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Notation

Let n ∈ N = {1, 2, . . .}. Then we refer to the set {1, 2, . . . , n} as [n].

Given any set X , we define
(
X
k

)
:= {S ⊆ X : |S| = k}. We also define 2X := {S : S ⊆ X} to be the power-set of X .

For any S ⊆ [n], 1S ∈ Rn is the indicator vector of S, where (1S)i = 1 if i ∈ S, and 0 otherwise.

For any v ∈ Rn and any S ⊆ [n], we define vS :=
∏

i∈S vi.

Unless specified otherwise, all logarithms are assumed to be in base e.

For any two vectors v, w ∈ Rn
≥0, we define vw :=

[
vw1
1 . . . vwn

n

]T
∈ Rn

≥0. We define 00 := 1.

A polynomial g ∈ R[z1, . . . , zn] is called d-homogenous if all non-zero monomials in g are of degree d.

A polynomial g ∈ R[z1, . . . , zn] is called multilinear if the degree of any variable in g is at most 1. For example,

3xyz − 5y is a multilinear polynomial, while z2 + 2 is not.

The differential operator ∂
∂x is denoted as ∂x. In case we have indexed variables x1, . . . , xn, we abbreviate ∂xi

as ∂i.

Let v ∈ Rn. We abbreviate
∑n

i=1 vi∂i as ∂v . We assure the reader that it will be clear from the context if v is a variable

or a vector. If f is smooth, then for any v, w ∈ Rn, ∂v∂wf = ∂w∂vf .

Observe that if f is homogenous (resp. multilinear), so is ∂vf for any v ∈ Rn.

Consider α ∈ Zn
≥0. Then we define ∂α :=

∏n
i=1 ∂

αi
i . Also, we define |α| =

∑n
i=1 αi.

Let Ω be some non-empty open subset of Rn, and let h : Ω 7→ R be a smooth function. The gradient of f is a n × 1

vector which is denoted as∇f , where (∇f)j := ∂jf . TheHessian of h is a n×nmatrix which is denoted as∇2h =: H ,

where Hij := ∂i∂jh. The Hessian of smooth functions is symmetric.

We will quite often be dealing with logarithms of continuous functions in this survey. Consequently, we’ll have an

issue with log f whenever f = 0. We remedy this by working with the extended real line R ∪ {−∞}.

For any S ⊆ [n], the indicator vector 1S ∈ Rn is defined such that (1S)i = 1 if i ∈ S, and 0 otherwise.

For any V ⊆ Rn,

conv(V ) :=
⋂

Rn⊇S⊇V
S is convex

S

denotes the convex hull of V . If V is finite, then conv(V ) is a polytope.

Let µ : 2[n] 7→ [0, 1] be a probability distribution on 2[n], i.e.
∑

S∈2[n] µ(S) = 1. Let i ∈ [n] be arbitrary. We define

µ|i to be the distribution µ conditioned on i, i.e. µ|i is a distribution on 2[n]\{i} such that for any S ⊆ [n] \ {i},

µ|i(S) := µ(S∪{i})∑
S′⊆[n]\{i} µ(S′∪{i}) . Similarly, µ|i is also a distribution on 2[n]\{i} such that for any S ⊆ [n] \ {i}, µ|i(S) :=

µ(S)∑
S′⊆[n]\{i} µ(S′) . We say that µ|i is “µ conditioned in i”, while µ|i is “µ conditioned out i”.

Given ν ∈ Rn
>0, we define the inner product w.r.t ν as ⟨v, w⟩ν :=

∑n
i=1 νiviwi.
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Gil Kalai’s Fields Medal laudatio of June Huh’s work [Kal22].

�1. Log Concave Polynomials

We introduce the notion of log-concavity, which forms a bridge between the combinatorial and analytic worlds.

Definition 1.1 (Log-Concavity). A function g : Rn
≥0 7→ R≥0 is said to be log-concave if for any v, w ∈ Rn

≥0, λ ∈ [0, 1],

g(λv + (1− λ)w) ≥ g(v)λg(w)1−λ. Evidently, the zero function is log-concave.

It is easy to see that if f : Rn
>0 7→ R>0 is a log-concave function, then log f is a concave function. Thus if a ∈ Rn

>0 and

b ∈ Rn are such that a+ λb ∈ Rn
>0 for every λ ∈ [0, 1], then log f(a+ λb) ≥ log f(a) + λ log f(b) for every λ ∈ [0, 1].

Throughout this survey, we shall only talk of the log-concavity of functions whose domains are a subset of Rn
≥0.

Remark. Let f : Rn 7→ R be a continuous function that is concave on some set U ⊆ Rn. Let U be the closure

of U , and let x, y ∈ U be arbitrary members of U . Then there exist sequences {xk}k∈N, {yk}k∈N in U such that

limk→∞ xk = x, limk→∞ yk = y. Let λ ∈ [0, 1] be some arbitrary number. Then

f(λx+ (1− λ)y) = f

(
lim
k→∞

(λxk + (1− λ)yk)

)
continuity of f

= lim
k→∞

f(λxk + (1− λ)yk)︸ ︷︷ ︸
≥λf(xk)+(1−λ)f(yk)

≥ lim
k→∞

λf(xk) + (1− λ)f(yk)

= λf(x) + (1− λ)f(y)

Thus f is concave on U too.

Consequently, whenwewant to prove the log-concavity of some function g onRn
≥0, we’ll just prove the log-concavity

of g on Rn
>0. This is valid since Rn

>0 = Rn
≥0.

We shall mostly be interested in the log-concavity of polynomials with non-negative coefficients. To characterize

such polynomials, we describe some closure properties which allow us to generate log-concave polynomials from

known log-concave polynomials.

Proposition 1 (Closure Properties). Let p(z1, . . . , zn), q(z1, . . . , zn) be log-concave polynomials with non-negative

coefficients. Then the following polynomials are log-concave, and have non-negative coefficients:
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1. Affine Transformations: p(T (y1, . . . , ym)), where T : Rm 7→ Rn : y 7→ Ay + b, where A ∈ Rn×m
≥0 , b ∈ Rn

≥0.

2. Permutation: p(zπ(1), . . . , zπ(n)) for any permutation π of [n]

3. External Field: cp(c1z1, c2z2, . . . , cnzn) for scalars c, c1, . . . , cn ∈ R≥0.

4. Specialization: p(a, z2, . . . , zn) = p(z1, z2, . . . , zn)
∣∣
z1=a

, for a ∈ R≥0.

5. Product: r(z1, . . . , zn) := p(z1, . . . , zn)q(z1, . . . , zn)

Proof. For the first part, note that p(T (λv+(1−λ)w)) = p(λT (v)+(1−λ)T (w)) ≥ p(T (v))λp(T (w))1−λ, where the last

inequality follows from the log-concavity of p. Parts 2, 3, 4 follow when one realizes that permutations, scalings and

specializations are non-negative linear transformations (for part 3, one further notes that if f is log-concave, then cf

is also log-concave for any c ≥ 0). Finally, for the last part, r(λv + (1− λ)w) = p(λv + (1− λ)w)q(λv + (1− λ)w) ≥

p(v)λp(w)1−λq(v)λq(w)1−λ = r(v)λr(w)1−λ. ■

Note that log-concave polynomials are not closed under differentiation: p(z) = z4

4 + z is log-concave, yet q := ∂zp =

z3 + 1 is not. Indeed, recall that if f is a smooth concave function, then ∂2zf ≤ 0 everywhere. Now,

∂2z log p =
−4(z3 − 2)2

z2(z3 + 4)2
≤ 0, ∂2z log q

∣∣
z=1

=
−3z(z3 − 2)

(z3 + 1)2
∣∣
z=1

=
3

4
̸≤ 0

At this point, we mention a “topological closure” property of log-concave polynomials.

Lemma 1.1. Fix any d ∈ N. The set of log-concave polynomials of degree ≤ d is closed under the topology of

pointwise convergence.

Proof. Suppose we have a sequence of polynomials p1, p2, . . . such that limk→∞ pk = p, where the limit of functions is

pointwise. Note that since we’re dealing with bounded degree polynomials over a field of characteristic 0, pointwise

convergence actually means that the coefficients of the polynomials converge. Also, note that the negative semi-

definiteness of any matrix is equivalent to a system of polynomial constraints 1. In particular, the log-concavity of

pk is equivalent to the Hessian of log pk being NSD, which further is equivalent to a system of rational function

inequalities on the coefficients of pk 2, i.e. inequalities of the form f1(ak) ≥ 0, . . . , fr(ak) ≥ 0, where ak is the vector

of all coefficients of pk, and f1, . . . , fr are rational functions. Since fi(ak) ≥ 0 for all i ∈ [r], k ∈ N, fi(a) ≥ 0 3, where

a = limk→∞ ak is the vector of coefficients of p. Consequently, the p is also log-concave, as desired. ■

1The PSDness of a matrix can be enforced by saying that all the principal minors of the matrix must be non-negative. Note that the principal

minors of a matrix are polynomials in the entries of the matrix.
2Note that the entries of ∇2 log pk are rational functions in the coefficients of pk
3since rational functions are continuous

https://math.stackexchange.com/questions/293004/what-is-the-topology-of-point-wise-convergence
https://math.stackexchange.com/questions/293004/what-is-the-topology-of-point-wise-convergence


Applications of Log Concave Polynomials 5 / 39 Arpon Basu

Definition 1.2. A smooth function f : Rn
≥0 7→ R≥0 is said to be log-concave at z = a if ∇2 log f |z=a =

(
∇2 log f

)
(a)

is a negative semi-definite matrix.

Clearly, a smooth function f is log-concave on Rn
≥0 if it is log-concave everywhere on Rn

≥0.

Note that if we want to investigate the log-concavity of f , then we have to check the negative-semi-definiteness of

∇2 log f , which is a bit clumsy. Ideally, we would want to characterize the log-concavity of f through ∇2f itself.

This is precisely what we shall do now.

Theorem 1.2. Let f ∈ R[z1, . . . , zn] be a d-homogenous polynomial with non-negative coefficients, where d ≥ 2. Let

a ∈ Rn
≥0 be any point such that f(a) ̸= 0 ⇐⇒ f(a) > 0. Define Q := ∇2f

∣∣
z=a

. Then the following are equivalent:

1. f is log-concave at z = a.

2. zTQz ≤ 0 for every z ∈ (Qa)⊥.

3. zTQz ≤ 0 for every z ∈ (Qb)⊥, where b is any vector such that Qb ̸= 0.

4. zTQz ≤ 0 for every z in some (n− 1)-dimensional vector space.

5. (aTQa)Q− (Qa)(Qa)T is negative semi-definite.

6. For d ≥ 3, parts 1 . . . 5 and 7 are equivalent to: ∂af =
∑

i∈[n] ai∂zif is log-concave at z = a.

7. If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of Q, then λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn.

Proof. Applying Lemma A.4 on ∂jf for every j ∈ [n] yields Qa = (d− 1) · (∇f) (a), and then using Lemma A.4 on f

yields aTQa = d(d− 1)f(a) =⇒ aTQa > 0. Now,

∇2 log f

∣∣∣∣
z=a

=

(
f · ∇2f −∇f(∇f)T

f2

)∣∣∣∣
z=a

=
d(d− 1)

(aTQa)2

(
aTQa ·Q− d

d− 1
(Qa)(Qa)T

)
︸ ︷︷ ︸

=:M

(1 =⇒ 2): Since f is log-concave at z = a, then∇2 log f
∣∣
z=a

is negative semi-definite. Now, z ∈ (Qa)⊥ =⇒ zTQa =

0. Now, if we simplify zTMz subject to the constraint zTQa = 0, we get zT
(

d(d−1)
aTQa

Q
)
z. Thus zTQz ≤ 0 for every

z ∈ (Qa)⊥, since d(d− 1), aTQa > 0.

(2 =⇒ 4): Since aTQa > 0, Qa ̸= 0, and thus (Qa)⊥ is a (n− 1)-dimensional vector space.

(4 =⇒ 5): Let L be the (n − 1)-dimensional vector space over which zTQz ≤ 0. Consider some arbitrary b ∈ Rn.

