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�1. Basics of Quantum Computation

Conventions

We order multi-qubit states lexicographically while expressing them as vectors, where |0⟩ ≺ |1⟩. Thus, for example,[
0.7 0.5 −0.5 0.1

]T stands for 0.7|00⟩+ 0.5|01⟩ − 0.5|10⟩+ 0.1|11⟩.
Let M be a m × n complex matrix. We denote by MT the transpose of M , M∗ the conjugate of M , and M† the
conjugate transpose ofM . ThusM∗ ∈ Cm×n,MT,M† ∈ Cn×m.
Let V be a vector space, and let M : V 7→ V be a linear map. Let V := {vi} be a basis for V . Then expressing M
in the basis V means creating a dim(V ) × dim(V ) matrix such thatMij := v†iMvj . Note that we don’t need V to be
orthonormal to do all this.

Acknowledgements

These notes aremostly inspired fromScottAaronson’s undegraduate [Aar16b] andRyanO’Donnell and JohnWright’s
graduate, quantum computation notes [OW15].

1.1. Mathematical Preliminaries

We recall the notion of tensor products: Given v ∈ Cm, w ∈ Cn, v ⊗ w is a vector in Cmn given by:

v ⊗ w :=



v1


w1

...
wn


...

vm


w1

...
wn




One can think of the tensor product this way: If v, w represent probability distributions, then v ⊗ w represents the
joint distribution of independent copies of v and w.
One can extend the notion of tensor products to general matrices too: Indeed, if A ∈ Ca1×a2 , B ∈ Cb1×b2 , then
A⊗B ∈ Ca1b1×a2b2 is a matrix given by:

A⊗B :=



a1,1


b1,1 · · · b1,b2
...

. . .
...

bb1,1 · · · bb1,b2

 · · · a1,a2


b1,1 · · · b1,b2
...

. . .
...

bb1,1 · · · bb1,b2


...

. . .
...

aa1,1


b1,1 · · · b1,b2
...

. . .
...

bb1,1 · · · bb1,b2

 · · · aa1,a2


b1,1 · · · b1,b2
...

. . .
...

bb1,1 · · · bb1,b2




Also note that not all vectors arise as tensor products (the probabilistic interpretation makes this very easy to see:
Not all joint distributions are a product of their marginals): For example, the vector

[
0.5 0 0 0.5

]T ∈ C4 is not
the tensor product of any two vectors in C2.

1.2. Circuits

We want to develop a theory of computation for qubits (which we shall define shortly), and the first thing we need
to define is the notion of a circuit.
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Now, the Second Law of Thermodynamics says that irreversible boolean gates must dissipate energy: For example,
take the AND gate. Given that the output of the AND gate is 0, there is no way for us to say if the inputs were
(0, 0), (0, 1) or (1, 0). Thus, the AND gate is not reversible, and any AND gate in nature must necessarily expend
energy.
On the other hand, there is also the notion of universality of computation: Recall that NAND gates, along with
ancilla bits, are universal for boolean computation. Indeed, given any boolean function f : {0, 1}n 7→ {0, 1}, we
can implement f by repeatedly applying NOT and AND gates to the input bits. Now, note that AND(x, y) =
NOT(NAND(x, y)). Finally, note that NOT(x) = NAND(x, 1). Note that we hardcoded one input of the NAND
gate to be the bit 1; the constant bit 1 is called an ancilla bit in this computation.
Thus, one might wonder if there exist reversible gates that are also universal for boolean computation: The answer
is yes, and the Toffoli gate is an example of such a gate, denoted as CCNOT.

Definition 1.1. The Toffoli gate CCNOT : {0, 1}3 7→ {0, 1}3 is defined as:

CCNOT(x, y, z) := (x, y,AND(x, y)⊕ z)

Remark. The formal definition of a reversible gate is as follows: Given the output of the gate, we should be able to
uniquely determine the input of the gate. Consequently, a reversible gate as a function should be injective. Since we
might as well restrict our co-domain to be the set of achievable outputs, it follows that reversible gates have to be
bijective. In particular, they must necessarily have the same number of input and output bits.
Note that CCNOT(x, y, 1) = (x, y,NAND(x, y)), and thus NAND gates can be simulated by the Toffoli gate; conse-
quently, Toffoli gates along with ancilla bits suffice for all boolean computation.
Note that since CCNOT can simulate NOT, WLOGwe can assume that all our ancilla bits are set to 0: We can trans-
form any of them to 1 as required by applying a NOT gate.
We shall return to the issue of universality of computation later on.
Another particularly important gate in the context of quantum computing is the CNOT gate, which is a function
from {0, 1}2 to {0, 1}2, which negates the second bit only if the first bit is 1, i.e. CNOT(0, x) = (0, x),CNOT(1, x) =
(1, 1 − x). Its matrix representation (note that functions {0, 1}n 7→ {0, 1}n can be identified with matrices in
{0, 1}2n×2n) is:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


One interesting feature of theCNOT gate is that it can create correlations: For example, consider the vector

[
0.5 0 0.5 0

]T.
It is the tensor product of

[
0.5 0.5

]T with
[
1 0

]T. Probabilistically, it represents that with probability 1/2 our input
is 00, and with probability 1/2 it is 10. Now,

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0.5
0
0.5
0

 =


0.5
0
0
0.5


Note that the output is not expressible as a tensor product, i.e. it is correlated.

1.3. Qubits

A quantum state is a unit vector in CN describing the state of a quantum system. The simplest interesting quantum
system is the qubit, which has two levels, which we denote by |0⟩ and |1⟩. 1

1a one-level quantum system would just be the state |0⟩, which wouldn’t be very interesting on its own. We could also talk about multi-level
quantum systems, with states |0⟩, . . . , |d⟩. However, we can simulate multi-level systems with qubits, so WLOG we only talk about qubits.
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We now introduce the bra-ket notation: A vector ψ ∈ CN is in the ket-form, and denoted as |ψ⟩. The complex

conjugate of ψ, is in the bra-form, and is denoted as ⟨ψ|. For example, if |ψ⟩ =
[
α
β

]
, then ⟨ψ| =

[
α∗ β∗]. Note that

∥ψ∥2 = ⟨ψ| · |ψ⟩, which is also denoted as ⟨ψ|ψ⟩. Also note that ⟨x| · |y⟩ =: ⟨x|y⟩ = ⟨y|x⟩∗.
We also define some very important quantum states:

Definition 1.2. We define:

|+⟩ := |0⟩+ |1⟩√
2

, |−⟩ := |0⟩ − |1⟩√
2

, |i⟩ := |0⟩+ i|1⟩√
2

, |−i⟩ := |0⟩ − i|1⟩√
2

|±⟩ are also known as the Hadamard states.

