Hessian of the function −

∑n
i=1 ln(xi), the function

is geodesically convex
3 Many more non-convex functions arising in very natural contexts

were found to be geodesically convex when the ‘correct’
Riemannian metric tensor was imposed on the manifold (instead
of the usual Euclidean metric tensor).
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We first define a (pseudo)-Riemannian manifold.

Definition
A (pseudo)-Riemannian manifold is a smooth n-dimensional manifold
M equipped with a smooth function g : M 7→ Sn, where Sn is the
manifold of n × n symmetric invertible matrices.

The map g is sometimes also called the metric tensor: Indeed, for any
p ∈ M , we have an inner product on TpM , given by ⟨u, v⟩g := uTG(p)v ,
where TpM is identified with Rn. Clearly, once we have an inner
product, we can also define a norm, and hence a metric. However, the
reader is asked to note that the metric will be non-negative only if the
image of g lies in the space of positive-definite matrices (in which case
we call M a Riemannian manifold).
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Christoffel Symbols

The definition of a metric tensor also allows us to define the Christoffel
symbols:

Definition (Christoffel Symbols)
Fix a point p. G(p) is a n × n matrix, and let the (i , j)th entry of G(p) be
denoted as gij (Note that the matrix representation of G is assumed to
be in some fixed frame bundle basis). Also, denote the (i , j)th entry of
G(p)−1 as g ij . Then we define:

Γ k
ij :=

1
2

n∑
ℓ=1

gℓk ·
(
∂gℓi

∂yj
(y) +

∂gℓj

∂yi
(y) −

∂gij

∂yℓ
(y)

)
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Length and Energy

Let γ : [0,1] 7→ (M,g) be a smooth map. We define the length of γ as:

L(γ) :=
∫1

0

√
⟨γ̇(t), γ̇(t)⟩g(γ(t))dt (1)

We also define the energy of γ as:

E(γ, γ̇, t) := 1
2
⟨γ̇(t), γ̇(t)⟩g(γ(t)) (2)
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Geodesics

Definition (Geodesics)
Define the energy functional to be:

S(γ) :=

∫1

0
E(γ, γ̇, t)dt =

1
2

∫1

0
⟨γ̇(t), γ̇(t)⟩g(γ(t))dt

Effectively, S(γ) denotes the work done to move the particle along the
curve.
A curve γ∗ : [0,1] 7→ M is called a geodesic if it is a critical point of the
energy functional.

A geodesic may not always exist: For example, consider the manifold
R2 − {(0,0)} equipped with the usual metric tensor. There is no
geodesic between (1,1) and (−1,−1) on this manifold. Thus, from this
point onwards, we shall only deal with Riemannian manifolds for
which there is a geodesic between any two given points.
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Geodesic Equation

Using the Euler-Lagrange equations to characterize geodesics yields
that γ∗ must satisfy the following differential equation:

d
dt

∂E
∂γ̇

=
∂E
∂γ

(3)

Simplifying the above, we obtain that a geodesic γ∗ must satisfy the
following series of second-order differential equations: Indeed, fix a
point p ∈ M , and consider a chart (U, φ) such that p ∈ U . Define
x∗ : [0,1] 7→ Rn as x∗ := φ ◦ γ∗. Then, for every k ∈ [n], we have:

(ẍ∗)k = −

n∑
i ,j=1

Γ k
ij (x∗)(ẋ∗)i(ẋ∗)j (4)
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Geodesics for various Manifolds
Consider the manifold Rn

>0, whose smoothness is inherited from Rn.
Consider the log-barrier function f : Rn

>0 7→ R, given by
f (x1, . . . , xn) := −

∑n
i=1 ln(xi). Then the Hessian of f is a diagonal

matrix whose diagonal entries are x−2
1 , . . . , x−2

n . Thus, for any point
p = (x1, . . . , xn) ∈ Rn

>0, we define G(p) := diag(x−2
1 , . . . , x−2

n ). It is not
too difficult to see that the Christoffel symbols are given by

Γ k
ij =

{
−1/xk if i = j = k
0 otherwise

Eq. (4) then simplifies to (ẍ)k = (ẋ)2
k/xk for every k ∈ [n], solving

which yields x(t) = c1 · ct
2 for some constants c1, c2 ∈ Rn

>0, where ct
2 is

defined componentwise. Now, assuming x(0) = p, x(1) = q, we obtain
the geodesic on the positive orthant between p and q is parametrized
as:

x(t) = (p1(q1/p1)
t , . . . ,pn(qn/pn)

t)
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Geodesics in Sk
++

Let Sk
++ be the space of all positive-definite symmetric k × k matrices,

considered as a submanifold of Rk(k+1)/2. A metric tensor on Sk
++ at

some point S ∈ Sk
++ is given by gS(U,V ) := tr(S−1US−1V ).

