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�1. Inverse Limits and Pro�nite Groups

Let {Ci}i∈I is a collection of objects in a category enriched over a set. 1 Now consider a system of morphisms µij :
Ci 7→ Cj satisfying µjk ◦ µij = µik for all i, j, k for which the corresponding µ’s exist. This is known as an inverse
system.
We call (E, ρi : E 7→ Ci) as the inverse limit of the aforementioned inverse system if ρj = µij ◦ ρi for all relevant
i, j ∈ I, and the following universal property is satisfied:
If X is another object along with morphisms ψ : X 7→ Ci for all i ∈ I such that ψj = µij ◦ ψi then there exists a
unique ϕ : X 7→ E such that all the relevant diagrams commute.

Ci

X E

Cj

∃!ϕ

ψi

ψj

ρi

ρj

µij

Note that inverse limits may not always exist. However, if they do, they are unique up to unique isomorphism.
Now, we define profinite groups:

Definition 1.1. Profinite groups are the inverse limit of a system of finite groups.

One can give amore constructive definition of profinite groups: Suppose {Gi}i∈I is a collection of finite groups, each
group equipped with the discrete topology, thus making it a topological group. Also suppose that the indexing set
I is a directed set, i.e. there exists a reflexive and transitive order ≤ on I such that for any i, j ∈ I, there exists k ∈ I
such that i ≤ k, j ≤ k.
Let {µij : Gi 7→ Gj : i, j ∈ I, j ≤ i} be a collection of group homomorphisms, where µii = id. Then define

lim
←−

Gi :=

(gi)i∈I ∈
∏
i∈I

Gi : µij(gi) = gj for all j ≤ i


One can verify that this satisfies the universal property of inverse limits.
The inverse limit is equipped with the product topology.
We also define the so-called profinite completion as follows:

Definition 1.2. Let G be any group. Then define the profinite completion of G, written Ĝ, as:

Ĝ := lim
←−

G/N

1basically, this means that all the objects in the category have an underlying set, and the collection of all morphisms between two objects of a
category is a set
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where N ranges over all normal subgroups of G with finite index. We also equip G/N with the discrete topology,
and that turns Ĝ into a topological group.

Profinite groups play a very important role in number theory and Galois theory. In fact, Galois groups are all, and
the only, profinite groups [Wat74].
While many properties of profinite groups can be proven in a general setting, we shall not do so. We shall instead
prove those properties for Galois groups, and then they will transfer over to profinite groups due to the equivalence
mentioned above.

�2. Krull Topology

LetK/k be a (possibly infinite) Galois extension. We first define the so-called Krull topology.

Definition 2.1. Let E := {E : K ⊇ E ⊇ k,E/k is finite Galois} be the collection of all finite Galois subextensions of
K/k. We define the Krull topology as the topology generated by the basis B, where

B := {σGal(K/E) : σ ∈ Gal(K/k), E ∈ E}

Note that we have to verify that B is indeed a basis: To do that, note that Gal(K/k) ∈ B, and thus B covers every
point in Gal(K/k). Moreover, for any σGal(K/E), σ′Gal(K/E′) ∈ B, suppose τ ∈ σGal(K/E) ∩ σ′Gal(K/E′).
Since σGal(K/E), σ′Gal(K/E′) are cosets containing τ , σGal(K/E) = τ Gal(K/E), σ′Gal(K/E′) = τ Gal(K/E′).
But note thatGal(K/EE′) = Gal(K/E)∩Gal(K/E′), and thus τ ∈ τ Gal(K/EE′) = τ Gal(K/E)∩τ Gal(K/E′) ∈ B,
as desired.
The second order of business is to verify that the group structure and topological structure ofGal(K/k) are compat-
ible.

Lemma 2.1. Gal(K/k) is a topological group.