Note that just as stochastic matrices act on probability distributions, the same way unitary matrices act on quantum
states. Why unitary matrices? Quantum physics tells us that quantum transformations have to be linear, so only
matrices can act on quantum states. But also note that quantum states have norm 1, which means that our matrix
transformations will have to preserve norms, and consequently will have to be unitary. Recall that if U ∈ CN×N is
unitary, then U†U = UU† = I , where U† is the conjugate transpose of U .
Also note that unitarymatrices are diagonalizable, whichmeans that we can freely take square roots (or any positive
real power) of a unitarymatrix. For example, we can decompose the action of a unitarymatrixU into the composition
of actions of

√
U . This is quite natural, since in physics, unitary matrices denote the evolution of a system with time:

Indeed, the Hamiltonian H of a quantum system is a Hermitian matrix, and if H is the Hamiltonian of a system,
then the state of the system |ψ⟩ after time t has elapsed is e−iHt/ℏ|ψ⟩, i.e. U = e−iHt/ℏ. Clearly, we can write
U = e−iHt/ℏ = e−iHt/2ℏ · e−iHt/2ℏ =

√
U ·
√
U , or U = Uα1 ·Uα2 · · ·Uαn , where α1 + · · ·+αn = 1, α1, . . . , αn ∈ [0, 1].

This also illustrates why we need complex numbers for describing the evolution of a quantum state: Real unitary
matrices, a.k.a orthogonal matrices, may not necessarily have real square roots.

1.4. Born's Rule

Suppose we have a quantum state |ψ⟩ =
[
α0

α1

]
. The probability that we will see the qubit |0⟩ when we measure ψ is

|α0|2. Similarly, the probability that we will see the qubit |1⟩when wemeasure ψ is |α1|2. Since quantum states must
have norm 1, we must have |α0|2 + |α1|2 = 1, which agrees with the laws of probability.
In general, suppose V := {|v0⟩, . . . , |vn−1⟩} is an orthonormal basis for our state space. 2 Then the probability
we see the state |vi⟩ when we measure |ψ⟩ against the basis V is |⟨vi|ψ⟩|2 = ⟨ψ|viv†i |ψ⟩. Note that measurements
against orthonormal bases are known as projective measurements. We shall later see much more general forms of
measurements.
What about partialmeasurement? Suppose our quantum state is |ψ⟩ := α00|00⟩+α01|01⟩+α10|10⟩+α11|11⟩. Suppose
we measure just the first qubit. The probability that we obtain |0⟩ is |α00|2 + |α01|2. Now, suppose we do obtain |0⟩
on measuring the first qubit. Then our quantum state |ψ⟩ collapses into the state

α00√
|α00|2 + |α01|2

|00⟩+ α01√
|α00|2 + |α01|2

|01⟩ = |0⟩ ⊗

(
α00√

|α00|2 + |α01|2
|0⟩+ α01√

|α00|2 + |α01|2
|1⟩

)

If someone measures the second qubit now 3, the probability that they obtain |0⟩ is |α00|2
|α00|2+|α01|2 .

We also make certain important remarks about the consequences of Born’s rule:

1. Note that being certain in a measurement in the {|0⟩, |1⟩} basis implies that we are maximally uncertain in our
measurement in the {|+⟩, |−⟩} basis, and vice versa.

2Why do we need V to be orthonormal? Note that to satisfy the laws of probability, we must have
∑N−1

i=0 viv
†
i = I ⇐⇒ UU† = I , where

U =
[
|v0⟩ · · · |vN−1⟩

]
, i.e. U is unitary, which means V is an orthonormal basis.

3with the knowledge that the first state was measured to be |0⟩
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2. Note that measurement is a very special type of quantum operation: Usual quantum operations are reversible
(since unitary matrices are invertible), deterministic (given a state |ψ⟩ and a unitary matrix U , applying U
to |ψ⟩ yields U |ψ⟩: There is nothing probabilistic about the process of unitary evolution itself), and contin-
uous (application of U can be decomposed into the application of U1/n n times, for any n). On the other
hand, measurement itself is irreversible (once measured, we can’t recover the superposition of a qubit back),
probabilistic (the outcome of a measurement is not deterministic, unless we are measuring |ψ⟩ against a basis
containing |ψ⟩), and discontinuous (the process of measurement is assumed to be instantaneous, i.e. the state
of the system collapses instantaneously on measurement). Later on we shall see the Superoperator formalism
which allows us to unite unitary operations and measurements into a single mathematical framework.

1.5. Quantum Interference

Note that a “mixing” of states exists even in classical computation: For example, a random bit can be written as
|0⟩+|1⟩

2 . However, classical randomness, and quantum superposition differ in two very crucial ways:

1. Even a random classical bit has a ‘true’ value, it is just that we are not completely sure what it is. A random bit
has a definitive value in RAM, before we measure what that bit is. However, a quantum superposition is not
like that: If our state is |0⟩+|1⟩√

2
, then this is truly a superposition until it is measured. It has no definitive value

in the quantum computer before its measurement.

2. This leads us to our second point: Consider the transformation U = 1√
2

[
1 1
1 −1

]
. If we apply this to the qubit

|0⟩, we get the state |0⟩+|1⟩√
2

. However, note that U = U−1, i.e. if we apply U again to |0⟩+|1⟩√
2

, then we get back
|0⟩! Note that this is not possible in a classical setting: If we apply a bijective function to a mixed (i.e. random)
input, we can never obtain a deterministic output! The reason quantum computation allows us to ‘unscramble’
randomness is because the amplitudes of a state can be negative, and thus can cancel off positive amplitudes.
This phenomenon is known as interference, and is the main cause of the power of quantum computation.

The above example also gives us this useful definition:

Definition 1.3 (Hadamard Gate). The gate H := 1√
2

[
1 1
1 −1

]
is known as the Hadamard gate. Note that H2 = I .

Also note that H|0⟩ = |+⟩, H|1⟩ = |−⟩.

Remark. Note that H is the character table of F2. In some sense, Fourier analysis over finite groups is all the extra
power that quantum computation has over classical computation.

1.6. Quantum Zeno E�ect/Watched Pot E�ect

The Quantum Zeno effect, first proposed by Alan Turing [Teu04], and later described rigorously in [DFG74], de-
scribes how we can arrest/induce change in a quantum system by measuring it continuously.
Suppose we have the qubit |0⟩. Also, denote by Vθ the basis {vθ, v⊥θ }, where vθ := cos(θ)|0⟩ + sin(θ)|1⟩, v⊥θ :=
− sin(θ)|0⟩ + cos(θ)|1⟩. Suppose we measure |0⟩ against Vε. Then with probability cos2(ε) ≈ 1 − ε2, the outcome of
the measurement is vε. We can once again measure vε against V2ε, and with probability≈ 1− ε2, the outcome of the
measurement will be v2ε. Now, if we repeat this process π

2ε times, and if we succeed every time, then we obtain the
qubit vπ/2 = |1⟩! Also, the probability of failure is ≤ O(ε2) · π2ε = O(ε).
Consequently, by letting ε↘ 0, we can, with arbitrarily high probability, convert our |0⟩ qubit into a |1⟩ qubit by just
measuring it repetitively against a drifting basis!