We shall solve the Euler-Lagrange equations directly for this manifold.
Before we begin with that, define:

Eij =

{
eieT

j + ejeT
i if i ̸= j

eieT
i otherwise

Note that {Eij }i ,j∈[k ] form a basis for Sk , where Sk is the set of all
symmetric matrices. Thus we can write γ : [0,1] 7→ Sk

++ ↪−→ Sk as

γ(t) =
∑

i ,j∈[k ]

γij(t)Eij
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Consequently,
∂γ

∂γij
= Eij

Now, from Eq. (2) (we ignore the factor of 1/2),

E(γ, γ̇, t) = tr(γ(t)−1γ̇(t)γ(t)−1γ̇(t))

Thus,
∂E
∂γij

= tr
(
∂γ−1

∂γij
γ̇γ−1γ̇+ γ−1 ∂γ̇

∂γij
γ−1γ̇+ γ−1γ̇

∂γ−1

∂γij
γ̇+ γ−1γ̇γ−1 ∂γ̇

∂γij

)
Also, we have

∂γ−1

∂γij
= −γ−1Eijγ

−1

∂γ̇

∂γij
= 0

Thus,
∂E
∂γij

= −2 tr
(
γ−1Eijγ

−1γ̇γ−1γ̇
)
= −2 tr

(
Eijγ

−1γ̇γ−1γ̇γ−1
)
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Similarly,

∂E
∂γ̇ij

= tr
(
∂γ−1

∂γ̇ij
γ̇γ−1γ̇+ γ−1 ∂γ̇

∂γ̇ij
γ−1γ̇+ γ−1γ̇

∂γ−1

∂γ̇ij
γ̇+ γ−1γ̇γ−1 ∂γ̇

∂γ̇ij

)

= tr
(
γ−1Eijγ

−1γ̇+ γ−1γ̇γ−1Eij

)
But tr

(
(γ−1γ̇) · (γ−1Eij)

)
= tr

(
(γ−1Eij) · (γ−1γ̇)

)
, and thus

∂E
∂γ̇ij

= 2 tr
(
γ−1Eijγ

−1γ̇
)

Now,
d
dt

∂E
∂γ̇ij

= 2 tr
(

dγ−1

dt
Eijγ

−1γ̇+ γ−1 dEij

dt
γ−1γ̇+ γ−1Eij

dγ−1

dt
γ̇+ γ−1Eijγ

−1 d γ̇
dt

)
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Once again,
dγ−1

dt
= −γ−1γ̇γ−1

Thus

d
dt

∂E
∂γ̇ij

= 2 tr
(
−γ−1γ̇γ−1Eijγ

−1γ̇− γ−1Eijγ
−1γ̇γ−1γ̇+ γ−1Eijγ

−1γ̈
)

= 2 tr
(
−Eijγ

−1γ̇γ−1γ̇γ−1 − Eijγ
−1γ̇γ−1γ̇γ−1 + Eijγ

−1γ̈γ−1
)

= 2 tr
(

Eij(γ
−1γ̈γ−1 − 2γ−1γ̇γ−1γ̇γ−1)

)
Thus, applying the Euler-Lagrange equations (Eq. (3)) yield:

−2 tr
(

Eijγ
−1γ̇γ−1γ̇γ−1

)
= 2 tr

(
Eij(γ

−1γ̈γ−1 − 2γ−1γ̇γ−1γ̇γ−1)
)

=⇒ tr
(

Eijγ
−1γ̇γ−1γ̇γ−1

)
= tr

(
Eij(−γ−1γ̈γ−1 + 2γ−1γ̇γ−1γ̇γ−1)

)
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=⇒ tr
(

Eij(γ
−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1)

)
= 0

But

tr
(

Eij(γ
−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1)

)
= ⟨Eij , γ

−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1⟩Frob

Since {Eij }’s span Sk ,

⟨S, γ−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1⟩Frob = 0

for all S ∈ Sk , and consequently,

γ−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1 = 0 =⇒ γ̈γ−1 − γ̇γ−1γ̇γ−1 = 0