Let P ∈ Rn×2 be the matrix with columns a and b. Then PTQP =

aTQa aTQb

bTQa bTQb

. If rank(PTQP ) = 1, then

det(PTQP ) = 0. Thus assume P has rank 2. Then the column space of P intersects L non-trivially, i.e. there exists
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some v ∈ R2 such that Pv ∈ L \ {0}, and vTPTQPv ≤ 0. Thus PTQP is not positive-definite. At the same time,

the diagonal entry aTQa of PTQP is strictly positive, and thus PTQP can’t be negative-definite. Consequently, the

eigenvalues of PTQP are of opposite signs, implying that det(PTQP ) < 0. Thus, for any b ∈ Rn, det(PTQP ) ≤ 0.

But det(PTQP ) = bT((aTQa)Q− (Qa)(Qa)T)b. Thus (aTQa)Q− (Qa)(Qa)T is negative semi-definite, as desired.

(5 =⇒ 1): Ignoring the d(d−1)
(aTQa)2

> 0 factor, we must show that
(
aTQa ·Q− d

d−1 (Qa)(Qa)
T
)
≼ 0. Let b ∈ Rn be an

arbitrary vector. Then

bT
(
aTQa ·Q− d

d− 1
(Qa)(Qa)T

)
b = bT

(
aTQa ·Q− (Qa)(Qa)T

)
b− (bTQa)2

d− 1
≤ bT

(
aTQa ·Q− (Qa)(Qa)T

)
b ≤ 0

where the last inequality follows from the negative semi-definiteness of
(
aTQa ·Q− (Qa)(Qa)T

)
.

(3 =⇒ 4) is obvious. For (4 =⇒ 3), note that both (4) and (3) are statements about the matrixQ only. In particular,

they don’t involve f or a. Thus, if we can prove (4 =⇒ 3) for some particular f, a for which (∇2f)
∣∣
z=a

= Q, we’d

be done for all f, a for which (∇2f)
∣∣
z=a

= Q. Thus, we choose f(z) := zTQz
2 . Note that∇2f is identically equal to Q.

Thus, for any b such that f(b) = bTQb
2 ̸= 0 =⇒ Qb ̸= 0, by (2) ((2) holds since (4 ⇐⇒ 2)), we have that zTQz ≤ 0 for

every z ∈ (Qb)⊥, as desired.

(4 ⇐⇒ 6): Since f is homogenous, ∂af is homogenous. Applying Lemma A.4 on ∂i∂jf for all i, j yields that(
∇2(∂af)

) ∣∣∣∣
z=a

= (d− 2)
(
∇2f

) ∣∣∣∣
z=a

= (d− 2) ·Q.

(7 =⇒ 4): Since (n− 1) of Q’s eigenvalues are non-positive, the quadratic form z 7→ zTQz is negative semi-definite

on the (n− 1)-dimensional vector space spanned by the eigenvectors of the non-positive eigenvalues.

(¬7 =⇒ ¬4): Since Q is real-symmetric, by the spectral theorem, the dimension of the largest subspace (of Rn)

over whichQ is negative semi-definite is the number of non-positive eigenvaluesQ has. Thus, ifQ has≥ 2 (strictly)

positive eigenvalues, then Q can’t be negative semi-definite over any (n− 1)-dimensional subspace. If λ1 < 0, then

Q is negative definite, and thus PTQP is negative semi-definite for any P ∈ Rn×2, and thus all diagonal entries of

PTQP are non-positive. However, if we choose P as in the proof of (4 =⇒ 5), then the first diagonal entry of PTQP

equals aTQa, which is strictly positive, thus leading to a contradiction. ■

Remark. A few remarks are in order:

1. (7) allows us to conclude that (−1)n det(Q) ≤ 0.

We shall now explore variants of the notion of log-concavity, each variant with its applications and uses. We first

talk about complete log-concavity, which is a stronger notion of log-concavity.

1.1. Complete Log-Concavity

Definition 1.3 (Complete Log-Concavity). A polynomial g ∈ R[z1, . . . , zn] is called completely log-concave if for every

k ≥ 0, and every non-negative matrix V ∈ Rn×k
≥0 , DV g is a non-negative log-concave function over Rn

>0, where

DV g(z) :=

 k∏
j=1

n∑
i=1

Vij∂i

 g(z1, . . . , zn)
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Remark. A few remarks are in order:

1. Note that for k = 0, the DV operator is equivalent to the identity operator (since an empty product evaluates

to 1). Thus, for k = 0, DV g = g, and thus complete log-concavity implies log-concavity.

2. Consider κ := (κ1, . . . , κn) ∈ Zn
≥0. Notice that one can generate the differential operator ∂κ1

1 · · · ∂κn
n fromDV by

choosing a non-negative V appropriately. Also notice that ∂κ1
1 · · · ∂κn

n g(z) equals the coefficient of zκ1
1 · · · zκn

n

in g, plus monomials containing non-zero powers of z1, . . . , zn. Thus, if the coefficient of zκ1
1 · · · zκn

n in g is

negative, then one can derive a contradiction by choosing z1, . . . , zn to be sufficiently small positive numbers

which would lead to ∂κ1
1 · · · ∂κn

n g(z) becoming negative, violating the non-negativity clause in the complete

log-concave definition.

Thus completely log-concave polynomials have non-negative coefficients.

3. Let g be a r-homogenous polynomial with non-negative coefficients. Note that if k ≥ r, then DV g is a non-

negative constant, which is log-concave. If k = r−1, thenDV g = a1z1+a2z2+ . . .+anzn, where a1, . . . , an ≥ 0.

With some effort, it can be seen that this non-negative linear combination of variables is log-concave too. Thus,

for checking the complete log-concavity of r-homogenous polynomials with non-negative coefficients, WLOG

one can assume k ≤ r − 2.

4. Using techniques similar to that in the proof of Lemma 1.1, one can show that the set of completely log-concave

polynomials of bounded degree is also closed.

5. Using elementary topology, one can show that if DV g is log-concave for every V ∈ Rn×k
>0 , then DV g is com-

pletely log-concave.

As with log-concave polynomials, we prove the closure properties of completely log-concave polynomials.

Proposition 2. Let g(z1, z2, . . . , zn) be a completely log-concave polynomial. Then the following polynomials are

completely log-concave too:

1. Affine Transformations: g(T (y1, . . . , ym)), where T : Rm 7→ Rn : y 7→ Ay + b, where A ∈ Rn×m
≥0 , b ∈ Rn

≥0.

2. Permutation: g(zπ(1), . . . , zπ(n)) for any permutation π of [n]

3. External Field: cg(c1z1, c2z2, . . . , cnzn) for scalars c, c1, . . . , cn ∈ R≥0.

4. Specialization: g(a, z2, . . . , zn) = g(z1, z2, . . . , zn)
∣∣
z1=a

, for a ∈ R≥0.

5. Differentiation: ∂vg =
∑

i∈[n] vi∂ig, for v ∈ Rn
≥0. We didn’t have this for log-concave polynomials.
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Proof. For the first part, note that since T is non-negative, and since all coefficients of g are non-negative, g(T (y)) has

non-negative coefficients. Thus, for any non-negative V , DV g is a polynomial with non-negative coefficients and is

thus non-negative on Rn
>0.

Now, note that for any v ∈ Rm,

∂vg(T (y)) = ∂Avg(z)
∣∣
z=T (y)

=⇒ ∂v1 · · · ∂vkg(T (y)) = ∂Av1 · · · ∂Avkg(z)
∣∣
z=T (y)

=⇒ DV g(T (y)) = DAV g
∣∣
z=T (y)

Note thatAV is a non-negative matrix, and thusDAV g is a log-concave function (by the assumption on the complete

log-concavity of g). By Part 1 of Proposition 1, (DAV g) (T (y)) = DAV g
∣∣
z=T (y)

is log-concave, as desired.

As in the proof of Proposition 1, parts 2, 3, and 4 follow frompart 1. Finally, part 5 follows directly from the definition

of complete log-concavity! ■

Bivariate completely log-concave polynomials have a very powerful property called ultra log-concavity. This theorem

will become necessary later on when we establish Mason’s conjecture (Corollary 2.6).

Theorem 1.3. If f =
∑n

k=0 ckz
n−k
1 zk2 ∈ R≥0[z1, z2] is completely log-concave, then the sequence c0, . . . , cn is ultra

log-concave, i.e. for every 1 ≤ k < n, (
ck(
n
k

))2

≥ ck−1(
n

k−1

) · ck+1(
n

k+1

)

Proof. Since f is completely log-concave, the quadratic q(z1, z2) := ∂n−k−1
z1 ∂k−1

z2 f is log-concave on R2
≥0. Now,

∇2q =

 ∂2z1q ∂z1∂z2q

∂z2∂z1q ∂2z2q

 = n!

 ck−1

( n
k−1)

ck
(nk)

ck
(nk)

ck+1

( n
k+1)


By the remark succeeding the proof of Theorem 1.2, det(∇2q) ≤ 0, which yields the desired result. ■

We now investigate an alternate characterization of completely log-concave polynomials, which makes explicit the

role of non-zero coefficients in determining the complete log-concavity of a polynomial.

1.1.1. Indecomposability Characterizations of Completely Log-Concave Polynomials

The theorems proved in this sub-subsection are necessary to establish Mason’s conjecture (Corollary 2.6). The ulti-

mate aim of these results is to show Theorem 1.6, which relates the complete log-concavity of a polynomial purely

to what monomials are non-zero in that polynomial. In a sense, Theorem 1.6 is a “combinatorial characterization”

of the analytic property of complete log-concavity.

Lemma 1.4. Let f, g ∈ R[z1, . . . , zn] be homogenouswith non-negative coefficients satisfying ∂bf = ∂cg ̸= 0 for some

b, c ∈ Rn
≥0. If f, g are log-concave on Rn

≥0, then so is f + g.
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Proof. Note that ∂bf, ∂cg are both polynomials. Thus, their equality implies that f, g have the same degree d. We

induct on d. For d = 1, f + g is a linear polynomial with non-negative coefficients, which can be easily seen to be

log-concave from the basic definition. Now, fix any a ∈ Rn
>0, and let d ≥ 2. Define Q1 := ∇2f

∣∣
z=a

, Q2 := ∇2g
∣∣
z=a

.

Now, observe that (Q1b)i = (∂i∂bf)
∣∣
z=a

, (Q2c)i = (∂i∂cg)
∣∣
z=a

. Since ∂bf = ∂cg, Q1b = Q2c. Furthermore, since

∂bf ̸= 0, ∂i∂bf ̸= 0 for some i. Since a ∈ Rn
>0 is strictly positive, (∂i∂bf)(a) ̸= 0, and thus Q1b ̸= 0. By the log-

concavity of f, g, both the quadratic forms z 7→ zTQ1z, z 7→ zTQ2z are negative semi-definite on (Q1b)
⊥ = (Q2c)

⊥

by (1 =⇒ 2) of Theorem 1.2. Consequently, z 7→ zT(Q1 +Q2)z is also negative semi-definite on (Q1b)
⊥, which is a

(n−1)-dimensional vector space. Thus invoking (4 =⇒ 1) of Theorem 1.2 we get that any homogenous polynomial

having Hessian Q1 +Q2 at z = a is log-concave at z = a, and thus f + g is log-concave at z = a. Since a ∈ Rn
>0 was

arbitrary, f + g is log-concave on Rn
>0, and thus Rn

≥0. ■

Definition 1.4 (Indecomposable Polynomials). A polynomial f ∈ R[z1, . . . , zn] is called indecomposable if f can not

be written as f1 + f2, where f1, f2 are polynomials on disjoint sets of variables. Equivalently, f is indecomposable if

the indecomposability graph G({i : ∂if ̸= 0}, {{i, j} : ∂i∂jf ̸= 0}) is connected.

Lemma 1.5. Let f ∈ R[z1, . . . , zn] be a d-homogenous indecomposable polynomial with non-negative coefficients,

where d ≥ 3. If ∂if is log-concave on Rn
≥0 for every i ∈ [n], then ∂af is log-concave on Rn

≥0 for every a ∈ Rn
≥0.