1.7. The Coin Problem

The quantum version of the coin problem was defined and solved by Aaronson and Drucker in [AD11].
Suppose we are given two coins, one which turns up ‘Head’ with probability 1/2, and the other which turns up
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‘Head’ with probability ≥ 1/2 + ε. We have to identify the biased coin.
The classical way to do this is to toss both the coins C · ε−2 times, and keep track of the number of times each coin
turns up ‘Head’. With probability ≥ 1 − 2−Ω(C), the biased coin will have turned up ‘Head’ more number of times
than the unbiased coin, which will give us the necessary distinction.
This algorithm requires O(log 1/ε) bits to store the number of heads (if C = O(1)). A theorem by Hellman and
Cover [HC70] gives a corresponding lower bound of Ω(log 1/ε) space for the coin problem.
Turns out that the above problem can be solved in O(1) space by a quantum algorithm [AD11]! We give a sketch

of the algorithm here: Consider the rotation matrix Rθ :=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. Initialize a qubit |ψ⟩ := |0⟩. Pick

any coin, and if it turns up heads apply Rε to |ψ⟩, and apply R−ε to |ψ⟩ otherwise. Note that R−ε = R−1
ε . After

repeating this process O(ε−2) times, we measure |ψ⟩ (in the {|0⟩, |1⟩} basis). If it turns up |0⟩, w.h.p that coin was
fair, otherwise not.
Thus, with qubits we can solve the coin problem in O(1) qubits, what in the classical setting necessarily takes
Ω(log 1/ε) bits!

1.8. Multi-Qubit Operations

Suppose we have a string of qubits |x1x2 · · ·xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩. Say we want to apply the gate U1 to
(x2, x4, x5), the gate U2 to (x1, x3), and leave the rest of the qubits unchanged. Then the giant operator which acts on
the entire string is (U1⊗U2⊗ I) ·Π, where Π is a suitable permutation matrix which rearranges the string |x1 · · ·xn⟩
to |x2x4x5⟩ ⊗ |x1x3⟩ ⊗ |x6 · · ·xn⟩.

1.9. Entanglement

Apply the circuit CNOT ·(H ⊗ I) to |00⟩. Note that

H ⊗ I =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


Multiplying the above with the CNOT gate yields the matrix

CNOT ·(H ⊗ I) = 1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


Thus, if we apply this to the state |00⟩ =

[
1 0 0 0

]T, then we get the state 1√
2

[
1 0 0 1

]T, which corresponds
to |ρ⟩ := 1√

2
(|00⟩+ |11⟩).

The state |ρ⟩ is also known as an Einstein-Podolsky-Rosen pair (EPR pair). The state |ρ⟩ is entangled (i.e. can’t be
expressed as a tensor product).
Suppose the first qubit of the EPR pair is owned by Alice, and the second qubit is owned by Bob. When Alice
measures her qubit, she will instantaneously know what Bob’s measurement will yield, even though Alice and Bob
could be physically separated by a large distance.
Einstein termed this spooky action at a distance. However, this is not surprisingwhen one notes that correlated random
variables are bound to behave this way: Indeed, suppose Alice and Bob are physically separated by a large distance,
and they subscribe to the same newspaper. Alice knows that every morning the paper will either report that the
markets have gone up, or down (but she doesn’t know which of the two scenarios will happen). Then note that the
moment Alice opens her paper, she also knows what Bob will read, and there is nothing spooky about this!
However, consider the following experiment: Suppose Alice measures her qubit in the {|+⟩, |−⟩} basis. This is
equivalent to first Hadamarding her qubit, and then measuring in the usual {|0⟩, |1⟩} basis. That yields:

(H ⊗ I)
(
|00⟩+ |11⟩√

2

)
=
|00⟩+ |01⟩+ |10⟩ − |11⟩

2
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Now, if Alice sees |0⟩ on measuring her qubit, Bob’s state collapses to |00⟩+|01⟩√
2

= |+⟩. Similarly, if Alice sees |1⟩, then
Bob’s state collapses to |−⟩.
Think for a moment about the implications of this: If Alice measures her qubit in the {|0⟩, |1⟩} basis, then Bob’s qubit
collapses to |0⟩ or |1⟩. But if Alice measures her qubit in the {|+⟩, |−⟩} basis, then Bob’s qubit collapses to |+⟩ or |−⟩!
Then the question arises: How does Bob’s qubit knowwhich basis Alice measured her qubit in, so that it knows how
to collapse to the “correct” set of states? We use the formalism of mixed states to answer this.
Before wemove on to mixed states, we mention a last weird consequence of entanglement: Suppose we have an EPR
pair |ψ⟩ := |00⟩+|11⟩√

2
. We place another qubit |0⟩ with |ψ⟩, and thus the state of the system |ψ⟩ ⊗ |0⟩. We now swap

the last two qubits to obtain the state |000⟩+|101⟩√
2

. Note that the third qubit got entangled with the first qubit without
these qubits ever interacting with each other, i.e. entanglement is transferable!

1.10. Mixed States and Density Matrices

Given a set of quantum states S := {|ψi⟩}i∈I , we define amixed state as a probability distribution over these quantum
states, i.e. a mixed state is the tuple {(pi, |ψi⟩)}i∈I , with

∑
i∈I pi = 1, pi ∈ [0, 1]. The states |ψi⟩ are called pure states in

this context. A pure state can also be considered as a mixed state, where the corresponding probability distribution
has a support of size 1.
The density matrix corresponding to a mixed state is defined to be:

ρ :=
∑
i∈I

pi|ψi⟩⟨ψi|

1.10.1. Properties of The Density Matrix

We quickly list down some properties of the Density Matrix:

1. Hermitian: It is easy to see that ρ† = ρ.

2. Trace 1: Note that tr(ρ) =
∑
i∈I pi

∑N
j=1 ψijψ

∗
ij =

∑
i∈I pi

∑N
j=1 |ψij |2 =

∑
i∈I pi∥ψi∥2 =

∑
i∈I pi = 1.

3. Positive Semi-Definite (PSD): For any |x⟩, x†ρx = ⟨x|ρ|x⟩ =
∑
pi⟨x||ψi⟩⟨ψi||x⟩ =

∑
pi|⟨ψi|x⟩|2 ≥ 0.

Conversely, let ϱ be any Hermitian PSD matrix with trace 1. Since ϱ is Hermitian, the spectral theorem applies, and
we can write ϱ =

∑N
j=1 λj |vj⟩⟨vj |, where {vj} are eigenvectors of ϱ, and {λj} are the corresponding eigenvalues.

Since ϱ is Hermitian, λj ∈ R, and since ϱ is PSD, λj ≥ 0. Finally,
∑N
j=1 λj = tr(ϱ) = 1, and thus {λj} is a collection

of non-negative real numbers which sum to 1. Consequently, {λj} can be viewed as a probability distribution, and
thus ϱ becomes the density matrix of the mixed state {(λj , |vj⟩)}j∈[N ]. Summarizing the above discussion, we get
the following theorem:

Theorem 1.1. A square matrix ρ is a density matrix if and only if it is Hermitian, PSD, and has trace 1.