Proof. Write G := Gal(K/k). We first verify that the map G ∋ x 7→ x−1 ∈ G is continuous. Note that it is enough to
verify that the pullback of the basic open sets is open. Now, the pullback of σGal(K/E) under the inverse map
is Gal(K/E)σ−1. Since E/k is Galois and hence normal, Gal(K/E) is a normal subgroup of Gal(K/k). Thus,
σGal(K/E)σ−1 = Gal(K/E) =⇒ Gal(K/E)σ−1 = σ−1 Gal(K/E) ∈ B, as desired.
Now we verify that G × G ∋ (x, y) 7→ φ(x, y) := xy ∈ G is continuous. Let U ⊆ G be open, and suppose
(σ, τ) ∈ φ−1(U). Then στ ∈ U =⇒ στ Gal(K/E) ⊆ U for some E ∈ E , where the implication follows since
U is open. We argue that φ(σGal(K/E) × τ Gal(K/E)) ⊆ U =⇒ σGal(K/E) × τ Gal(K/E) ⊆ φ−1(U), thus
implying that (σ, τ) has an open neighborhood in φ−1(U), and hence is open. Indeed, let α1, α2 ∈ Gal(K/E).
Then σα1τα2 = στ · (τ−1α1τα2). Since Gal(K/E) is a normal subgroup of Gal(K/k), τ−1α1τ = α′1 for some
α′1 ∈ Gal(K/E), and thus σα1τα2 = στα′1α2 ∈ στ Gal(K/E) ⊆ U , as desired. ■

We now characterize the topology induced by this basis.

Theorem 2.2. Gal(K/k) is compact, Hausdorff and totally disconnected under the Krull topology.

Remark. Recall that a topological space is called totally disconnected if it has only singletons as connected subsets.
Subspaces and products of totally disconnected spaces are totally disconnected.
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Proof. Consider the map:
Φ : Gal(K/k) 7→

∏
E∈E

Gal(E/k)

which maps Gal(K/k) ∋ σ 7→ Φ(σ) := (σ|E)E∈E ∈
∏
E∈E Gal(E/k). Note that σ|E ∈ Gal(E/k) since E is normal.

Furthermore, note that Gal(E/k) is a finite set for any E ∈ E , and we equip Gal(E/k) with the discrete topology.
Being a finite set equippedwith the discrete topology,Gal(E/k) is compact andHausdorff, and thus

∏
E∈E Gal(E/k)

is also compact (by Tychonoff’s theorem) and Hausdorff. Finally, the discrete topology naturally makes Gal(E/k)
totally disconnected, and hence

∏
E∈E Gal(E/k) totally disconnected.

Wefirst claim thatΦ is continuous: For that, it is enough to show thatπE◦Φ is continuous, whereπE :
∏
F∈E Gal(F/k) 7→

Gal(E/k) is the canonical projection map. But πE ◦ Φ is just the restriction map Gal(K/k) 7→ Gal(E/k), and
(πE ◦ Φ)−1(τ) = τ Gal(K/E) ∈ B for any τ ∈ Gal(E/k), as desired.
Secondly, we claim that Φ is injective: Indeed, suppose σ1, σ2 ∈ Gal(K/k) are such that σ1(x) ̸= σ2(x) for some
x ∈ K. Let L be the normal closure of x in K. Then note that L/k is finite Galois, and (σ1)|L ̸= (σ2)|L, and thus
Φ(σ1) ̸= Φ(σ2).
Thirdly, the image of Φ is closed. To prove this, we first prove a claim:

Proposition 1. Call a (σE)E∈E ∈
∏
E∈E Gal(E/k) coherent if σE |E′ = σE′ for any E,E′ ∈ E such that E′ ⊆ E. Then

(σE)E∈E belongs to the image of Φ if and only if it is coherent.