Proof. WLOG assume ∂if ̸= 0 for every i ∈ [n]. Since f is indecomposable, we can also relabel z1, . . . , zn such that

for every 1 < j ≤ n, there exists i < j such that ∂i∂jf ̸= 0. Now fix some a ∈ Rn
>0. We want to show that

∑n
i=1 ai∂if

is log-concave on Rn
≥0. We will proceed by inducting on k to show that

∑k
i=1 ai∂if is log-concave on Rn

≥0 for every

k ∈ [n]. Note that this induction on k also proves the statement for a ∈ Rn
≥0

4.

Now, for k = 1, the result follows from the assumption. Now, suppose g :=
∑k

i=1 ai∂if is log-concave for some

k > 1. By the induction hypothesis, h := ak+1∂k+1f is also log-concave. Also, let b :=
[
a1 . . . ak 0 . . . 0

]T
∈

Rn
≥0, c := ak+11k+1 ∈ Rn

≥0. Then

∂bh = ∂cg =

k∑
i=1

aiak+1∂i∂k+1f

By our indecomposability assumption, there is some i ∈ [k] such that ∂i∂k+1f ̸= 0. Since aiak+1 ̸= 0, ∂bh ̸= 0.

Consequently, we can invoke Lemma 1.4 to obtain that g + h =
∑k+1

i=1 ai∂if is log-concave, as desired. ■

4Indeed, if some a ∈ Rn
≥0 has k non-zero entries, then we can permute our indices such that the first k entries of a are non-zero, and then the

kth step of our induction proves the result
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Theorem 1.6. Let f ∈ R[z1, . . . , zn] be a d-homogenous polynomial with non-negative coefficients, where d ≥ 2. If

the following conditions hold, then f is completely log-concave:

1. For all α ∈ Zn
≥0 with |α| ≤ d− 2, ∂αf =

(∏n
i=1 ∂

αi
i

)
f is indecomposable.

2. For all α ∈ Zn
≥0 with |α| = d− 2, ∂αf is log-concave over Rn

≥0.

Proof. We induct on d. The case d = 2 is obvious. Thus assume d ≥ 3. By the remark following the definition of

complete log-concavity, it is enough to show that DV g = ∂v1 · · · ∂vkg is log-concave, for any V ∈ Rn×k
>0 , k ≤ d− 2. If

k = 0, then to show the log-concavity of f at any point a, by Theorem 1.2 it suffices to show that ∂a is log-concave

at z = a. Note that the k = 1 case requires us to show that ∂ag is log-concave everywhere. Thus the k = 0 case can

be subsumed into the k = 1 case. Thus assume k > 0. By our induction hypothesis, ∂jf is completely log-concave

for all j ∈ [n], and thus ∂v1 · · · ∂vk−1
∂jf is log-concave on Rn

≥0. But ∂v1 · · · ∂vk−1
∂jf = ∂j∂v1 · · · ∂vk−1

f . Now, observe

that if f is indecomposable, then ∂vf is also indecomposable for any v ∈ Rn
>0, and consequently, ∂v1 · · · ∂vk−1

f is also

indecomposable, and has degree = d− k + 1 ≥ 3. We are then done by invoking Lemma 1.5. ■
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�2. Matroids, Log-Concavity, and Mason's Conjecture

A combinatorial context where log-concavity arises very naturally is the study of matroids. Matroids 5 are com-

binatorial entities that were independently introduced by Whitney ([Whi35]) and Nakasawa ([Nak35], [Nak36a],

[Nak36b]). One reason whymatroids are so ubiquitous throughout combinatorics is thatmatroids are exactly the class

of combinatorial structures over which a greedy optimization strategy works, i.e. if w : [n] 7→ R is some weight function,

then a variant of Kruskal’s algorithm for minimum spanning trees gives us the minimum weight base 6.

So let’s see what matroids are!

Definition 2.1 (Matroids). A matroidM = ([n], I) is said to be defined over the ground set [n] = {1, 2, . . . , n}, and

is characterized by its non-empty collection of independent sets I ⊆ 2[n] which satisfy the following properties:

1. Downward Closed: If A ∈ I, then 2A ⊆ I, i.e. if A is an independent set, then every subset of A is also an

independent set. In particular, since I is non-empty, it must contain ∅.

2. Exchange Property: If A,B ∈ I, and |A| < |B|, then there exists i ∈ B \A such that A ∪ {i} ∈ I.

The exchange property implies that all maximal independent sets of the matroid have the same size, which is known

as the rank of that matroid. Any maximal set of a matroid is known as its basis. Given a matroidM , BM is the set of

all bases ofM . Note that due to the downward closed property of a matroid, to describe all independent sets it is

enough to describe just the bases.

The generating function of a matroid is defined as

gM (z1, . . . , zn) :=
∑

B∈BM

zB =
∑

B∈BM

∏
i∈B

zi

Clearly gM is a rank(M)-homogenous polynomial with non-negative coefficients.

For any S ⊆ [n], rank(S) := maxI∈I
I⊆S

|I|. Any set which is not independent is called dependent. A minimal 7 depen-

dent set is called a circuit. Thus, if C ⊆ [n] is a circuit, then rank(C) = |C| − 1.

An element i ∈ [n] forms a loop if {i} is a circuit. Note that if i forms a loop, i doesn’t belong to any independent

set. We abuse notation slightly to say that i ∈ [n] is a loop if i forms a loop. Two elements, i, j ∈ [n], i ̸= j, such that

neither i nor j form loops, are called parallel if {i, j} form a circuit. A matroid with no loops or parallel elements is

called simple. IfM is simple, then {i, j} ∈ I for every i, j ∈ [n].

Let M = ([n], I) be a matroid, and let S ⊆ [n] be the set of elements which are not loops. One may note that the

parallelism relation on S is an equivalence relation. Thus we can create equivalence classes S1, . . . , Sk such that

S = S1 ∪ S2 ∪ · · · ∪ Sk, and j, k ∈ [n] are parallel if and only if j, k belong to the same equivalence class S∗. The
5Refer to [Oxl11] for a comprehensive introduction to the theory of matroids
6where the weight of an independent set I is defined as w(I) :=

∑
i∈I w(i)

7under the partial order induced by ⊆
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existence of such parallelism equivalence classes is sometimes called the matroid partition property.

LetM = ([n], I) be a matroid, and let I ∈ I. Then the contractionM/S is the matroidM/S := ([n] \ S, {T ⊆ [n] \ S :

T ∪ S ∈ I}).

Similarly, ifM = ([n], I) is a matroid, then for any k ≤ rank(M), the k-truncationMk := ([n], {I ∈ I : |I| ≤ k}) is

a matroid too. Clearly, rank(Mk) = k, and BMk
= {I ∈ I : |I| = k}. Thus, if we have an algorithm for calculating

(or approximating) |BM | for an arbitrary matroidM , then that same algorithm can be used to calculate (or approx-

imate) the number of independent sets of a given size k.

Let M = ([n], I) be a matroid. The dual matroid of M , is defined to be M∗ := ([n], I∗), where B∗ is a base in I∗ if

[n] \B∗ is a base in I. Thus rank(M∗) = n− rank(M).

Given two matroidsM1 = (E1, I1),M2 = (E2, I2), the direct sumM1 ⊕M2 is defined as

M1 ⊕M2 := (E1 ⊔ E2, {I1 ⊔ I2 : I1 ∈ I1, I2 ∈ I2})

where ⊔ stands for the disjoint union of sets. Recall the notion of disjoint union: IfA∩B = ∅, thenA⊔B = A∪B. If

A,B are not disjoint, say for example,A = {1, 2, 3}, B = {1, 2, 4}, thenA⊔B = {1A, 1B , 2A, 2B , 3, 4}, i.e. all elements

in A ∩B are made “copies” of in A ⊔B.

Two matroids (E1, I1), (E2, I2) are said to be isomorphic if there exists a bijection ϕ : E1 → E2 such that I1 ∈ I1 if

and only if ϕ(I1) ∈ I2.

The Newton polytope of a matroid is defined as PM := conv
(
{1B ∈ Rn : [n] ⊇ B ∈ BM ⊆ I}

)
, i.e. the Newton poly-

tope is the convex hull of the indicator set of all bases of our matroid. Cunningham [Cun84] showed that PM has an

“efficient separation oracle” for any matroidM . While we shall not get into what this means, what it implies is that

if we have a convex function f : PM 7→ R, then we can, in poly(n) time, minimize f (and also find the minimizer

p∗ ∈ PM). Similarly, we can, in polynomial time, maximize concave functions over PM .

2.1. Examples of Matroids

The reason matroids are so useful is because they subsume a wide variety of combinatorial phenomena within

themselves. We shall now see a few examples of matroids to get a feel for how powerful this notion is.

1. Linear Matroids: Any set of vectors v1, . . . , vn ∈ Ft, where F is a field, induce the linear matroidM = ([n], I),

where I = {A ⊆ [n] : {vi : i ∈ A} is a linearly independent set}. The rank of this matroid is the rank of

the set of vectors, and the bases of this matroid are the sets of indices of vectors in (linear algebraic) bases of

{v1, . . . , vn}.

IfM is isomorphic to a linear matroid induced by vectors in a F-vector space, we say thatM is F-representable.

There exist matroids (such as the Vámos matroid) which are not representable over any field. Also, in general,

given two fields F,H, there exist matroids which are F-representable but not H-representable. For example,

the Fano matroid is F2-representable but not R-representable.

2. Graphic Matroids: Let G = (V,E) be a simple graph. It induces the matroidM = (E, I), where I = {S ⊆ E :

https://en.wikipedia.org/wiki/V%C3%A1mos_matroid
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The edges in S don’t create any cycles}. The bases of this matroid are the spanning trees of G.

It can be shown that every graphic matroid is isomorphic to some linear matroid.

3. Uniform Matroids: These are the matroids Ur
n := ([n],

⋃r
i=0

(
[n]
r

)
), i.e. the set of bases of Ur

n is
(
[n]
r

)
. Uniform

matroids are linear matroids; indeed, it is easy to see that the linearly independent subsets of n vectors (in

general position), in Rr+1, induce Ur
n.

4. ‘Partition’ Matroids: These are direct sums (‘⊕’) of uniform matroids. Thus, let M =
⊕t

i=1 U
ri
ni
. Then the

ground set of M is partitioned into t partitions of sizes n1, . . . , nt respectively. A subset of the ground set is

independent if it has at most ri elements from the ith partition, i.e. we can interpret ri to be the ‘capacity’ of

the ith partition.

5. Bipartite Matching Matroid (a.k.a Transversal Matroid): LetG = ((A,B), E) be a bipartite graph with bipartitions

A,B. Consider two partition matroids M1 = (E, I1),M2 = (E, I2) on the ground set E, i.e. the elements of

our matroids are the edges of the bipartite graph G.

The partitions ofM1 are given by S1, . . . , S|A|, where Si is the set of edges incident on i ∈ A. Set the capacity

of each of these sets to be 1. Then the independent sets ofM1 are sets of edges such that every vertex in A is

incident on at most one edge from the set.

Similarly, constructM2, with partitions T1, . . . , T|B|, where Tj is the set of edges incident on j ∈ B, and set the

capacity of each category to 1.

Then note that if I is an independent set in bothM1 andM2, then I is a matching inG. Furthermore, the bases

ofM1 ∩M2 are the maximum matchings of G.

Thus, the bipartite matching problem is subsumed within the matroid intersection problem.

6. Gammoid Matroids: Let G be a directed graph, and let S, T ⊆ V (G) be sets of vertices, not necessarily disjoint.

Define a matroid Γ := (T, I), where I ⊆ T is independent if there exists a set of vertex disjoint paths whose

starting points belong to S, and endpoints are exactly I .

Thus, rank(Γ) is equal to the max-flow between S, T . By the Max Flow-Min Cut theorem, this equals the mini-

mum number of vertices we need to delete to disconnect S, T .

There exist many more examples of matroids that we don’t mention here; Nevertheless, we hope that the reader is

convinced of the need to study matroid algorithms, for any statement regarding matroids immediately has many

combinatorial implications.

2.2. Matroids and Log-Concavity

One of the most remarkable results in matroid theory, which underlies all the breakthroughs in recent years, is the

fact that the basis generating polynomial of a matroid is completely log-concave.