We list some further properties of the density matrix:

1. Rank of the Density Matrix: Suppose ρ is the density matrix of some mixed state. Let r = rank(ρ). Then note
that ρ is also the density matrix of a mixed state with r pure components. In particular, any density matrix
arises as the density matrix of a mixed state with ≤ N pure components. Furthermore, the rank of a density
matrix tells us the minimum number of pure states we have to mix to achieve the given density matrix. Also
note that a density matrix represents a pure state if and only if it has rank 1.

2. Maximally Mixed State: Suppose {|ψ1⟩, . . . , |ψN ⟩} are an orthonormal basis for our state space. Consider
the mixed state

{(
1
N , |ψi⟩

)}
. Then the density matrix of this state is 1

N

∑N
i=1 |ψi⟩⟨ψi|. Now, recall from linear

algebra that if {|ψ1⟩, . . . , |ψN ⟩} is an orthonormal basis, then
∑N
i=1 |ψi⟩⟨ψi| = I . Consequently, the density

matrix for the uniform distribution on any orthonormal basis is I/N . If the density matrix of aN -dimensional
Hilbert space is I/N , then it is called a maximally mixed state.



Quantum Computation Theory 9 / 41 Arpon Basu

3. Effect of Unitary Transformations: Suppose we apply a unitary transformation to all the pure components of
a mixed state with density matrix ρ. Then the new density matrix becomes

∑
i∈I pi(U |ψi⟩)(U |ψi⟩)† = UρU†.

4. Pure vs. Mixed States: Let ρ be a density matrix. Diagonalize ρ = UDU†. Then ρ2 = UD2U†, and tr(ρ2) =
tr(D2) =

∑
λ2i , where {λi} are the eigenvalues of ρ. Now,

∑
λ2i ≤

∑
λi = 1, with equality occuring only if

λi = 0, 1 for all i. But that happens only when ρ is pure. Thus tr(ρ2) ≤ 1 for all density matrices, with equality
occuring if and only if ρ is pure. Thus, this can be used as a criteria to judge if a state is pure/mixed from its
density matrix.

5. Measurements: Suppose we have a mixed state τ := {(pi, |ψi⟩)}i∈I , with density matrix ρ =
∑
i∈I pi|ψi⟩⟨ψi|.

Also suppose we have an orthonormal basis V := {|vj⟩}j∈[N ]. What happens if we measure τ against V ?

Pr(We observe vj) =
∑
i∈I

pi|⟨vj |ψi⟩|2 =
∑
i∈I

pi⟨vj |ψi⟩⟨ψi|vj⟩ =

〈
vj

∣∣∣∣∣∣
∑
i∈I

pi|ψi⟩⟨ψi|

∣∣∣∣∣∣ vj
〉

=
〈
vj |ρ|vj

〉
Consequently, the results of any measurement on |τ⟩ are completely captured by its density matrix. In particular, if
two mixed states have the same density matrix, then no (projective) measurement can distinguish them. In
other words, the density matrix of a quantum system provides a complete description of it.

6. Off-Diagonal Entries: Note that |0⟩⟨0| =
[
1 0
0 0

]
. Also note that |+⟩⟨+| =

[
1
2

1
2

1
2

1
2

]
. The off-diagonal entries of

the densitymatrix of |0⟩ are 0, while they are non-zero for |+⟩⟨+|. This is because off-diagonal entries represent
the “interference” in the system. Since the qubits |0⟩ and |1⟩ are maximally superimposed in |+⟩, there is a lot
of interference between them, which shows up in the off-diagonal entries of the density matrix.
However, note that the off-diagonal entries of ρ are basis dependent. For example, ρ is a diagonal matrix in its
own eigenbasis, i.e. since ρ is Hermitian, we can diagonalize ρ as UDU†, and in the basis given by the columns
of U , ρ is a diagonal matrix.

7. Diagonal of the Density Matrix: Suppose ρ, as a matrix, is expressed in the orthonormal basis V . Then
note that the diagonal entries of ρ represent the probabilities of obtaining various basis vectors of V when
measuring ρ (against V ). More precisely, ρii = Pr(We obtain |i⟩ on measuring ρ). Thus, if ρ ∈ CN×N , then
diag(ρ) ∈ [0, 1]N ↪−→ CN is a probability distribution on V .

1.10.2. The Reduced Density Matrix

This section is taken from the Wikipedia page on partial traces [Wik24].
Let H be the Hilbert space our system lies in. If we are dealing with a system of n qubits, then H is just C2n . Now
suppose Alice owns a qubits among those n, and Bob owns the other b := n− a qubits. Define HA ∼= C2a to be the
subsystem of Alice, andHB ∼= C2b to be the subsystem of Bob. ClearlyH = HA ⊗HB .
For any Hilbert space H, define L(H) to be the space of linear operators over H. Note that if H ∼= CN , then L(H) ∼=
CN×N . Then we define the partial trace operator trB : L(HA ⊗ HB) 7→ L(HA) as the unique linear map such that
trB(R⊗S) = tr(S)R for all R ∈ L(HA), S ∈ L(HB). To show the uniqueness of trB , it suffices to produce a basis for
L(HA ⊗HB), and show that trB specifies a mapping for all the basis elements.
To that extent, let {|i⟩A} be any basis forHA, and let {|j⟩B} be any basis forHB . Then {|i⟩A⟨i′|A} is a basis for L(HA),
{|j⟩B⟨j′|B} is a basis for L(HB), and thus B := {|i⟩A⟨i′|A ⊗ |j⟩B⟨j′|B} is a basis for L(H). But note that the rule
‘trB(R⊗ S) = tr(S)R’ specifies the value of trB for all elements of L(HA)⊗ L(HB), and thus for all elements of the
basis B for L(H), as desired.
Note that we can define trA similarly as above. Finally, the name “partial trace” should also be clear: Indeed, if b = 0,
then trA = tr.
We can now finally define the notion of reduced density matrix.
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Definition 1.4. Suppose ρ is the density matrix of a quantum state (possibly mixed) in the Hilbert space H =
HA⊗HB . Then theReducedDensityMatrix of Alice is defined to be ρA := trB(ρ), and the Reduced DensityMatrix
of Bob is defined to be ρB := trA(ρ).
The process of taking partial traces is also known as tracing out, as in trace “out” the other subsystem.