=⇒ d(γ̇γ−1)

dt
= 0
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Consequently,
γ̇γ−1 = C =⇒ γ̇ = Cγ

This is a matrix-valued differential equation with the solution
γ(t) = exp(tC)γ(0). Now, suppose we want to find geodesic(s) joining
matrices P,Q ∈ Sk

++. Then γ(0) = P. We still need to find C such that
γ(1) = Q. To that extent, we perform a ‘diagonalization’ trick, where
we write C = P1/2SP−1/2. Note that Cℓ = P1/2SℓP−1/2, for any ℓ ∈ N0.
Then,

γ(t) = exp(tC)P =

∞∑
ℓ=0

t ℓ

ℓ!
CℓP =

∞∑
ℓ=0

t ℓ

ℓ!
P1/2SℓP−1/2P = P1/2 exp(tS)P1/2

Thus
γ(1) = Q =⇒ exp(S) = P−1/2QP−1/2

Now, since S ∈ Sk
++, S = UD ′UT for some diagonal matrix D ′. Then

exp(S) =

∞∑
ℓ=0

Sℓ

ℓ!
=

∞∑
ℓ=0

U
D ′ℓ

ℓ!
UT = U exp(D ′)UT
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Thus,

γ(t) = P1/2 exp(tS)P1/2 = P1/2(exp(S))tP1/2 = P1/2(P−1/2QP−1/2)tP1/2

Consequently, on Sk
++, a geodesic between any two points P,Q is

parametrized as P1/2(P−1/2QP−1/2)tP1/2.
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We now change tracks and define geodesic convexity.

Definition (Geodesic Convexity)
A subset S ⊂ M of a Riemannian manifold M is geodesically convex if
for all x , y ∈ S, there exists a geodesic
γ : [0,1] 7→ M, γ(0) = x , γ(1) = y , such that γ([0,1]) ⊂ S.

Definition (Geodesic Convexity of functions)
Let S be a geodesically convex subset of some ambient manifold M . A
function f : S 7→ R (not necessarily continuous/smooth) is called
geodesically (strictly) convex if f ◦ γ : [0,1] 7→ R is (strictly) convex for
all geodesics γ : [0,1] 7→ M such that γ(0) ̸= γ(1) and γ([0,1]) ⊂ S. In
other words, for any geodesic γ, we have

f (γ(t)) ≤ (1 − t)f (γ(0)) + tf (γ(1)), t ∈ [0,1]
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Definition (Geodesic Strong Convexity)
Let S be a geodesically convex subset of some manifold M . A function
f : S 7→ R is called geodesically µ-strongly convex if for all geodesics
γ : [0,1] 7→ M with γ([0,1]) ⊂ S, we have:

f (γ(t)) ≤ (1 − t)f (γ(0)) + tf (γ(1)) −
t(1 − t)µ

2
L(γ)2

where L(γ) is the length of γ (recall Eq. (1)). Equivalently, f is
geodesically µ-strongly convex if f ◦ γ : [0,1] 7→ R is µL(γ)-strongly
convex.

Definition (Concavity and Linearity)
Let S be a geodesically convex subset of some ambient manifold M . A
function f : S 7→ R is called geodesically concave if −f is geodesically
convex, and f is called geodesically linear if f is both geodesically
convex and concave.
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Since geodesic convexity has been defined by pulling back along
geodesics and then imposing usual convexity, many of the usual
properties of convexity transfer through.

Lemma (Local Minimizers are Global Minimizers)

If f : S 7→ R is geodesically convex, then any local minimizer is a global
minimizer. In particular, if f : S 7→ R is geodesically strictly convex, then it
has at most one local minimizer, which, by the above lemma, must also be a
global minimizer.
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Differentiable Convex Functions

We eventually hope to build a theory of optimization of geodesically
convex functions. For such purposes, having some differentiability
helps.