This result was shown through advanced mathematical tools (such as combinatorial Hodge theory) by Huh and

Wang [HW17], and Adiprasito, Huh and Katz [AHK18].
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However, we shall see an alternate, perhaps more elementary, proof of the same given in [ALOV19]. To do that, we

shall use the indecomposability criteria (Theorem 1.6) developed in earlier chapters.

Lemma 2.1. LetM be a matroid of rank r, and q ∈ (0, 1], k ∈ [n] be parameters. Let λ ∈ Rn
>0 be arbitrary. Define

fM,k,q(x1, . . . , xn) :=
∑

S∈([n]
k )

q− rank(S)
∏
i∈S

λixi

fM,k,q is completely log-concave.

Proof. We shall use Theorem 1.6 to prove the complete log-concavity of fM,k,q =: f .

We have to first verify that ∂i1∂i2 . . . ∂iℓf is indecomposable for ℓ ≤ k − 2, i1, . . . , iℓ ∈ [n]. Note that since f is

multilinear, ∂2i f = 0 for any i ∈ [n], and thus WLOG we assume that i1, . . . , iℓ are distinct, and let U = {i1, . . . , iℓ}.

Note that ∂i1∂i2 . . . ∂iℓf = ∂Uf has a monomial xT with non-zero coefficient for every T ⊂ [n]\U with |T | ≤ k−|U |.

Thus, since |U | = ℓ < k, the indecomposability of ∂Uf follows.

We have to now verify the log-concavity of ∂Uf for every U ⊆ [n], |U | = k − 2. Note that

(∂Uf) (x1, . . . , xn) = λU
∑

T∈([n]
k ):T⊃U

q− rank(T )λT\UxT\U = λU
∑

{i,j}∈([n]\U
2 )

q− rank(U∪{i,j})λiλjxixj

Thus (ignoring the constant λU factor), the (i, j)th entry of ∇2∂Uf , where i ̸= j ∈ [n] \ S is

q− rank(U∪{i,j})λiλj = q− rank(U)q− rankM/U ({i,j})λiλj

Thus, if we can show that the matrixA ∈ R([n]\S)×([n]\S) 8, withAij = q− rankM/U ({i,j})λiλj
9 has at most one positive

eigenvalue, then we’d be done by Theorem 1.2 10. Now, consider v ∈ R[n]\S where vi = λi if i is a loop ofM/U , and

vj = q−1λj if j is not a loop ofM/U . Then some thought reveals that

(vvT −A)ij =


(q−2 − q−1)λiλj , if i, j are non-parallel loops inM/U

0, otherwise

Thus, splitting the non-loops of M/U into parallelism equivalence classes B1, . . . , Bt, we have vvT − A = (q−2 −

q−1)
∑t

j=1 λBjλ
T
Bj

, where λ is the vector with entries such that λB(i) = λi1i∈B . Clearly, vvT − A is PSD, and thus

A ⪯ vvT and we’re done. ■

8Note that (∇2∂Uf)ij = 0 if i or j is in S. Thus∇2∂Uf is just A padded with 0s
9once again we ignore the constant q− rank(U) factor

10actually we’d also need to show that the top eigenvalue of A is non-negative: But that follows from the fact that of the top eigenvalue of A

were negative, then A is negative definite. Now, if i is a non-loop element in M/U , then Aii = 0, which can’t be if A is negative definite. If all

elements inM/U are loops, then the problem is trivial
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One immediately gets as a corollary our desired result:

Theorem 2.2. gM (z) is completely log-concave for any matroid.

Proof. Note that qrfM,r,q(z1, . . . , zn) converges to gM as q → 0. Since completely log-concave polynomials are closed

under pointwise convergence, we’re done. ■

While we shall have the occasion to use Theorem 2.2 soon enough, we now move on towards showing the log-

concavity of another polynomial associated with a matroid, which will finally break Mason’s conjecture.

2.3. Towards Mason's Conjecture

Mason’s conjecture ([Mas72], Corollary 2.6) says that the sequence I0
M , I1

M , . . . , Ir
M is ultra log-concave (see Theo-

rem 1.3, Corollary 2.6), where Ik
M is the number of independent sets of size k of some arbitrary matroidM . As with

the previously described results, the resolution of Mason’s conjecture for arbitrary matroids is an extremely impor-

tant achievement, not least because the conjecture had been open for nearly half a century, and breakthroughs had

been elusive despite a long line of works ([Sey77, Dow80, Mah85, Zha85, HS89, KN09, HK11, Len13]) by illustrious

mathematicians and computer scientists. Mason’s conjecture was finally resolved (nearly simultaneously) by Anari,

Liu, Oveis Gharan and Vinzant [ALOV18] and Brändén and Huh [BH22]. We shall present the proof in [ALOV18]

here.

LetM = ([n], I) be a matroid. Define the homogenization of I to be

hM (y, z1, . . . , zn) :=
∑
I∈I

yn−|I|
∏
i∈I

zi

Lemma 2.3. ∂n−2
y hM is log-concave on Rn

≥0.

Proof. Note that if i ∈ [n] is a loop, then i doesn’t belong to any independent set, and consequently, zi is absent from

hM . Thus without loss of generality, assume no element in [n] is a loop. Then {i} ∈ I for every i ∈ [n].

Now, observe that

∂n−2
y hM = (n− 2)!

n(n− 1)

2
y2 + (n− 1)

∑
{i}∈I

yzi +
∑

{i,j}∈I

zizj


︸ ︷︷ ︸

:=q(y,z1,...,zn)

ConsiderQ := ∇2q. Note thatQ is a (n+1)×(n+1)matrix. With some effort, one can see thatQ =

n(n− 1) (n− 1)1T

(n− 1)1 B

,
where 1 ∈ Rn is the n-dimensional vector consisting of all 1s, andB is a n×nmatrix whereBij = 1{i,j}∈I . Now, fix
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a =
[
1 0 . . . 0

]T
∈ Rn+1. If we can show that (aTQa)Q−(Qa)(Qa)T is negative semi-definite, then by (5 =⇒ 4)

in Theorem 1.2 we would have thatQ is negative semi-definite on a (n− 1)-dimensional vector space. Since∇2q is a

constant matrix, by (4 =⇒ 1) in Theorem 1.2 we would have that q was log-concave at any point in Rn
≥0, as desired.

Now,

(aTQa)Q− (Qa)(Qa)T = (n− 1)

0 0

0 nB − (n− 1)11T


Thus it suffices to show that (nB − (n− 1)11T) is negative semi-definite.

Now, recall thematroid partition property: We can partition all non-loop elements of amatroid into equivalence classes

based on parallelism. Since all elements in [n] are non-loops, we get a partition [n] = S1 ∪ S2 ∪ · · · ∪ Sk, where i, j

are parallel if and only if they belong to the same equivalence class. Now, note that B = 11
T −

∑k
i=1 1Si

1
T
Si
, which

implies nB − (n− 1)11T = 11
T − n

∑k
i=1 1Si1

T
Si
. Now consider arbitrary x ∈ Rn: Then

xT(nB − (n− 1)11T)x = (1Tx)2 − n

k∑
i=1

(1T
Si
x)2 =

 k∑
i=1

1
T
Si
x

2

− n

k∑
i=1

(1T
Si
x)2 ≤ k

k∑
i=1

(1T
Si
x)2 − n

k∑
i=1

(1T
Si
x)2 ≤ 0

where the second last inequality follows from the Cauchy-Schwartz inequality, and the last inequality follows from

the fact that k, which is the number of partitions of [n], can’t exceed n. ■

Theorem 2.4. For any matroidM = ([n], I), the polynomial

hM (y, z1, . . . , zn) :=
∑
I∈I

yn−|I|
∏
i∈I

zi

is completely log-concave.

Proof. We use Theorem 1.6 to show complete log-concavity. We denote ∂zi by ∂i, and for any α ∈ Zn
≥0 we define

∂α :=
∏n

i=1 ∂
αi
i . We need to show that ∂ky∂αhM is indecomposable for k+ |α| ≤ n− 2, and log-concave for k+ |α| =

n − 2. Note that if αi ≥ 2 for some i, then ∂αhM = 0, and thus assume α = 1J for some J ⊆ [n]. Furthermore, if

J ̸∈ I, then also ∂1JhM = 0. Thus assume J ∈ I. Then

∂1JhM =
∑

I∈I:J⊆I

yn−|I|
∏

i∈I\J

zi = hM/J

whereM/J = ([n] \ J, {I \ J : I ∈ I, J ⊆ I}) is the contraction matroid.

Thus we have to investigate the indecomposability (and log-concavity) of ∂kyhM/J for every J ∈ I. Now, if some

i ∈ [n] \ J is a loop ofM/J , then it doesn’t appear in hM and we can ignore it safely. Conversely, if i ∈ [n] \ J is not

a loop, then we have the monomial yn−|J|−1zi in hM , and thus the monomial yn−|J|−1−kzi appears in ∂kyhM/J , and

consequently, in the indecomposability graph of ∂kyhM/J , the node representing y is connected to every non-loop

i ∈ [n] \ J , and thus ∂kyhM/J is indecomposable.

Finally, if k + |J | = n − 2, invoking Lemma 2.3 on the matroid M/J yields that ∂n−|J|−2
y hM/J = ∂ky∂

1JhM is log-

concave on Rn
≥0, as desired. ■



Applications of Log Concave Polynomials 17 / 39 Arpon Basu

Corollary 2.5. For any matroidM = ([n], I), the polynomial

fM (y, z) :=

rank(M)∑
k=0

Ikyn−kzk

is completely log-concave, where Ik is the number of independent sets of size k.

Proof. Follows by applying Part 1 of Proposition 2 to hM , with the affine transformation being T : R2
≥0 7→ Rn+1

≥0 ,

T (y, z) := (y, z, . . . , z). ■

Corollary 2.6 (Mason’s Conjecture). For any matroid M = ([n], I) of rank r, the sequence I0, . . . , Ir is ultra log-

concave, i.e. (
Ik(
n
k

))2

≥ Ik−1(
n

k−1

) · Ik+1(
n

k+1

)
where Ir is the number of independent sets of size r.

Proof. Apply Theorem 1.3 to Corollary 2.5. ■
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�3. Entropy

We eventually want to be able to design algorithms with our analytic machinery. Now, many algorithms, especially

randomized algorithms, boil down to showing that the solution to our problem can be efficiently sampled from some

probability distribution. Now, also note that every probability distribution can be associated with its generating

function. Thus, we can exploit the power of our machinery by studying probability distributions whose underlying

generating functions are log-concave (or some variant thereof). Then we use the mathematical properties of log-

concave polynomials to make comments about the probability distributions, and possibly extract algorithmic utility

from it.

Before that, we first study some fundamental properties of probability distributions themselves.

Let µ : R 7→ [0, 1] be a probability distribution over some set R. We define the support of µ as supp(µ) := {ω ∈ R :

µ(ω) ̸= 0}. Now suppose µ is a probability distribution supported over some finite set Ω. Then the entropy of µ is

defined to be

H(µ) :=
∑
ω∈Ω

µ(ω) log
1

µ(ω)

If X is Bernoulli random variable with parameter p, we use H(X) andH(p) interchangeably.

We now state some fundamental facts about the entropy function, such as subadditivity, and the fact that uniform

distributions maximize entropy. Refer to Cover and Thomas [CT06] for proof of these statements.

Proposition 3 (Subadditivity of Entropy). LetX,Y be finitely supported randomvariableswhich are not necessarily

independent. Let µ be the joint distribution of (X,Y ). The marginals µX , µY of µ are the distributions of X and Y

respectively. ThenH(µ) ≤ H(µX) +H(µY ), where equality holds if and only if X and Y are independent.

Proposition 4. Let µ be any finitely supported probability distribution. ThenH(µ) ≤ log
(
| supp(µ)|

)
= H(usupp(µ)),

where usupp(µ) is the uniform distribution over supp(µ).

We will be interested in probability distributions over 2[n] 11. Thus, let µ be a distribution over 2[n]. Then the

marginals of µ are defined as µi :=
∑

S∋i µ(S) for every i ∈ [n]. Note that
∑n

i=1 µi = ES∼µ

[
|S|
]
may be much

greater than 1.