How do we explicitly calculate the Reduced Density Matrix? Let {|i⟩A} be any basis for HA, and let {|j⟩B} be any
basis for HB . Note that {|i⟩A}, {|j⟩B} need not be orthonormal. Let |ψ⟩ be a pure state. Then, for some coefficients
αij , we have:

|ψ⟩ =
∑
i,j

αij |i⟩A ⊗ |j⟩B =
∑
i

|i⟩A ⊗

∑
j

αij |j⟩B

 =:
∑
i

|i⟩A ⊗ |vi⟩B

=⇒ |ψ⟩⟨ψ| =
∑
i,i′

(|i⟩A ⊗ |vi⟩B) · (⟨i′|A ⊗ ⟨vi′ |B) =
∑
i,i′

|i⟩A⟨i′|A ⊗ |vi⟩B⟨vi′ |B

=⇒ trA(|ψ⟩⟨ψ|) =
∑
i,i′

trA
(
|i⟩A⟨i′|A ⊗ |vi⟩B⟨vi′ |B

)
=
∑
i,i′

tr
(
|i⟩A⟨i′|A

)
|vi⟩B⟨vi′ |B =

∑
i,i′

δi,i′ |vi⟩B⟨vi′ |B

=⇒ trA(|ψ⟩⟨ψ|) =
∑
i

|vi⟩B⟨vi|B

Thus, if ρ = |ψ⟩⟨ψ| is the density matrix of a pure state, then ρB =
∑
i |vi⟩B⟨vi|B . In case ρ is the density matrix of a

mixed state, we can calculate the reduced density matrices for each of the pure components as above, and then take
a weighted linear combination of those matrices to obtain the Reduced Density Matrix for Bob.
Note that ∑

i

|vi⟩B⟨vi|B =
∑
i

∑
j,k

αijα
∗
ik|j⟩B⟨k|B

Thus, if we express ρB in the {|j⟩B} basis, then (ρB)jk =
∑
i αijα

∗
ik. Now, denote by α the 2a × 2b matrix whose

(i, j)th entry is αij . Then (ρB)jk =
∑
i αijα

∗
ik =

∑
i αij(α

†)ki = (α†α)kj . Thus ρB = (α†α)T.
Now, suppose Alice performs a unitary transformation U on her qubits. Then our new state is

|ψ′⟩ =
∑
i,j

αij(U |i⟩A)⊗ |j⟩B

Now, U |i⟩A =
∑
i′ Ui′i|i′⟩A, where we express U in the {|i⟩A} basis. Thus

|ψ′⟩ =
∑
i′,j

∑
i

Ui′iαij

 |i′⟩A ⊗ |j⟩B =
∑
i′,j

(Uα)i′j |i′⟩A ⊗ |j⟩B =
∑
i,j

(Uα)ij |i⟩A ⊗ |j⟩B

Thus the new density matrix ((Uα)†Uα)T = (α†U†Uα)T = (α†α)T = ρB .
Now, assume {|i⟩A}, {|i⟩A⊗|vi⟩B} are orthonormal bases, and suppose Alice performs ameasurement on her qubits
in the {|i⟩A} basis. What happens to ρB when she does that? Note that Alice obtains the state |i⟩A with probability
pi :=

∑
j |αij |2. From Bob’s point of view, Bob doesn’t know what Alice’s measurement yields. Thus, according to

Bob, Alice now has the mixed state 
(
pi,
|i⟩A ⊗ |vi⟩B√

pi

)
Thus, the Reduced Density Matrix which Bob sees is∑

i

pi
|vi⟩B√
pi
· ⟨vi|B√

pi
= ρB

Thus, Bob’s Reduced Density Matrix doesn’t change even if Alice performs a measurement on her qubits. Conse-
quently,
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Theorem 1.2 (No-Communication Theorem). Let |ψ⟩ be any state (possibly mixed). Suppose Alice has some qubits
of |ψ⟩, and suppose Bob has the rest. Then Bob’s reduced density matrix doesn’t change, regardless of whether Alice
performs any measurement (on any orthonormal basis), or applies any unitary transformation to her qubits.

Remark. Although we proved the above theorem for pure states only, the mixed state analog goes through as it is.
Also note that the above theorem permits measurement on any basis, not just the canonical one: However, measure-
ment on an arbitrary orthonormal basis can be simulated as first applying a unitary transformation on the qubits,
and then measuring in the usual basis. Since both of these operations preserve the reduced density matrix, so does
their composition.
Why is the above theorem called the No-Communication theorem? That is because regardless of what Alice does
with her qubits, Bob can’t know that, since all the information Bob has is encapsulated in his ReducedDensityMatrix,
and that doesn’t change with Alice’s actions. Thus the formalism of mixed states, along with the notion of Reduced
Density Matrices, provides a resolution of the EPR paradox: Faster-than-light communication doesn’t happen, since
no information is conveyed to Bob through Alice’s actions.

1.10.3. POVM and Superoperator Formalism

This section is taken from [Aar16a].
Let {v1, . . . , vN} be a basis of our Hilbert space H ∼= CN . If |ψ⟩ ∈ CN is a quantum state, then the probability we
obtain vi on measuring |ψ⟩ is ⟨ψ|viv†i |ψ⟩. Now, note that there can be more general forms of measurements: Indeed,
suppose we have the state |ψ⟩. We add the qubit |0⟩ to the system, making the state |ψ⟩⊗|0⟩. Now, whenwemeasure
this state, we will get a variety of outcomes, but they won’t be basis of C2N .
We thus introduce the so-called Positive Operator-Valued Measurements: Indeed, let {E1, . . . , Ek} 4 be a collection of
N × N Hermitian PSD operators, with the property that

∑
Ei = I . Then the probability we obtain the observable

Ei on measuring the density matrix ρ is given by tr(Eiρ). This also explains the quantum mechanics point-of-view
wherein Hermitian PSD operators are treated as “observables”.
To view projective measurements as POVMs, set Ei = viv

†
i . Then for a pure state |ψ⟩, tr(viv†i ρ) = tr(viv

†
iψψ

†) =

tr(ψ†viv
†
iψ) = ⟨ψ|viv†i |ψ⟩, as desired. Conversely, one can view all POVMs as projective measurements on states

augmented with ancilla qubits.
There is an even more general formalism known as the Superoperator formalism: Given a density matrix ρ ∈ CN×N ,
and an set of matrices A1, . . . , Aℓ ∈ CN×M satisfying

∑
AiA

†
i = I , the superoperator maps

ρ 7→
∑

A†
iρAi

It is easy to verify that
∑
A†
iρAi is a validM ×M density matrix.

Now, in projective measurements, we measure our system to obtain the states in the orthonormal basis {|vi⟩}i∈[N ] ⊆
CN , or alternatively the “observables” |vi⟩⟨vi|. The observable |vi⟩⟨vi|, corresponding to the state |vi⟩, is observed
with probability ⟨vi|ρ|vi⟩ = tr(⟨vi|ρ|vi⟩) = tr(|vi⟩⟨vi|ρ). In the POVM formalism, we dispense away with the restric-
tion that {|vi⟩} need to be orthonormal. We can now measure against arbitrary sets {|wi⟩}i∈[k] ⊆ CN , provided that
we have

∑k
i=1Ei = I , where Ei = |wi⟩⟨wi| is the observable corresponding to the state |wi⟩. 5 The probability of

observing the observable Ei, corresponding to the state |wi⟩, on measurement is tr(|wi⟩⟨wi|ρ) = tr(Eiρ), as desired.
The superoperator formalism goes one step further: What if our “states” are now rectangular matrices, instead of
vectors, like |vi⟩ or |wi⟩? Indeed, let the set of states be {A1, . . . , Aℓ} ⊆ CN×M , satisfying the usual requirement
that

∑ℓ
i=1AiA

†
i = I . Then the superoperator formalism says that we first transform our density matrix itself into a

new density matrix, as dictated by the mapping ρ 7→
∑
A†
iρAi. Then the probability of obtaining the “state” Ai, or

observing the observable AiA†
i , on measuring ρ is tr(A†

iρAi) = tr(AiA
†
iρ), i.e. the traces of the various constituents

of the new density matrix actually encode probabilities of observing the corresponding observables. Furthermore,
if we observe AiA†

i , then the density matrix of our system collapses from ρ to A†
iρAi/ tr(A

†
iρAi).