Theorem (Differentiability and Convexity)

Let S be a geodesically convex set, and let f : M 7→ R be differentiable in a
neighborhood of S. Then f |S is geodesically convex if and only if for every
geodesic γ : [0,1] 7→ M, γ([0,1]) ⊂ S, we have:

f (γ(t)) ≥ f (γ(0)) + t⟨∇f , γ ′(0)⟩g(γ(0)), ∀t ∈ [0,1]

f |S is geodesically µ-strongly convex if and only if

f (γ(t)) ≥ f (γ(0)) + t⟨∇f , γ ′(0)⟩g(γ(0)) +
µt2

2
L(γ)2, ∀t ∈ [0,1] (5)

Arpon Basu (IITB) Geodesic Convexity April 19, 2024 19 / 33



Corollary

If f : S 7→ R is differentiable and geodesically convex, where S is open and
geodesically convex, then x is a global minimizer of f if and only if
(∇f )(x) = 0.
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We now also give characterizations based on second-order derivatives,
without proof (the proof is essentially identical to that in standard
convex analysis, except for the fact that we have to pull f back along the
geodesics):

Theorem

Let f : S 7→ R be twice-differentiable, and assume S is open and geodesically
convex. Then f is:

1 Geodesically convex if and only if Hess f (x) ⪰ 0.
2 Geodesically µ-strongly convex if and only if Hess f (x) ⪰ µ · Id.
3 Geodesically strictly convex if Hess f (x) ≻ 0.
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Note that checking geodesic convexity of f eventually boils down to
checking convexity of f ◦ γ in Rn. Thus, using the formulae for
geodesics in Rn

>0 (with log-barrier induced metric tensor) and Sk
++, we

have the following results.

Lemma (Geodesic Linearity of the log-barrier function)

The map Rn
>0 ∋ x 7→ ⟨1, ln(x)⟩ ∈ R is geodesically linear on the manifold

Rn
>0.

Lemma (Geodesic Log-Convexity of Polynomials with positive
coefficients)
Let p(x1, . . . , xn) be a multivariate polynomial with positive coefficients.
Then p is geodesically log-convex on Rn

>0, i.e. ln p(γ(·)) is convex in Rn.
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We shall now give analogs of all the above examples for the manifold
Sn
++. There is indeed an analogy between Rn

>0 and Sn
++ in the sense that

they are both Hessian manifolds, that too of “log-barrier functions”
(
∑

ln(xi) for Rn
>0, ln det(X ) for Sn

++).

Lemma (Geodesic Linearity of the log-det map)

The map Sn
++ ∋ X 7→ ln det(X ) ∈ R is geodesically linear on the manifold

Sn
++ as defined in the first chapter.

Lemma (Geodesic Convexity of Strictly Positive Linear
Operators)

Let T : Sn 7→ Sm be a linear map such that T (Sn
++) ⊆ Sm

++. Such maps are
also called strictly positive linear operators. Then Sn

++ ∋ X 7→ T (X ) ∈ Sm
++

is a geodesically convex map w.r.t the order ⪯ on Sm
++, i.e. for any geodesic

γ : [0,1] 7→ Sn
++, and any t ∈ [0,1], we have

T (γ(t)) ⪯ (1 − t)T (γ(0)) + tT (γ(1))
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Lemma (Geodesic Convexity of log-det of Strictly Positive
Operators)
Let T : Sn 7→ Sm be a linear map such that T (Sn

++) ⊆ Sm
++. Then

Sn
++ ∋ X 7→ ln det(T (X )) ∈ R is a geodesically convex map.
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Before we get to Gradient Descent on Riemannian manifolds, we
rephrase Eq. (5) as:

f (expx(tv)) ≥ f (x) + t⟨∇f (x), v⟩x +
µt2

2
· ∥v∥2

x (6)

where we use the fact that L(γx ,v |[0,1]) = ∥v∥x =:
√

⟨v , v⟩x .
The way we use this inequality for optimization is by topping it off
with an upper bound: Indeed, if ∇f is L-Lipschitz continuous, then

f (expx(tv)) ≤ f (x) + t⟨∇f (x), v⟩x +
Lt2

2
· ∥v∥2

x (7)
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Lemma (Polyak-Łojasiewicz Inequality)

Let S be a non-empty, closed, and geodesically convex subset of M , where M is
a complete Riemannian manifold. Assume f : M 7→ R is differentiable on a
neighborhood of S. If f |S is geodesically µ-strongly convex with µ > 0, then

f (x) − f (x∗) ≤
1

2µ
∥∇f (x)∥2

x

for all x ∈ S, where x∗ is the unique global minimizer of f |S .
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Theorem (Riemannian Gradient Descent)