Consider Bernoulli Random VariablesX1, . . . , Xn with parameters µ1, . . . , µn respectively. It is clear that µ is a par-

ticular joint distribution of X1, . . . , Xn. Thus we can apply Proposition 3 and obtain that

H(µ) ≤
∑
i∈[n]

H(µi) =
∑
i∈[n]

µi log
1

µi
+ (1− µi) log

1

1− µi
(3.1)

11by identifying 2[n] with {−1, 1}n, distributions over 2[n] are also sometimes termed as distributions over the Boolean hypercube
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Equality is achieved ifX1, . . . , Xn are independent, or equivalently, µ(S) =
∏

i∈S µi

∏
j ̸∈S(1− µj) for every S ⊆ [n].

We now introduce the notion of external fields and Newton Polytopes, which we shall require later on when we are

discussing the topology of log-concave distributions.

Definition 3.1 (External Fields). Consider λ := (λ1, . . . , λn) ∈ Rn
>0. Then the external field distribution λ ∗ µ is a

probability distribution on 2[n] such that Prλ∗µ(S) ∝ λSµ(S), where the proportionality constant is appropriately

chosen such that
∑

S⊆[n] Prλ∗µ(S) = 1.

Definition 3.2 (Newton Polytopes). Let µ be a distribution on 2[n]. We define the Newton polytope of µ to be Pµ :=

conv
(
{1S ∈ Rn : S ∈ supp(µ)}

)
.

We now study the connection between probability distributions and log-concavity, as promised.

3.1. Log-Concave Distributions

Let µ be a distribution on 2[n]. We define the generating function of µ as

gµ(z1, . . . , zn) :=
∑
S⊆[n]

µ(S)zS =
∑
S⊆[n]

µ(S)
∏
i∈S

zi

Note that gµ(1, . . . , 1) = 1. Also note that µi = PrS∼µ(i ∈ S) = ∂zigµ
∣∣
z1=z2=···=zn=1

.

We call µ log-concave (resp. completely log-concave) if gµ is log-concave (resp. completely log-concave).

We now show that for log-concave distributions, there is a corresponding lower bound for Eq. (3.1).

Lemma 3.1. If µ is a log-concave distribution on 2[n] with marginals µ1, . . . , µn, then

H(µ) ≥
∑
i∈[n]

µi log
1

µi

Proof. SampleS ∼ µ, and consider the randomvariableX := 1S , i.e. Pr(X = 1S) = µ(S). Also define f(z1, . . . , zn) :=

log gµ

(
z1
µ1
, . . . , zn

µn

)
. Note that if µi = 0 for some i, then gµ doesn’t contain zi in any non-zero monomial, so f can

still be consistently defined. Furthermore, since gµ is log-concave, so is gµ
(

z1
µ1
, . . . , zn

µn

)
, by Item 3 of Proposition 1.

Thus f : Rn
≥0 7→ R∪{−∞} is a concave function. By Jensen’s inequality, we have f(E[X]) ≥ E[f(X)]. Now, note that

E[X] = ES∼µ[1S ] =
[
µ1 · · · µn

]T
, and thus f(E[X]) = log 1 = 0, implying that E[f(X)] ≤ 0.

Now, note that

f(1S) = log

∑
T⊆S

µ(T )
∏
i∈T

1

µi

 ≥ log

µ(S)∏
i∈S

1

µi

 = logµ(S) +
∑
i∈S

log
1

µi
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Thus

E[f(X)] =
∑
S⊆[n]

µ(S)f(1S) ≥
∑
S⊆[n]

µ(S) logµ(S) +
∑
S⊆[n]

µ(S)
∑
i∈S

log
1

µi
= −H(µ) +

∑
i∈[n]

∑
S∋i

µ(S)


︸ ︷︷ ︸

=µi

· log 1

µi

Since E[f(X)] ≤ 0, we get our desired result. ■

The above inequality immediately yields an approximation for H(µ).

Lemma 3.2 (Additive Approximation forH(µ)). A distribution µ is called d-homogenous if gµ is d-homogenous.

If µ is r-homogenous and log-concave, then
∑

i∈[n] H(µi) is an additive r-approximation to H(µ), i.e.∑
i∈[n]

H(µi)− r ≤ H(µ) ≤
∑
i∈[n]

H(µi)

Proof. H(µ) ≤
∑

i∈[n] H(µi) is simply Eq. (3.1).

Now, it is easy to see that if g is r-homogenous, then it only contains monomials of degree r. Consequently, if µ is

r-homogenous, then for any S ∈ supp(µ), |S| = r. Consequently,∑
i∈[n]

(1− µi) log
1

1− µi
≤
∑
i∈[n]

µi = ES∼µ

[
|S|
]
= r (3.2)

where the first inequality follows from the fact that (1− x) log 1
1−x ≤ x for any x ∈ [0, 1].

Thus, invoking Lemma 3.1, we get

H(µ) ≥
∑
i∈[n]

µi log
1

µi
=
∑
i∈[n]

H(µi)−
∑
i∈[n]

(1− µi) log
1

1− µi
≥
∑
i∈[n]

H(µi)− r

■

Thus, if we can calculate
∑

i∈[n] H(µi), thenwe have an additive approximation forH(µ). However, additive approx-

imations don’t give anymultiplicative guarantees: Indeed, if
∑

i∈[n] H(µi) = r+1, and if r ≫ 1, then themultiplicative

approximation factor for H(µ) is r, which is bad.

We seek to remedy this as follows: For any distribution µ on 2[n], we define the dual of µ, denoted as µ∗, to be

µ∗(S) := µ([n] \ S) for every S ⊆ [n]. Note that µ∗
i = 1− µi. Also note that H(µ) = H(µ∗). Then

Lemma 3.3 (Multiplicative approximation for H(µ)). Let µ be a distribution on 2[n] such that both µ and µ∗ are

log-concave. Then
1

2

∑
i∈[n]

H(µi) ≤ H(µ) ≤
∑
i∈[n]

H(µi)
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Proof. By Lemma 3.1, we have H(µ) ≥
∑

i∈[n] µi log
1
µi
,H(µ∗) ≥

∑
i∈[n](1 − µi) log

1
1−µi

Since H(µ) = H(µ∗), we

have

H(µ) ≥ 1

2

∑
i∈[n]

µi log
1

µi
+
∑
i∈[n]

(1− µi) log
1

1− µi

 =
1

2

∑
i∈[n]

H(µi)

■

Thus

Theorem 3.4 (Approximation for H(µ)). Let µ be a distribution on 2[n] such that both µ and µ∗ are log-concave.

Then

max

1

2

∑
i∈[n]

H(µi),
∑
i∈[n]

H(µi)− r

 ≤ H(µ) ≤
∑
i∈[n]

H(µi)

3.1.1. Topology of Log-Concave distributions

Observe that gλ∗µ(z1, . . . , zn) ∝ gµ(λ1µ1, . . . , λnµn). Consequently, by Item 3 of Proposition 1 (resp. Proposition 2),

if µ is log-concave (resp. completely log-concave), so is λ ∗ µ. Similarly, if µ is r-homogenous, so is λ ∗ µ.

Now, note that every vector v ∈ Pµ “extrapolates” supp(µ) in a sense 12: We now seek to “extrapolate” µ to distribu-

tions µ̃ such that the marginals of µ̃ are given by some arbitrary vector v ∈ Pµ. The following theorem, proven in

[AGM+17],[SV14] does exactly that:

Theorem 3.5. Let µ be a probability distribution on 2[n]. For any v ∈ Pµ, and any ε > 0, there exist weights

λ1, . . . , λn ∈ R>0 such that |vi − PrS∼λ∗µ(i ∈ S)| ≤ ε for every i ∈ [n]. Furthermore, if v lies in the interior of

Pµ, then one may take ε = 0, i.e. one can find λ such that PrS∼λ∗µ(i ∈ S) = vi for every i ∈ [n].

This theorem has the following very important corollary.

Corollary 3.6. Let µ be a log-concave distribution on 2[n], and let p ∈ Pµ. Then there exists a distribution µ̃ on 2[n]

such that supp(µ̃) ⊆ supp(µ), µ̃i = pi for every i ∈ [n]. Moreover, µ̃ can be obtained as a limit of distributions λ ∗ µ

for a sequence of λ ∈ Rn
>0.

Proof Sketch. For any ε > 0, by Theorem 3.5, there exist λε such that |(λε ∗ µ)i − pi| ≤ ε for every i ∈ [n]. Thus

passing to a convergent subsequence of such λ’s, we obtain a distribution µ̃ = limε→0 λε ∗ µ such that µ̃i = pi.
12indeed, v is a non-negative linear combination of the vectors in supp(µ)
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Furthermore, since supp(λε ∗ µ) = supp(µ) for any λε ∈ Rn
>0, we have that supp(µ̃) ⊆ supp(µ). Furthermore, note

that gλ∗µ(z1, . . . , zn) ∝ g(λ1z1, λ2z2, . . . , λnzn), and thus by Item3 of Proposition 1, λ∗µ are log-concave distributions,

since µ is. By Lemma 1.1, µ̃ is also log-concave since it is the limit of log-concave distributions (of degree at most

n). ■

Remark. [SV14] showed that for the distribution µ̃ defined above, we have

log

(
inf

z∈Rn
>0

gµ(z)

zp

)
=

∑
S∈supp(µ̃)

µ̃(S) log
µ(S)

µ̃(S)
(3.3)

In particular, if µ is uniform over its support, then the above quantity evaluates toH(µ̃). Since supp(µ̃) ⊆ supp(µ), we

can invokeProposition 4 to obtainH(µ̃) ≤ H(µ) = log | supp(µ)|, and consequently, | supp(µ)| ≥ supp∈Pµ
infz∈Rn

>0

gµ(z)
zp .
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�4. Matroid Base Counting

Two of the most fundamental problems in algorithmic matroid theory are counting the number of bases of an arbi-

trary matroid, and counting the number of common bases between two matroids. Indeed, being able to estimate the

number of bases of an arbitrary matroid would immediately yield corresponding estimates for the number of forests

and spanning subgraphs in a given graph.

Now, a consequence of a result proved in [Sno12] tells us that counting the number of bases of an arbitrary matroid

is #P-hard. Thus, we turn our attention to approximation algorithms for the same.

We begin by first adapting our machinery of log-concave distributions to the context of matroids, in light of Theo-

rem 2.2.

Lemma 4.1. LetM = ([n], I) be a matroid, and let p ∈ PM . Then there is a distribution µ̃ such that supp(µ̃) ⊆ BM ,

µ̃i = pi for every i ∈ [n], and µ̃, µ̃∗ are both completely log-concave. Furthermore, µ̃ (resp. µ̃∗) can be obtained as a

limit of external fields applied to µ (resp. µ∗), where µ is the uniform distribution on BM .

Proof. If µ is the uniform distribution on BM , then gµ(z) ∝ gM (z), and thus gµ(z) is completely log-concave by The-

orem 2.2. Similarly, µ∗ is the uniform distribution on BM∗ , whereM∗ is the dual matroid ofM , and thus gµ∗(z) is

completely log-concave too. Further note that ((λ1, . . . , λn) ∗ µ)∗ = (λ−1
1 , . . . , λ−1

n ) ∗ µ∗. Thus, by Item 3 of Proposi-

tion 2, both λ ∗ µ and (λ ∗ µ)∗ are completely log-concave.

Let µ̃ be the distribution as defined in the proof of Corollary 3.6. Since the set of completely log-concave polynomials

is also closed, µ̃ is completely log-concave, and so is µ̃∗, since if µ̃ = limε→0 λε ∗ µ, then µ̃∗ = limε→0(λε ∗ µ)∗. ■

Theorem 4.2 (Anari-Oveis Gharan-Vinzant’s deterministic Matroid Base Counting Algorithm). LetM = ([n], I) be

any matroid of rank r, and let O be an independence oracle forM , i.e. given any S ⊆ [n], it tells us, in O(1) time, if

S ∈ I. Then there is a deterministic poly(n)-time algorithm which outputs β ∈ R such that

max
(
2−O(r)β,

√
β
)
≤ |BM | ≤ β

Thus |BM | can be approximated within a factor of 2O(r).