4Note that k may be smaller than, equal to, or greater than N . In particular, if k > N , then there are more thanN outcomes on measuring ρ
5Note that any Hermitian PSD matrix E can be factorized as |w⟩⟨w|
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Note that if we apply a unitary transformation U to ρ, the new density matrix we get is UρU†. Thus, the superoper-
ator formalism encompasses within itself unitary transformations, measurements, and ancilla qubits. Furthermore,
quantum physics shows that applying a superoperator to a density matrix is the only allowable quantum transfor-
mation, thus establishing this formalism to be the most general. Also note that while the appearance of the density
matrix in Item 5 was a happy consequence of Born’s rule, in the Superoperator formalism all our manipulations are
w.r.t. the density matrix only, i.e. we completely ignore the “internal” specifics of whether our state is pure or not.
Thus, in the superoperator formalism, the density matrix provides a complete description of our system, by fiat.

1.10.4. Puri�cations and the Schrödinger-HJW Theorem

Let ρ ∈ CN×N be a density matrix. Let ρ =
∑N
i=1 λi|vi⟩⟨vi| =

∑N
i=1 |wi⟩⟨wi| be the spectral decomposition of ρ,

where |wi⟩ :=
√
λi|vi⟩. Note that {|wj⟩} forms a basis of CN . Let {|ui⟩A}i∈[N ] be an arbitrary basis of CN . Then note

that ρ = trA(|ψ⟩⟨ψ|), where ψ :=
∑
αij |ui⟩A ⊗ |wj⟩ ∈ CN2 , where the coefficients αij are chosen such that ∥ψ∥2 = 1

6. Consequently, we have the following definition and theorem:

Theorem 1.3 (Purification). Let ρ be a density matrix. A pure state |ψ⟩ such that ρ = trA(|ψ⟩⟨ψ|) is known as a
purification of ρ.

Theorem 1.4 (Schrödinger-HJW Theorem). Let ρ ∈ CN×N be (the density matrix of) a mixed state. Then there
exists a purification ψ ∈ CM ofM ≤ N2 dimensions such that ρ = trA(|ψ⟩⟨ψ|).

1.11. No-Cloning Theorem

Suppose there was some circuit for cloning qubits, i.e. given as input a qubit (and some ancilla bits), the circuit
would output two unentangled copies of the same qubit.
If such a circuit existed, then in the EPR experiment, Bob could prepare a large number of copies of his qubit, and
measure them, and consequently know if Alice had measured her qubit in {|0⟩, |1⟩} basis or the {|+⟩, |−⟩} basis,
thus enabling faster-than-light communication.
Thus, if the laws of physics hold, then such a cloning circuit shouldn’t exist. Let us also see a mathematical proof of
the fact.

Theorem 1.5 (No-Cloning Theorem). There doesn’t exist a circuit which clones a given qubit.

Proof. Suppose there did exist such a circuit. Writing the circuit as a unitary transform, we get that U(|ψ⟩ ⊗ |0⟩) =
|ψ⟩ ⊗ |ψ⟩, where |0⟩ is an ancilla qubit.
Thus, if |ψ⟩ = α|0⟩+ β|1⟩, then

U ·


α
0
β
0

 =


α2

αβ
αβ
β2


for all α, β ∈ C such that |α|2+ |β|2 = 1. But the above transformation is not linear, and we thus have a contradiction.

■
6note that the choice of these coefficients is not unique
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1.12. Deferred Measurement Principle

Let C be a quantum circuit. Then the Deferred Measurement Principle says that WLOGwe can assume that all mea-
surements in C are carried out in the end (after all the unitary transformations have been applied), at the cost of
adding a few extra ancillary qubits in the beginning.
Indeed, suppose we’re measuring the qubits {i1, . . . , ir} in the middle of the circuit. Let Hm be the Hilbert space
corresponding to these qubits, and let H be the Hilbert space of the whole system. Then H = Hm ⊗Hu, where Hu
is the Hilbert space corresponding to the unmeasured qubits.
Now, suppose the state of the system before the measurement is |ψ1⟩ =

∑
i,j αij |i⟩m⊗ |j⟩u, where {|i⟩m} is the basis

ofHm against which measurements are carried out, and {|j⟩u} is any basis ofHu. Also, let |ψ2⟩ =
∑
i,j α

′
ij |i⟩m⊗|j⟩u

is the state of the system after the measurement and the rest of the circuit is executed.
Now, consider the alternative circuit, where we introduce the ancillary qubits |0⟩⊗r in the beginning, whose corre-
sponding Hilbert space is Ha. Before and after the measurement against Hm is carried out, the unitary transform
acting on these qubits is Id. Now, instead of measuring |ψ1⟩ against Hm, we apply a CNOT type operation, which
acts as:

|i⟩m ⊗ |ψ′⟩u ⊗ |0⟩⊗r 7→ |i⟩m ⊗ |ψ′⟩u ⊗ |i⟩m
After that, we execute the rest of the circuit as it is. In the end, we first measure the ancillary qubits. If the ancillary
qubits are measured to be |i⟩m, then the remaining qubits collapse to |ψ2⟩, exactly as they would have in the original
circuit! Thus, by entangling the ancillary qubits with the measured qubits, we can replace the measurement with a
unitary operation.

1.13. Discarding a Qubit is equivalent to Measuring it

Suppose we have a state |ψ⟩ = α|0⟩ ⊗ |ψ0⟩ + β|1⟩ ⊗ |ψ1⟩. Suppose we measure the first qubit. Then the remaining
system collapses into a mixed state: With probability |α|2 it collapses to |ψ0⟩, and with probability |β|2 it collapses
to |ψ1⟩. Thus the reduced density matrix of the remaining qubits is |α|2|ψ0⟩⟨ψ0|+ |β|2|ψ1⟩⟨ψ1|.
On the other hand the density matrix of |ψ⟩ is ρ = |ψ⟩⟨ψ| = |α|2|0⟩⟨0| ⊗ |ψ0⟩⟨ψ0|+αβ∗|0⟩⟨1| ⊗ |ψ0⟩⟨ψ1|+α∗β|1⟩⟨0| ⊗
|ψ1⟩⟨ψ0| + |β|2|1⟩⟨1| ⊗ |ψ1⟩⟨ψ1|. Tracing out the first qubit yields the reduced density matrix to be |α|2|ψ0⟩⟨ψ0| +
|β|2|ψ1⟩⟨ψ1|. Consequently, there is no difference between discarding a qubit and measuring it.