Proof. Clearly, all elements in the image of Φ are coherent. Conversely, suppose (σE)E∈E is coherent. Define a map
σ : K 7→ K as σ|E := σE for all E ∈ E . Note that σ maps every element α ∈ K, since α is contained in its normal
closure, which is contained in E . Now, σ is not well-defined only if there exist E,E′ such that σE |E∩E′ ̸= σE′ |E∩E′ .
But that is not the case, since σE |E∩E′ = σE∩E′ = σE′ |E∩E′ . Finally, also note that σ is in fact an automorphism, since
for any x, y ∈ K, with the normal closure of x being Lx, and y being Ly , all the automorphism axioms are satisfied
by σLxLy

, and hence by σ. ■

Thus, consider (σE)E∈E outside the image of Φ. Then there exists F, F ′ ∈ E with F ′ ⊆ F such that σF |F ′ ̸= σF ′ .
Then note that (σE)E∈E ∈ {σF } × {σF ′} ×

∏
F∈E\{F,F ′}Gal(F/k) =: U , and U is open. Furthermore, no element of

U is coherent, and thus U ∩ im(Φ) = ∅. Thus, every element in the complement of im(Φ) has an open neighborhood
outside im(Φ), and thus im(Φ) is closed.
Finally, Φ is an embedding, i.e. the map Φ′ : Gal(K/k) 7→ Φ(Gal(K/k)) is a homeomorphism. We already know
that Φ′ is a continuous bijection, so it remains to show that (Φ′)−1 : Φ(Gal(K/k)) 7→ Gal(K/k) is continuous, which
is equivalent to showing that Φ′(B) is open in Φ(Gal(K/k)) for any B ∈ B. But note that Φ(σGal(K/E)) is the set
of all coherent elements in {σ|E} ×

∏
F∈E\E Gal(F/k), which is open in the subspace topology of the image of Φ.

Thus, the image ofΦ is a homeomorphic copy ofGal(K/k). However, im(Φ) is also a closed subspace of
∏
E∈E Gal(E/k),

which itself is compact Hausdorff. Since closed subspaces of compact Hausdorff domains are compact and Haus-
dorff, we’re done. Furthermore, since subspaces of totally disconnected spaces are totally disconnected, Gal(K/k)
is totally disconnected. ■

As the astute readermight have already noticed, the space of ‘coherent’ sequences looks like an inverse limit: Indeed,
consider the system {Gal(E/k)}E∈E . Note that (E ,⊆) is a directed set: The reflexivity and transitivity of⊆ is obvious,
and for any E1, E2 ∈ E , the compositum E1E2 ∈ E serves as the common upper bound for E1, E2. Furthermore, the
homomorphisms are the usual restriction maps, i.e. ifE1, E2 ∈ E are such thatE1 ⊆ E2, then we have the restriction
homomorphism

res : Gal(E2/k) 7→ Gal(E1/k)

where Gal(E2/k) ∋ σ 7→ res(σ) := σ|E1
∈ Gal(E1/k). Then note that the inverse limit of {Gal(E/k)}E∈E under

the aforementioned restriction maps is precisely the space of coherent sequences. But we also showed earlier that
Gal(K/k) is isomorphic to the space of coherent sequences contained in

∏
E∈E Gal(E/k). Thus, summarizing the

discussion above:
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Theorem 2.3.
Gal(K/k) ∼= lim

←−
Gal(E/k)

where E ranges over all the finite Galois subextensions ofK/k.

As it turns out, we can extract further unexpected mileage with the above characterization.

Lemma 2.4. Let G be an infinite compact Hausdorff topological group. Then G is uncountable.

Proof. Since G is Hausdorff, singletons are closed (for any x ∈ G, for every y ∈ G, y ∈ Uy , where Uy is an open set
not containing x. Then G \ {x} =

⋃
y ̸=x Uy is open, and thus {x} is closed). Since G is compact, and a topological

group, no singleton set is open (Since G is a topological group, if any singleton is open, all singletons have to be
open. If all singletons are open, then taking their union gives an infinite open cover for G, which doesn’t have any
finite subcover, which can’t be, if G is compact). Thus all singletons are closed sets with empty interiors. Now, by
the Baire Category Theorem, compact Hausdorff spaces are Baire spaces, and thus G is a Baire space. Also, G is a
union of closed sets with empty interiors. Since G doesn’t have an empty interior, G has to be uncountable. ■

Corollary 2.5. Any infinite Galois group is uncountable.