Proof. Consider

popt =
(
popt1 , popt2 , . . . , poptn

)
= argmax

p=(p1,...,pn)∈PM

∑
i∈[n]

H(pi)

As discussed above, popt can be found in poly(n) time. Also, let τ =
∑

i∈[n] H(popti ).

Now, let µ be the uniform distribution over BM . Note that H(µ) = log |BM |. Now, since (µ1, . . . , µn) ∈ PM , τ ≥



Applications of Log Concave Polynomials 24 / 39 Arpon Basu

∑
i∈[n] H(µi)

Eq. (3.1)
≥ H(µ). Also, since popt ∈ PM = Pµ, by Lemma 4.1, there exists a distribution µ̃ such that both

µ̃, µ̃∗ are completely log-concave, supp(µ̃) ⊆ supp(µ), and µ̃i = popti . Thus by Theorem 3.4,

H(µ̃) ≥ max

1

2

∑
i∈[n]

H(µ̃i),
∑
i∈[n]

H(µ̃i)− r


But

∑
i∈[n] H(µ̃i) =

∑
i∈[n] H(pi) = τ , and thus H(µ̃) ≥ max

(
τ
2 , τ − r

)
. Now, since supp(µ̃) ⊆ supp(µ), by Propo-

sition 4, H(µ) ≥ H(µ̃). Thus τ ≥ H(µ) ≥ H(µ̃) ≥ max
(
τ
2 , τ − r

)
. The statement of the theorem follows when

one notices thatH(µ) = log |BM |, and sets β = eτ . Furthermore, as promised in the theorem, τ can be calculated, in

deterministic polynomial time, through standard convex program solving algorithms such as the ellipsoidmethod. ■

Remark. Azar, Brode, and Frieze ([ABF94]) showed that any deterministic polynomial time algorithm having only

independence oracle access to some arbitrary matroid M with rank r can approximate |BM | only up to a factor of

2
Ω
(

r
log2 n

)
, provided r ≫ log n. Thus the above algorithm is almost optimal.

Corollary 4.3. Let M be an arbitrary matroid, and assume we have an independence oracle for it. Then for any

k ∈ N, we have a deterministic polynomial time algorithm to calculate a number β such that

max
(
2−O(k)β,

√
β
)
≤ |Ik

M | ≤ β

where Ik
M := {I ∈ I : |I| = k}.

Proof. Follows from the fact that the k-truncation of a matroid is also a matroid. ■

Before the next algorithm, we state (without proof 13), an analytic statement about log-concave polynomials.

Lemma 4.4. Let g ∈ R[y1, . . . , yn, z1, . . . , zn] be a completely log-concave, multilinear polynomial. Let p ∈ [0, 1]n.

Then  n∏
i=1

(∂yi + ∂zi)

 g(y, z)

∣∣∣∣
y=z=0

≥
(
p

e2

)p

inf
y,z∈Rn

>0

g(y, z)

ypz1−p

where y = (y1, . . . , yn), z = (z1, . . . , zn) and 1− p = (1− p1, . . . , 1− pn).

Theorem 4.5 (Anari-Oveis Gharan-Vinzant’s deterministic Matroid Base Intersection Counting Algorithm). Let

M,N be two matroids on the same ground set [n] such that rank(M) = rank(N) = r. Also assume that we have an

13the proof is just “analytic bashing”, and isn’t particularly insightful, which is why it was skipped
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independence oracle for bothM,N . Then there is a deterministic poly(n)-time algorithm which outputs β ∈ R such

that

2−O(r)β ≤ |BM ∩ BN | ≤ β

Thus |BM ∩ BN | can be approximated within a factor of 2O(r).

Proof. Note that PM ∩ PN is a convex polytope, and it is as easy to optimize concave functions over PM ∩ PN as

it is over PM . Thus, we can, in polynomial time, calculate τ = maxp∈PM∩PN

∑
i∈[n] H(pi). As usual, let µ be the

uniform distribution on BM ∩BN . Then (µ1, . . . , µn) ∈ PM ∩PN , and consequently, τ ≥
∑

i∈[n] H(µi)
Eq. (3.1)
≥ H(µ) =

log |BM ∩ BN |.

Now, let gM (y) be the generating polynomial of M , and let gN∗(z) be the generating polynomial of N∗, the dual

matroid of N . Then gM (y)gN∗(z) is the generating polynomial ofM ⊕N∗. Further, note that

|BM ∩ BN | =
∑
S⊆[n]

∏
i∈S

∂yi

 gM (y)

︸ ︷︷ ︸
=1S∈IM

 ∏
j∈[n]\S

∂zj

 gN∗(z)

︸ ︷︷ ︸
=1[n]\S∈IN∗

=

 n∏
i=1

(∂yi + ∂zi)

 gM (y)gN∗(z)

where the first equality follows since 1S∈IM
· 1[n]\S∈IN∗ = 1S∈BM∩BN

.

Thus,
(∏n

i=1(∂yi + ∂zi)
)
gM (y)gN∗(z) is a constant function, and consequently,

(∏n
i=1(∂yi + ∂zi)

)
gM (y)gN∗(z)

∣∣
y=z=0

=(∏n
i=1(∂yi + ∂zi)

)
gM (y)gN∗(z). Now, applying Lemma 4.4, yields n∏

i=1

(∂yi + ∂zi)

 gM (y)gN∗(z)

∣∣∣∣
y=z=0

≥
(
p

e2

)p

· inf
y,z∈Rn

>0

gM (y)gN∗(z)

ypz1−p
=

(
p

e2

)p

· inf
y∈Rn

>0

gM (y)

yp
· inf
z∈Rn

>0

gN∗(z)

z1−p

=⇒ log |BM ∩ BN | ≥ log

(
p

e2

)p

+ log

(
inf

y∈Rn
>0

gM (y)

yp

)
+ log

(
inf

z∈Rn
>0

gN∗(z)

z1−p

)
(4.1)

Now, let p ∈ PM ∩ PN be some arbitrary vector. By Lemma 4.1, there exist distributions ν, ω such that ν, ν∗, ω, ω∗

are completely log-concave distributions and for every i ∈ [n], νi = pi, ωi = 1 − pi. By Eq. (3.3) and the remark

accompanying it, we know that log
(
infy∈Rn

>0

gM (y)
yp

)
= H(ν). Furthermore, since p ∈ PM ∩ PN , p ∈ PN , which

further implies that 1− p ∈ PN∗ , which then implies that log
(
infz∈Rn

>0

gN∗ (z)
z1−p

)
= H(ω∗) = H(ω). Now, note that the

marginals of both ν, ω∗ are p: Then by Lemma 3.1, we have min
(
H(ν),H(ω∗)

)
≥
∑

i∈[n] pi log
1
pi
. Thus, simplifying

Eq. (4.1),

log |BM ∩ BN | ≥ log

(
p

e2

)p

+ log

(
inf

y∈Rn
>0

gM (y)

yp

)
+ log

(
inf

z∈Rn
>0

gN∗(z)

z1−p

)
=
∑
i∈[n]

pi log pi − 2
∑
i∈[n]

pi +H(ν) +H(ω∗)

≥
∑
i∈[n]

pi log pi − 2
∑
i∈[n]

pi + 2
∑
i∈[n]

pi log
1

pi
=
∑
i∈[n]

pi log
1

pi
− 2

∑
i∈[n]

pi =
∑
i∈[n]

H(pi)−
∑
i∈[n]

(1− pi) log
1

1− pi
− 2

∑
i∈[n]

pi

Now,
∑

i∈[n](1− pi) log
1

1−pi
≤ r by Eq. (3.2). Also, ℓ : Rn 7→ R :

[
x1 . . . xn

]T
7→
∑

i∈[n] xi is a continuous convex

function, and thus ℓ is maximized over some boundary point of PM ∩PN since PM ∩PN is convex and compact. But



Applications of Log Concave Polynomials 26 / 39 Arpon Basu

note that ℓ is equal to r on the boundary of PM ∩PN . Thus
∑

i∈[n] pi ≤ r, and thus log |BM ∩BN | ≥
∑

i∈[n] H(pi)−3r

for every p ∈ PM ∩ PN , and consequently log |BM ∩ BN | ≥ maxp∈PM∩PN

∑
i∈[n] H(pi) − 3r = τ − 3r. Thus τ ≥

log |BM ∩ BN | ≥ τ − 3r, and the theorem follows by setting β = eτ . ■

Remark. There are a few easy extensions of the result above:

1. Thematroid common base problem is “self-reducible”: Informally, thismeans that the problem of counting the

number of bases which include i1, . . . , ik ∈ [n] and exclude j1, . . . , jm ∈ [n], reduces to the problem of counting

the number of bases between matroids, obtained by contracting i1, . . . , ik ∈ [n] and deleting j1, . . . , jm ∈ [n].

Then from a result of Sinclair and Jerrum ([SJ89]), we get that there exists a randomized algorithm, which,

given two parameters ε, δ > 0, outputs a β such that Pr((1− ε)β ≤ |BM ∩ BN | ≤ β) ≥ 1− δ, i.e. there exists a

randomized algorithm to approximate |BM ∩ BN |with arbitrary precision.

Furthermore, the runtime of this algorithm is 2O(r) poly(n, 1ε , log
1
δ ). Consequently, if r = O(log n), then this

algorithm is a Fully Polynomial-time Randomized Approximation Scheme (FPRAS).

2. Since the framework of generating polynomials can be easily transported to a weighted setting, we have a

deterministic polynomial time algorithm, which, given any λ = (λ1, . . . , λn) ∈ Rn
≥0, outputs β such that

2−O(r)β ≤
∑

B∈BM∩BN

∏
i∈B

λi ≤ β
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�5. Simplicial Complexes, an FPRAS for Matroid Base Counting, and the

Mihail-Vazirani Conjecture

We first define a generalization of matroids.

Definition 5.1 (Simplicial Complexes). A simplicial complex X = ([n],Σ) is said to be defined over the ground set

[n] = {1, 2, . . . , n}, and is characterized by its non-empty collection of faces Σ ⊆ 2[n] which satisfy the following

property:

1. Downward Closed: σ ∈ Σ =⇒ 2σ ⊆ Σ, i.e. if σ is a face, then every subset of σ is also a face. In particular, since

Σ is non-empty, it must contain ∅.

Let X = (U,Σ) be an arbitrary simplicial complex:

1. The dimension of X is defined to be the size of its largest face.

2. For any integer k, X(k) := {σ ∈ Σ : |σ| = k}.

3. For a face τ ∈ Σ, the link of τ is defined to be the simplicial complexXτ := (U \ τ, {σ \ τ : σ ∈ Σ, σ ⊇ τ}). Note

that X∅ = X .

We sayX is pure if all maximal faces inX have the same size. A pure d-dimensional simplicial complexX = (U,Σ)

is said to be d-partite if there exists a partition U1, . . . , Ud of U such that for every maximal face σ of X , |σ ∩ Ui| = 1

for every i ∈ [d].

We often considerweighted simplicial complexes: LetX = (U,Σ) be a pure d-dimensional simplicial complex. Consider

a weight function w : X(d) 7→ R>0. Then:

1. For any τ ∈ Σ, we extend w to τ as w(τ) :=
∑

σ∈X(d):σ⊇τ w(σ)
14.

2. For any τ ∈ Σ, given any maximal face σ′ of Xτ , we endow it with weight wτ (σ
′) := w(τ ∪ σ′). We can then

extend wτ to Xτ as above.

The 1-skeleton of the link Xτ is defined to be a weighted graph as follows: Every i ∈ U \ τ such that {i} is a face of

Xτ , is a vertex of our graph. Two vertices i, j, i ̸= j are connected if {i, j} is a face of Xτ . The edge {i, j} has weight

wτ ({i, j}).
14note that the weight function is strictly positive. Thus the weight of every face in the complex is non-zero
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5.1. Walks on Simplicial Complexes

As usual, let X be a pure d-dimensional simplicial complex.

We define a random walk, known as the lower k-walk, on X(k + 1) 15 as follows: Suppose our walk is currently at

σ ∈ X(k + 1).

1. Remove a uniformly random element i ∈ σ from σ.

2. Add a j ̸∈ σ \ {i} to σ \ {i} with probability proportional to w
(
(σ \ {i}) ∪ {j}

)
.