1.14. Uncomputation

Ancillary qubits are not as harmless as they seem: Indeed, if we discard them at the end of the computation, that
is equivalent to measuring them. However, ancillary qubits may be entangled with the qubits in which we’re inter-
ested in, and thus discarding the ancillary qubits may cause our desired qubits to collapse into a certain subset of
possibilities, when we might have instead been interested in dealing with the whole superposition itself.
The way we deal with this is using a technique called uncomputation: Suppose a unitary transforms |x⟩ ⊗ |0⟩a to
|ϕ⟩ ⊗ | garbage(x)⟩ ⊗ |f(x)⟩, i.e. U |x⟩ ⊗ |0⟩a = |ϕ⟩ ⊗ | garbage(x)⟩ ⊗ |f(x)⟩. We’re interested in getting rid of the
garbage qubits without collapsing the remaining qubits.
The trick to doing that is to first add some ancillary qubits to |ϕ⟩⊗| garbage(x)⟩⊗|f(x)⟩ tomake it |ϕ⟩⊗| garbage(x)⟩⊗
|f(x)⟩ ⊗ |0⟩r, where r is the number of qubits in f(x). Then we apply a CNOT type operation to transform |ϕ⟩ ⊗
| garbage(x)⟩ ⊗ |f(x)⟩ ⊗ |0⟩r 7→ |ϕ⟩ ⊗ | garbage(x)⟩ ⊗ |f(x)⟩ ⊗ |f(x)⟩. Finally, apply U−1 ⊗ Id to the whole state, to
yield

(U−1 ⊗ Id) · |ϕ⟩ ⊗ | garbage(x)⟩ ⊗ |f(x)⟩ ⊗ |f(x)⟩ = |x⟩ ⊗ |0⟩a ⊗ |f(x)⟩

At this point, even if we discard |0⟩a, we’re still left with |x⟩ ⊗ |f(x)⟩, as desired.
Remark. Note that in uncomputation, we assume that the function f is classical. Indeed, if f were a quantum function,
then we wouldn’t be able to clone it as |f(x)⟩ ⊗ |0⟩r 7→ |f(x)⟩ ⊗ |f(x)⟩ (due to the No-Cloning theorem). Indeed,
getting rid of garbage for quantum f is a very subtle, tricky, and not-yet-fully resolved issue.

1.15. Miscellaneous Points about Quantum Computing

Note that a quantum computer with n qubits can be simulated by a classical computer with 2n poly(n) bits. Thus
any quantum algorithm can at most give us an exponential speedup over classical computers. In particular, if some
function is not computable in the classical sense, then it remains uncomputable in the quantum sense.
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Note that without entanglement, we can simulate quantum computation classically with polynomial overhead: In-
deed, without entanglement, all states we’d be dealing with would be product states of the form (α1|0⟩ + β1|1⟩) ⊗
· · · ⊗ (αn|0⟩+ βn|1⟩), which can be simulated with 2n · poly(n) = poly(n) classical bits. Thus entanglement is key to
obtaining quantum speedups.
Any n-qubit unitary transformation can be described as a circuit of 1 and 2-qubit gates. However, this procedure
may take ∼ 4n gates to build. Since we’re interested in poly-time computation, we will be interested in unitaries
which can be built with poly-number of gates. Indeed, the set of all n-qubit unitaries forms a 2O(n)-dimensional
manifold. On the other hand, a quantum circuit with T gates, each gate taking at most 2 qubits in, can be specified
using O(T ) continuous parameters. Thus, in the Haar measure sense, 1 − on(1) fraction of all n-qubit unitaries are
not constructible using poly-sized circuits. In fact, even if we’re content with just approximating 7 n-qubit unitaries,
even then 1− o(1) fraction of all n-qubit unitaries remain out of reach of poly-sized circuits.
We call a set S of gates universal if any n-bit unitary can be approximated to arbitrary precision by composing gates
from S, i.e. the set of unitaries constructible from S is dense 8 in the set of all unitaries.
Asweknow, {Toffoli} is universal for classical boolean computation. A result due to Shi says that {Toffoli,Hadamard, S},

whereS :=

[
1 0
0 i

]
, is universal for quantumcomputation. Note thatS is needed for universality since {Toffoli,Hadamard}

can only construct real-valued unitaries.
The construction/approximation of unitaries fromuniversal gates sets can also bemade efficient through the Solovay-
Kitaev theorem: The Solovay-Kitaev theorem says that if S is a universal gate set closed under inverses, i.e.
G ∈ S =⇒ G−1 ∈ S , then any n-qubit unitary can be approximated within an operator norm of ε using only
2O(n) logO(1)

(
1
ε

)
gates from S. Thus, if n is held constant, then the number of gates required doesn’t scale too badly

with ε. Moreover, the circuit achieving the Solovay-Kitaev bound can also be found reasonably quickly.

1.15.1. Unitary Synthesis Problem

Note that Shannon’s theorem says that most (i.e. 1−on(1)) n-bit Boolean functions takeΩ(2n/n) gates to implement,
i.e. most n-bit Boolean functions are “hard”. By dimension-arguments as above, we can make analogous statements
about unitaries.
One can then ask a complexity-theoretic question: Is the hardness of implementing an arbitrary unitary “equivalent”
to the hardness of implementing an arbitrary boolean function? Framedmore rigorously, suppose f : {0, 1}poly(n) 7→
{0, 1} is a Boolean function on poly(n)-bits. Let Af be an oracle for f , i.e. given any x ∈ {0, 1}poly(n), Af can, in one
query, give us the value of f(x). Then the Unitary Synthesis Problem asks:

Problem. Given any n-qubit unitary U , can we implement/approximate U using a poly(n) sized quantum circuit,
given that we’re allowed to invoke Af , for any f : {0, 1}poly(n) 7→ {0, 1}?

Most believe that the answer to the Unitary Synthesis Problem is no, i.e. there exist n-qubit unitaries that are hard
to implement/approximate even if we’re allowed access toAf . Stated differently, the hardest quantum problems are
harder than the hardest classical problems.
While we don’t have an answer to the Unitary Synthesis Problem yet, Lombardi, Ma and Wright [LMW24] proved
that if we’re only allowed to invoke Af once, then there exist n-qubit unitaries that can’t be approximated using any
poly(n)-sized quantum circuit.

7when we say “approximate”, we mean compute a matrix Ũ using a poly(n)-sized circuit such that ∥U − Ũ∥ ≤ exp(−Ω(n)), where ∥·∥ is the
operator norm

8in the topology induced by the operator norm
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�2. Quantum Information Theory

2.1. Superdense Coding

Shannon’s information theory tells us that one can’t communicate more than n bits of information by sending only
n bits.
We shall see a quantum violation of this fact, by showing that one can communicate two bits of information by
sending only one qubit over. This protocol requires entanglement though. Without entanglement,Holevo’s theorem
tells us that it is impossible to communicate more than 1 bit of information by transmitting only 1 qubit.
Denote by X,Y, Z the Pauli gates, where:

Definition 2.1 (Pauli Gates). We define:

X :=

[
0 1
1 0

]
, Y :=

[
0 −i
i 0

]
, Z :=

[
1 0
0 −1

]
Note that X is just the NOT gate.