�3. Galois Correspondence

Note that the usual Galois correspondence for finite extensions no longer works for infinite extensions: Indeed,
consider the extension Fp/Fp. Note that the only finite subextensions of this extension are Fpn/Fp for all n ∈ N.
Now, let φ ∈ Gal(Fp/Fp) denote the Frobenius map, i.e. Fp ∋ x 7→ φ(x) := xp ∈ Fp. Recall that Gal(Fpn/Fp) =
⟨φ|Fpn

⟩ ∼= Z/nZ. Thus, by Theorem 2.3,

Gal(Fp/Fp) ∼= lim
←−

Z/nZ ∼= Ẑ

where the restriction maps are defined as µmn : Z/mZ 7→ Z/nZ, Z/mZ ∋ x 7→ µmn(x) := x mod n ∈ Z/nZ for all
n | m.
Now, note that F⟨φ⟩p = Fp: Indeed, for any x ∈ Fp \Fp, we have x ∈ Fpn for some n, and some power of the Frobenius
automorphism moves x, since F⟨φ⟩pn = FGal(Fpn/Fp)

pn = Fp. However, we do not have Gal(Fp/Fp) ∼= ⟨φ⟩: Indeed, ⟨φ⟩
being a cyclic group is countable, while Gal(Fp/Fp) is uncountable.
However, we can make some ‘topological’ amends, and the usual Galois correspondence goes through. We first
investigate some ways in which the topology of the Galois group interacts with the group structure.

Proposition 2. LetK/k be a Galois extension, and let F be any subextension, not necessarily finite. ThenGal(K/F )
is a closed subgroup of Gal(K/k).

Proof. Let σ ∈ Gal(K/k) \ Gal(K/F ). Then there exists α ∈ F such that σ(α) ̸= α. Let L be the normal closure of
α. Then note that σGal(K/L)∩Gal(K/F ) = ∅, because every element of σGal(K/L)moves α, while no element of
Gal(K/F ) does. But σGal(K/L) is open, and we’re done. ■
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Remark. Note that if F/k is a finite Galois extension, and σ ∈ Gal(K/k) is arbitrary, then σGal(K/F ) is both open
and closed.

Lemma 3.1. Let H be a subgroup of G := Gal(K/k). Then Gal(K/KH) = H , i.e. Gal(K/KH) equals the closure of
H in G.

Proof. Clearly,H ⊆ Gal(K/KH). Furthermore, by Proposition 2,Gal(K/KH) is also closed, and thusH ⊆ Gal(K/KH).
Now, suppose σ ∈ Gal(K/k) \ H . If we can show that σ ̸∈ Gal(K/KH) ⇐⇒ σ moves something inKH , we’ll be
done. Since Gal(K/k) \H is open, σ is contained in some basic open set, i.e. σGal(K/F ) ∩H = ∅ for some F ∈ E .
NowAFTSOC there is noα ∈ KH which σ also doesn’t fix. Then σ|F fixesFH|F ⊆ KH , whereH|F := {h|F : h ∈ H}.
But then σ|F ∈ Gal(F/FH|F ) = H|F , which implies there exists h ∈ H such that σ|F = h|F =⇒ σGal(K/F ) =
hGal(K/F ) =⇒ h ∈ σGal(K/F ) =⇒ σGal(K/F ) ∩H ⊃ {h} ≠ ∅, leading to a contradiction. ■

Corollary 3.2. If H is a closed subgroup of Gal(K/k), then Gal(K/KH) = H .

Corollary 3.3. For any subgroup H of Gal(K/k),KH = KH .

Proof. Note that KH = KGal(K/KH): Indeed, H ⊆ Gal(K/KH), so KH ⊇ KGal(K/KH), and the reverse inequality is
immediate too. ButKGal(K/KH) = KH . ■

Theorem 3.4 (Galois Correspondence). Let K/k be a Galois extension equipped with the Krull topology. Then for
any closed subgroupH ofGal(K/k),Gal(K/KH) = H . Similarly, for any intermediate subfieldE ofK,KGal(K/E) =
E. Consequently, there is a bijection between the closed subgroups of Gal(K/k) and the intermediate subfields of
K/k given by E ⇝ Gal(K/E), H ⇝ KH .
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