The transition probabilities for this walk can be written as (σ, σ′ are arbitrary elements of X(k + 1)):

P∨
k+1(σ, σ

′) =


1

k+1

∑
τ⊂σ:|τ |=k

w(σ)
w(τ) , if σ = σ′

1
k+1

w(σ′)
w(σ∩σ′) , if σ ∩ σ′ ∈ X(k)

0, otherwise

We can also define a counterpart of the above random walk, known as the upper k-walk 16, which is defined over

X(k) as follows. Suppose we have some σ ∈ X(k). Then:

1. Consider T := {τ ∈ X(k + 1) : τ ⊃ σ}, i.e. the set of all (k + 1)-dimensional faces which contain σ. Sample τ

from T with probability proportional to w(τ), i.e. τ is sampled with probability w(τ)∑
η∈T w(η) .

2. Delete one of the k + 1 elements of τ uniformly at random.

Similar to the above calculation, the transition probabilities are (σ, σ′ are arbitrary elements of X(k)):

P∧
k (σ, σ′) =


1

k+1 , if σ = σ′

1
k+1

w(σ∪σ′)
w(σ) , if σ ∪ σ′ ∈ X(k + 1)

0, otherwise

First off, note that both the randomwalks defined above are reversible, i.e. for everyσ, σ′ ∈ X(k), we havew(σ)P∧
k (σ, σ′) =

w(σ′)P∧
k (σ′, σ) and w(σ)P∨

k (σ, σ′) = w(σ′)P∨
k (σ′, σ). Furthermore, we also get that P∧

k , P
∨
k have the same stationary

distribution 17, i.e. the probability of τ ∈ X(k) is proportional to w(τ).

We now show that both the aforementioned walks have the same spectra.

Lemma 5.1. For any k ∈ [d− 1], P∧
k and P∨

k+1 have the same (with multiplicity) non-zero eigenvalues.

15where k ∈ [d− 1]
16again, k ∈ [d− 1]
17ifM is a finite reversible Markov chain, and π satisfies the detailed balance conditions forM, then π is a stationary distribution forM. IfM

is irreducible, then π is the unique stationary distribution. Note that WLOG we’ll be assuming the underlying graphs in P∧
k , P∨

k are connected
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Proof. Construct a bipartite graph Gk = (X(k) ⊔ X(k + 1), E). We connect τ ∈ X(k) with σ ∈ X(k + 1) if τ ⊂ σ.

Then the transition matrix for the simple random walk on Gk is Pk =

 0 P ↓
k

P ↑
k 0

 where P ↓
k ∈ RX(k+1)×X(k), P ↑

k ∈

RX(k)×X(k+1) are stochastic matrices (i.e. their rows sum to 1). Furthermore, observe that P∧
k = P ↑

kP
↓
k , P

∨
k+1 =

P ↓
kP

↑
k : Indeed, in P∧

k we take a suitably weighted sample of a higher-dimensional face before coming back down,

while in P∨
k+1 we do the reverse.

By elementary linear algebra, for any two matrices A,B such that AB and BA are defined, the non-zero spectra

of AB and BA are identical, and consequently P∧
k and P∨

k+1 have the same non-zero eigenvalues (with the same

multiplicities). ■

Now, let us take a closer look at P∧
1 : P∧

1 is a walk on X(1), i.e. the “vertices” of X . Furthermore, for any vertex

v ∈ X(1), P∧
1 (v, v) = 1

2 , and for any other vertex w ∈ X(1), the probability of transitioning to w is proportional to

w({v, w}). In other words, P∧
1 is the lazy random walk on the 1-skeleton of X∅ = X 18. For purposes of our study,

we’ll also have to define the non-lazy random walk on X :

P̃∧
1 := 2(P∧

1 − I/2)

Similarly, let P∧
τ,1 be the upper random walk on the 1-skeleton of Xτ , and let P̃∧

τ,1 := 2(P∧
τ,1 − I/2) be the non-lazy

version of P∧
τ,1.

At this point, we also define the very useful notion of local spectral expansion, which was introduced by [KO20]:

Definition 5.2 (Local Spectral Expanders). Given a pure d-dimensional weighted simplicial complex (X,w), we call

X a λ-local-spectral expander if λ2(P̃∧
τ,1) ≤ λ for every τ ∈ X(k), for every 0 ≤ k ≤ d− 2.

Remark. Note that λ2(P̃∧
τ,1) refers to the second largest eigenvalue of P̃∧

τ,1.

We now connect the property of being a local-spectral-expander to the spectral properties of P∧
k .

Theorem 5.2. Let (X,w) be a pure d-dimensional weighted simplicial complex which is also a 0-local-expander. Fix

some k, where 0 ≤ k < d. Then, for all −1 ≤ i ≤ k, P∧
k has at most |X(i)| ≤

(
n
i

)
eigenvalues of value > 1− i+1

k+1 .

Remark. We set X(−1) := ∅,
(

n
−1

)
:= 0. Note that putting i = 0 in the above theorem yields that P∧

k has at most 1

eigenvalue greater than k
k+1 . Indeed, since P

∧
k has 1 as an eigenvalue on the account of being stochastic, we get that

the second largest eigenvalue of P∧
k is at most k

k+1 .

18Since P∧
1 , and in general, P∧

k are lazy random walks on weighted graphs, they have real eigenvalues by standard Markov chain theory
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Before proving this theorem, we first prove an auxiliary lemma. For the lemma, we define a new inner product on

RX(k), in which we simply reweight every X(k) by the appropriate weight function, i.e.

⟨ϕ, ψ⟩∗ :=
∑

τ∈X(k)

w(τ)ϕ(τ)ψ(τ)

Lemma 5.3. Let (X,w) be as in Theorem 5.2. Then P∧
k ⪯∗

k
k+1P

∨
k + 1

k+1I for every 0 ≤ k < d, where ⪯∗ is defined

w.r.t the inner product ⟨·, ·⟩∗.

Proof. SetM := P∧
k − k

k+1P
∨
k − 1

k+1I . Fix an arbitrary η ∈ X(k − 1). Construct the matrixMη as follows:

Mη(τ, σ) :=


M(τ, σ), if τ ̸= σ, η = τ ∩ σ

− 1
k+1 · w(τ)

w(η) , if τ = σ, η ⊂ τ

0, otherwise

Some calculation reveals thatM =
∑

η∈X(k−1)Mη . Thus, we’ll show thatMη ⪯∗ 0, and be done.

Now, note that if τ ̸= σ, and τ ∩ σ = η ∈ X(k − 1), then

Mη(τ, σ) =M(τ, σ) =
1

k + 1

(
w(τ ∪ σ)
w(τ)

− w(σ)

w(τ ∩ σ)

)
=

1

(k + 1)w(η)
· w(τ)−1 ·

(
w(η)w(τ ∪ σ)− w(τ)w(σ)

)
Also, for τ ∈ X(k)with τ ⊃ η,

Mη(τ, τ) =
−w(τ)

(k + 1)w(η)
=

1

(k + 1)w(η)
· w(τ)−1 ·

(
0− w(τ) · w(τ)

)
Given the above expressions, it’s not too hard to see that:

Mη =
1

(k + 1)w(η)
· diag(wη)

−1
(
w(η) ·Aη − wηw

T
η

)
where wη is a |X(k)|-dimensional vector whose non-zero entries are given by w(τ) for τ ⊃ η, and Aη is a |X(k)| ×

|X(k)|matrix whose non-zero entries are given by w(τ ∪ σ) for τ, σ ∈ X(k) satisfying τ ∩ σ = η.

Now, clearlyMη ⪯∗ 0 if and only if diag(wk)Mη ⪯ 0, where wk is a |X(k)|-dimensional vector indexed by w(σ) for

every σ ∈ X(k). But note that diag(wk)Mη = diag(wη)Mη , and thus it suffices to show that Aη ⪯ wηw
T
η

w(η) .

Now, note that Aη is the weighted adjacency matrix of the 1-skeleton of Xη . In that light, it is not difficult to see

that P̃∧
η,1 = 1

k+1 diag(wη)
−1Aη , since P̃∧

η,1 is the random walk matrix on the same graph. Since (X,w) is a 0-local-

spectral expander, P̃∧
η,1 has atmost one positive eigenvalue, and consequently by LemmaA.2,Aη has atmost 1positive

eigenvalue. A simple application of Lemma A.3 then shows that Aη ⪯ wηw
T
η

w(η) . ■

Proof of Theorem 5.2. We induct on k. When k = 1, P∧
1 =

P̃∧
1 +I
2 . Since (X,w) is a 0-local-spectral expander, P̃∧

1 has

exactly one positive eigenvalue, which is 1. Thus P∧
1 has eigenvalue 1 with multiplicity 1, and all other eigenvalues

of P∧
1 are ≤ 0. In particular, we have |X(1)| − 1 many eigenvalues ≤ 0 < 1

2 , and thus the base case is proved.
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Suppose the claim holds for some k < d− 1. By Lemma 5.1, P∨
k+1 and P∧

k have the same non-zero eigenvalues, and

thus, by the induction hypothesis, P∨
k has at most |X(i)| eigenvalues> 1− i+1

k+1 for−1 ≤ i ≤ k. Since by Lemma 5.3,

P∧
k+1 ⪯ k+1

k+2P
∨
k+1 +

1
k+2I , P

∧
k+1 has at most |X(i)| eigenvalues > k+1

k+2 ·
(
1− i+1

k+1

)
+ 1

k+2 = 1 − i+1
k+2 . For i = k + 1,

P∧
k+1 trivially has ≤ |X(k + 1)| eigenvalues > 0, since P∧

k+1 is a |X(k + 1)| × |X(k + 1)| matrix. ■

5.2. Polynomials, Distributions and Simplicial Complexes

To apply our log-concave machinery to the simplicial complex setting, we need to set up the basic connections first,

which is what we now do.

Let p ∈ R[x1, . . . , xn] be a multilinear d-homogenous polynomial, i.e. p =
∑

S∈([n]
d )
cSx

S =
∑

S∈([n]
d )
cS
∏

i∈S xi.

Define a d-dimensional (pure) simplicial complex Xp, where Xp(d) :=
{
S ∈

(
[n]
d

)
: cS ̸= 0

}
, and then “complete”

the simplicial complex by taking all subsets of faces in Xp(d). Similarly, assign w(S) := cS for S ∈ Xp(d), and then

extend w to all faces of Xp in the usual way, i.e. w(τ) =
∑

σ∈Xp(d):σ⊇τ w(σ), for any face τ . Then:

Proposition 5. For any 0 ≤ k ≤ d, and any σ ∈ Xp(k), w(σ) = (d− k)!pσ(1), where pσ :=
(∏

i∈σ ∂i

)
p.

Proof. We prove this by induction on d − k (or “reverse induction on k”). If k = d, pσ(1) = cσ , and we’re done. So

suppose the statement holds for all τ ∈ Xp(k + 1), and consider some σ ∈ Xp(k). Then

w(σ) =
∑

η∈Xp(d):η⊃σ

w(η) =
∑

τ∈Xp(k+1):τ⊃σ

w(τ) =
∑

i∈Xp
σ(1)

w(σ ∪ i) = (d− k − 1)!
∑

i∈Xp
σ(1)

pσ∪i(1)

= (d− k − 1)!
∑

i∈Xp
σ(1)

(∂ipσ)(1) = (d− k − 1)!


 ∑

i∈Xp
σ(1)

∂i

 pσ

 (1)
Lemma A.4

= (d− k)!pσ(1)

■

We now connect log-concavity to the spectral properties of simplicial complexes.

Lemma 5.4. Let p be a multilinear completely log-concave polynomial. Then Xp is a 0-local spectral expander.

Proof. Define:

∇̃2pτ :=
1

d− k − 1
diag

(
(∇p) (1)

)−1
(
∇2pτ

)
(1)

We claim that ∇̃2pτ = P̃∧
τ,1: Indeed, note that:

P̃∧
τ,1(i, j) =

wτ ({i, j})
wτ ({i})

=
w(τ ∪ {i, j})
w(τ ∪ {i})
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On the other hand,

(∇̃2pτ )(i, j) =

(
∂i∂jpτ

)
(1)

(d− k − 1) · (∂ipτ ) (1)
But the above expressions are equal by Proposition 5.