Let f : M 7→ R be a differentiable geodesically convex function on a complete
connected manifold M . Let x0 ∈ M , and consider the sublevel set
S0 := {x ∈ M : f (x) ≤ f (x0)}. Assume f has a L-Lipschitz continuous
gradient on a neighborhood of S0, and suppose f |S0 is geodesically µ-strongly
convex. Consider gradient descent with exponential retraction and
step-size 1/L initialized at x0, i.e.

xk+1 = expxk

(
−

1
L
∇f (xk )

)
, k ∈ N0

There exists a unique global minimizer of f |S0 which is x∗ ∈ S0, and
convergence to x∗ is linear, i.e. if we set κ = L/µ, then we have that xk ∈ S0
for all k ∈ N0, and

f (xk ) − f (x∗)
f (x0) − f (x∗)

≤
(

1 −
1
κ

)k

,
d(xk , x∗)
d(x0, x∗)

≤
√
κ ·

(
1 −

1
κ

)k/2
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Applications

Before we describe the applications of geodesic convexity, we take a
brief detour into functional analysis and state the very important
Brascamp-Lieb inequality:

Theorem (Brascamp-Lieb Inequality)
Given linear maps B = (Bj)j∈[m], Bj : Rn 7→ Rnj , and non-negative real
numbers (pj)j∈[m], there exists a number C ∈ [0,∞] such that for any tuple of
measurable functions (fj)j∈[m], f : Rnj 7→ R≥0, the following inequality holds:∫

x∈Rn

m∏
j=1

fj(Bjx)pj dx ≤ C
m∏

j=1

(∫
x∈Rnj

fj(x)dx
)pj

The smallest C for which the above inequality holds is called the
Brascamp-Lieb constant for the system (B,p), and is denoted as BL(B,p).
A system (B,p) is called feasible if BL(B,p) < ∞.
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Bennett, Carbery, Christ, and Tao showed that BL(B,p) < ∞ if and
only if the following criteria are satisfied:

1 n =
∑

j∈[m] pjnj .
2 dim(V ) ≤

∑
j∈[m] pj dim(BjV ) for any subspace V of Rn.

Henceforth, we will only be working with feasible Brascamp-Lieb
systems.
Now, Lieb showed that equality occurs in the Brascamp-Lieb inequality
when fj(x) = exp(−xTAjx) for some positive definite matrix Aj , for all
j ∈ [m]. Plugging the above into the Brascamp-Lieb inequality yields:

BL(B,p) ≥

 ∏
j∈[m] det(Aj)

pj

det
(∑

j∈[m] pjBT
j AjBj

)
1/2

And thus

BL(B,p) = sup
(X1,...,Xm)

 ∏
j∈[m] det(Xj)

pj

det
(∑

j∈[m] pjBT
j XjBj

)
1/2

where Xj ∈ Snj
++ for all j ∈ [m].
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To simplify the expression a bit, we usually deal with the negative
logarithm of it. Under that, we obtain:

− ln BL(B,p) = −
1
2

sup
(X1,...,Xm)

∑
j∈[m]

pj ln det(Xj) − ln det

∑
j∈[m]

pjBT
j XjBj


Now, it can be shown that the function of (X1, . . . ,Xm) inside the
supremum is not concave in the usual Euclidean sense: Indeed,
suppose it was. Fix X2, . . . ,Xm. Then we are effectively dealing with

p1 ln det(X1) − ln det
(

p1BT
1 X1B1 + C

)
where C is some positive definite matrix. Note that X1 7→ ln det(X1),
and X1 7→ ln det

(
p1BT

1 X1B1 + C
)

are both concave functions and thus
it is difficult to comment on the concavity of their difference. Indeed,
there exist values of X2, . . . ,Xm for which the above function is not
concave.
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Thus, the usual tools of convex optimization fail for this problem. Here
comes the true power of geodesics: We will prove that the above
formulation is geodesically concave.
Before coming to analyses of convexity, we state another equivalent
characterization of the Brascamp-Lieb constant:

−2 ln BL(B,p) = inf
X∈Sn

++

FB,p(X )

where
FB,p(X ) :=

∑
j∈[m]

pj ln det(BjXBT
j ) − ln det(X )

Theorem
FB,p is a geodesically convex function on the manifold Sn

++ with the dot
product induced by the Riemannian tensor being given by
gX (U,V ) := tr(X−1UX−1V ).
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The End
Questions? Comments?