Now, the non-zero entries ofdiag
(
(∇p) (1)

)
are the coefficients of p, which are non-negative 19, and thusdiag

(
(∇p) (1)

)
is PSD. Furthermore, since p is completely log-concave,

(
∇2p

)
(1)has atmost one positive eigenvalue by Theorem1.2.

Thus by Lemma A.2, ∇̃2pτ has at most one positive eigenvalue, and thus P̃∧
τ,1 has at most one positive eigenvalue,

implying that λ2(P̃∧
τ,1) ≤ 0. Since τ was arbitrary, we get that Xp is a 0-local spectral expander. ■

5.3. An FPRAS for Matroid Base Counting

We can nowfinally construct an FPRAS forMatroid Base Counting. But before that, we quickly recall a very standard

result from the theory of Markov chains:

Theorem 5.5. Let M := (Ω, P, π) be an irreducible and reversible Markov chain with stationary distribution π, and

let τ ∈ Ω and ε > 0 be arbitrary. Then

tτ (ε) ≤
1

1− λ∗(P )
log

(
1

ε · π(τ)

)
where λ∗(P ) := max{|λ2|, |λn|} is the second eigenvalue ofM, which has eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1,

and tτ (ε) := min{t ∈ Z≥0 : ∥P t(τ, ·)− π∥1 ≤ ε}.

Let µ : 2[n] 7→ R≥0 be a d-homogenous completely log-concave distribution. We turn it into a weighted pure d-

dimensional simplicial complex Xµ in the usual way, with Xµ(d) := supp(µ), and w(σ) := µ(σ) for any σ ∈ Xµ(d),

and we extend Xµ(d) and w to construct our weighted simplicial complex.

Lemma 5.6. Let µ : 2[n] 7→ R≥0 be a d-homogenous completely log-concave distribution, and considerXµ as defined

above. Consider the lower random walk P∨
d on Xµ(d) = supp(µ), which we start from τ . Then

tτ (ε) ≤ d log

(
1

εµ(τ)

)

Proof. By Theorem 5.5 it is enough to show that λ∗(P∨
d ) ≤ 1 − 1/d. Since µ is completely log-concave, Xp is a

0-local-spectra-expander by Lemma 5.4. Thus,

λ∗(P∨
d )

Lemma 5.1
= λ∗(P∧

d−1)
Theorem 5.2

≤ 1− 1

(d− 1) + 1
= 1− 1

d

19recall that a completely log-concave polynomial must have non-negative coefficients
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as desired. ■

At this point, we are done: Indeed, for any matroidM = ([n], I) with set of bases BM , construct a graph GM over

BM , where two bases B,B′ are connected if |B△B′| = |(B \ B′) ∪ (B′ \ B)| = 2. By the basis exchange property of

matroids, GM is connected.

Now, let µ be the uniform distribution over BM . By Theorem 2.2, µ is completely log-concave. Thus, by Lemma 5.6,

the lower random walk on the maximal faces ofXµ mixes fast. But the lower random walk on the maximal faces of

Xµ is precisely a walk on BM , and furthermore, this walk converges on the uniform distribution over BM ! This walk

is also known as the basis exchange walk, and we have the following theorem about it:

Theorem 5.7 (FPRAS for Matroid Base Counting). For any matroidM = ([n], I) of rank r, any basis B ofM , and

any ε ∈ (0, 1), the mixing time of the basis exchange walk, starting at B is

tB(ε) ≤ r log

(
nr

ε

)
≤ r2 log

(
n

ε

)
≤ n2 log

(
n

ε

)
Thus the basis exchange walk converges to the uniform distribution over BM in poly(n, log 1

ε ) time. Equivalently, we

can sample (with ε-ℓ1 error) from the uniform distribution over matroid bases in poly(n, log 1
ε ) time. Furthermore,

for any ϵ, δ ∈ (0, 1), we can produce an (randomized) estimate ‘β’ of |BM |, in poly(n, r, 1ϵ , log
1
δ ) time, such that

Pr((1− ϵ)β ≤ |BM | ≤ (1 + ϵ)β) ≥ 1− δ. In other words, we have an FPRAS for calculating |BM |.

Proof. We can conclude from the above discussion and the fact that 1
µ(B) = Number of bases ofM ≤

(
n
r

)
≤ nr.

The randomized algorithm calculating β is simply the Sinclair-Jerrum theorem ([SJ89]) 20, which says that if we can

sample (in polynomial time) the uniform distribution over a set to some given error, then we can also estimate the

size of that set very accurately with high probability. ■

The above result is pathbreaking, for it immediately resolves a host of open questions, which we shall see now.

5.4. Applications of Theorem 5.7

5.4.1. The Mihail-Vazirani Conjecture

Given a simple (unweighted) undirected graph G(V,E), we define the expansion 21 of a set S ⊆ V to be

h(S) :=
E(S, S)

|S|

The expansion of the whole graph is defined to be h(G) := min|S|≤|S| h(S). Consider the basis exchange graph

GM defined in the previous section, where two bases B,B′ are connected if |B△B′| = 2. In the 1990s, Mihail and

Vazirani conjectured that h(GM ) ≥ 1 for every matroid. We will prove that now.
20which we also saw when we demonstrated an FPRAS for the common base problem (see Theorem 4.5 and the remarks following it).
21note that expansion is different from conductance. However, for regular graphs, expansion is proportional to conductance.
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Before that, we recall the very famous Cheeger’s inequality from spectral graph theory: LetH(V,E,w) be aweighted

graph, with the weight of an edge e being w(e). For any v ∈ V , define w(v) :=
∑

v∈e w(e)
22. We call a weighted

graph d-regular if w(v) = d for every v ∈ V . Then:

Theorem 5.8 (Weighted Cheeger’s inequality). For any d-regular weighted graph H(V,E,w),

d− λ2
2

≤ Φ(H) ≤
√

2(d− λ2)

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues ofAH , whereAH(i, j) := w({i, j}) if {i, j} is an edge, and 0 otherwise.

Recall that Φ(H) is the conductance of H , where

Φ(S) :=
w(E(S, S))

vol(S)
=

∑
e∈E(S,S) w(e)∑

v∈S w(v)
,Φ(H) := min

vol(S)≤vol(S)
Φ(S)

Theorem 5.9 (Mihail-Vazirani Theorem). For any matroidM , the expansion of its basis exchange graph is at least 1.

Proof. Define the usual simplicial complex on M , and let the basis exchange graph be denoted as GM . Also, let

rank(M) = r.

Now, for any τ1 ̸= τ2, τ3 ̸= τ4, if P∨
r (τ1, τ2) and P∨

r (τ3, τ4) are both non-zero, then they must be equal, since the

simplicial complex assigned equal weight to all its bases. Furthermore, for any τ, τ ′, P∨
r (τ, τ) = P∨

r (τ ′, τ ′). Thus, if

we write ξ := P∨
r (τ, τ), then P∨

r is a ξ-lazy randomwalk on GM , i.e. with probability ξ, P∨
r stays on the same vertex,

and with 1−ξ
ℓ probability P∨

r goes to a neighbor of the current vertex, where ℓ is the degree of any vertex in GM
23.

Then by Theorem 5.8,

Φ(GM ) ≥ 1− λ2(P
∨
r )

2
≥ 1− (1− 1/r)

2
=

1

2r

where we recall λ2(P∨
r ) ≤ 1− 1/r from the proof of Theorem 5.7.

On the other hand, fix some S ⊂ BM with |S| ≤ |BM |/2. Then

1

2r
≤ Φ(GM ) ≤ Φ(S) =

∑
τ∈S,τ ′ ̸∈S P

∨
r (τ, τ ′)

|S|
Proposition 6

≤
∑

τ∈S,τ ′ ̸∈S
1
2r

|S|
=

1
2r |E(S, S)|

|S|
=
h(S)

2r

Thus h(S) ≥ 1 for every |S| ≤ |BM |/2, and we’re done. ■

Proposition 6. P∨
r (τ, τ ′) ≤ 1

2r for any τ, τ ′ ∈ BM , τ ̸= τ ′.

Proof. If P∨
r (τ, τ ′) ̸= 0, then P∨

r (τ, τ ′) = w(τ ′)
rw(τ∩τ ′) . But w(τ ∩ τ

′) ≥ w(τ) + w(τ ′) = 2w(τ ′), and we’re done. ■
22we basically treat the graph as a 2-dimensional simplicial complex, and extend the weights from edges to vertices accordingly
23using basis exchange properties, one may show that the basis exchange graph is regular
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5.4.2. The Random Cluster Model

We’ll now see another application of Theorem 5.7 in statistical physics.

Given a matroid M = ([n], I) of rank r and parameters p, q, we define the partition function 24, as the following

polynomial:

ZM (p, q) :=
∑
S⊆[n]

qr+1−rank(S)p|S|

When M is the graphic matroid, r + 1 − rank(S) calculates the number of connected components of S. Before

Theorem 5.7 was proved, one could only compute/approximate ZM (p, 2) (see [JS93], [GJ17]). Using Theorem 5.7,

we can now approximate ZM (p, q) for all p ≥ 0, q ∈ (0, 1].

We can further define the Tutte polynomial of a matroid as

TM (x, y) :=
∑
S⊆[n]

(x− 1)r−rank(S)(y − 1)|S|−rank(S)

Clearly,

TM (x, y) =
1

(x− 1)(y − 1)r+1
ZM (y − 1, (x− 1)(y − 1))

Thus we also have an FPRAS for estimating the Tutte polynomial in the region y ≥ 1, (x− 1)(y − 1) ∈ [0, 1].

Thus without further ado, let’s see how the FPRAS for approximating ZM (p, q) comes about.

Theorem 5.10. There is a FPRAS for estimating ZM (p, q).

Proof. ZM (p, q) = qr+1
∑n

k=0 p
kfM,k,q(1), where fM,k,q is as defined in Lemma 2.1. By Lemma 2.1, since fM,k,q is

completely log-concave, using ideas similar to the proof of Lemma 5.6, we get our desired result. ■

24It was introduced by Fortuin and Kasteleyn. See this book by Grimmett ([Gri06]) for further details
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�A. Appendix

Lemma A.1. Let M =

A B

C D

, where A,B,C,D are square matrices (over a field) of the same order such that

CD = DC. Then det(M) = det(AD −BC).

Proof. Refer to [Sil00], Theorem 3. ■

LemmaA.2. LetA be a symmetric matrix with at most 1 positive eigenvalue. Then for any strictly PSDmatrix P ≻ 0,

PA has at most 1 positive eigenvalue.

Proof. Write P = BTB for some matrix B. Now, elementary linear algebra tells us that ifX,Y are two matrices such

that XY, Y X are defined, then XY and Y X have the same non-zero spectra.

Thus, PA = BTBA has the same non-zero eigenvalues asBABT. SinceB is invertible, BABT preserves the signs of

the eigenvalues of A, and we’re done. ■

Lemma A.3. Let A be a symmetric matrix with at most 1 positive eigenvalue. Suppose all entries of A are non-

negative. Let w be a vector such that w(i) :=
∑

j Aij . Then wwT∑
i w(i) −A is PSD.

Proof. WriteW = diag(w). Clearly,B :=W−1/2AW−1/2 has atmost 1 positive eigenvalue. Observe thatB
√
w =

√
w,

where
√
w is the entry-wise square-root of w. Thus

√
w is the only eigenvector of B corresponding to a positive

eigenvalue, and thus
√
w corresponds to the largest eigenvalue of B, implying that

B ⪯
√
w
√
w

T

∥
√
w∥2

=

√
w
√
w

T∑
i w(i)

Multiplying both sides of the inequality, left and right byW 1/2 proves the desired statement. ■

Lemma A.4 (Euler’s Identity). Let g ∈ R[z1, . . . , zn] be a d-homogenous polynomial. Then
∑n

i=1 zi∂ig = d · g.

Consequently, for any a ∈ Rn, ∂ag
∣∣
z=a

=
(∑n

i=1 ai∂ig
)
(a) = d · g(a).
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