Now, suppose we have the EPR pair |ψ⟩ := |00⟩+|11⟩√
2

. Then applying the X,Z gates to the first qubit yields:

(X ⊗ I)|ψ⟩ = |01⟩+ |10⟩√
2

=: |ψ1⟩

(Z ⊗ I)|ψ⟩ = |00⟩ − |11⟩√
2

=: |ψ2⟩

(Z ⊗ I)(X ⊗ I)|ψ⟩ = |01⟩ − |10⟩√
2

=: |ψ3⟩

Note that V := {|ψ⟩, |ψ1⟩, |ψ2⟩, |ψ3⟩} form an orthonormal basis (of C4).
Now suppose Alice has one qubit of the EPR pair, and Bob has the other. Also suppose Alice wants to transmit two
bits x, y ∈ {0, 1} to Bob. So she:

1. Applies the X gate to her qubit if x = 1.

2. Applies the Z gate to her qubit if y = 1.
Alice then sends her qubit to Bob. Bob, who now has two (entangled) qubits, applies the following transform to it:

U :=


1 0 0 1
1 0 0 −1
0 −1 1 0
0 1 −1 0


The key point of U is that U |ψ⟩ = |0⟩ ⊗ |0⟩, U |ψ1⟩ = |1⟩ ⊗ |0⟩, U |ψ2⟩ = |0⟩ ⊗ |1⟩, U |ψ3⟩ = |1⟩ ⊗ |1⟩, i.e. U “decodes”
the coding procedure of Alice. Also note that U is just a basis changing matrix, which changes the basis V for C4 to
the canonical basis {|0⟩ ⊗ |0⟩, |1⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |1⟩} for C4.
Thus by applying U and then measuring in the usual {|0⟩, |1⟩}⊗2 basis, Bob can uniquely recover the bits x, y.
One might wonder if we can push this further, i.e. use 1 qubit to transmit more than 2 bits of information (with any
number of pre-shared entangled qubits). However, it can be shown that that is impossible. Thus, to summarize,

Theorem 2.1 (Superdense Coding). Through entanglement, one can use a qubit to transmit≤ 2 bits of information.
Without entanglement, a qubit can transmit≤ 1 bit of information. More precisely, if we denote by ‘ebits’ the number
of pre-shared entangled bits, then we have: 1 qubit + 1 ebit ≤ 2 bits, 1 qubit + any number of ebits ≤ 2 bits, 1 qubit
≤ 1 bit.
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What about the converse? What about if we want to send a qubit over? We shall now describe a protocol which can
be summarized as 2 bits+ 1 ebit = 1 qubit. This “equation” is also optimal, i.e. in general we have 2 bits+ 1 ebit ≤
1 qubit.
The problem is as follows: Alice has the qubit with state |ψ⟩ = α|0⟩+ β|1⟩. She has to transmit it to Bob using only
classical channels.
To do so, she has one qubit from an EPR pair |00⟩+|11⟩√

2
, where the other pair is with Bob. Alice applies the transform

(H ⊗ I) · CNOT to her qubits, where her first qubit is |ψ⟩, and her second qubit is the one from the EPR pair.
At the end of this transformation, she measures her qubits, to obtain x, y ∈ {0, 1}. She then sends x, y to Bob.
Let’s analyze this protocol. The joint state of the 3 qubits (two with Alice, one with Bob) is

(
α|0⟩+ β|1⟩

)
⊗ |00⟩+ |11⟩√

2
=
α|000⟩+ α|011⟩+ β|100⟩+ β|111⟩√

2

When we apply CNOT to the first two qubits (which belong to Alice), we get the state

α|000⟩+ α|011⟩+ β|110⟩+ β|101⟩√
2

Finally, applying H to the first qubit yields

α|+00⟩+ α|+11⟩+ β|−10⟩+ β|−01⟩√
2

=
α|000⟩+ α|100⟩+ α|011⟩+ α|111⟩+ β|010⟩ − β|110⟩+ β|001⟩ − β|101⟩

2

=
1

2

[
|00⟩ ⊗ (α|0⟩+ β|1⟩) + |01⟩ ⊗ (β|0⟩+ α|1⟩) + |10⟩ ⊗ (α|0⟩ − β|1⟩) + |11⟩ ⊗ (−β|0⟩+ α|1⟩)

]
Thus, if Alice reports 00 to Bob, Bob already has the qubit. If she reports 01, Bob applies the

[
0 1
1 0

]
= NOT gate, if

she reports 10, Bob applies the
[
1 0
0 −1

]
gate, and if she reports 11, Bob applies the

[
0 1
−1 0

]
= NOT gate.

Thus Bob has the qubit with state |ψ⟩. Also note that Alice destroys her own copy through measurement, which
agrees with the No-Cloning theorem, because otherwise the state |ψ⟩would have been cloned.
This protocol can be generalized to transport any arbitrary n-qubit state |ψ⟩ using n ebits and 2n classical bits.

2.2. Quantifying Entanglement

Consider the GHZ state, given by |000⟩+|111⟩√
2

. Clearly the 3 qubits of the GHZ state are highly entangled with each
other. Now, consider the Reduced Density Matrix of the first two bits. It is

|00⟩√
2
· ⟨00|√

2
+
|11⟩√

2
· ⟨11|√

2
=

1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


Note that all the off-diagonal entries are 0, i.e. the first two qubits are not entangled with each other as a subsystem,
even though as a whole, they are highly entangled. This phenomenon is also known as monogamy of entanglement:
Indeed, if ρAB is a maximally mixed state which is also a reduced state of the system ABC, then ρABC = ρAB ⊗ ρC ,
i.e. onceA andB get entangled maximally, they have “nomore entanglement left” forC. Conversely, since the GHZ
state is highly (maximally) entangled, its constituents themselves have no entanglement with each other.
Thus, to answer questions about how much entanglement is possible in a system, we introduce the notion of von
Neumann entropy:
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Definition 2.2 (von Neumann Entropy). Let ρ be the density matrix of some quantum system. Let {γi} be the
eigenvalues of ρ. Then the entropy of ρ is defined to be:

S(ρ) := −
∑

γi log2 γi

We set 0 · lg 0 to be 0.

Remark. A few remarks are due:

1. Upper Bound: Using the concavity of −x log2 x, one can show that if ρ ∈ CN×N , then S(ρ) ≤ log2N .

2. Independence: S(ρA ⊗ ρB) = S(ρA) + S(ρB).

3. Concavity: S is a concave function, i.e. if ρ1, . . . , ρn are density matrices, then S(
∑n
i=1 λiρi) ≥

∑n
i=1 λiS(ρi)

for λ1, . . . , λn ∈ [0, 1] such that
∑n
i=1 λi = 1.

4. Reverse Concavity: We also have S(
∑n
i=1 λiρi) ≤

∑n
i=1 λiS(ρi) + H({λi}), where H({λi}) = −

∑
λi lg λi.

Equality is achieved if ρi have orthogonal support, i.e. if Vi is the subspace of H spanned by the eigenvectors
of the non-zero eigenvalues of ρi, then Vi ⊆ V ⊥

j for all i ̸= j.

5. Strong Subadditivity: Let (A,B,C) be a tripartition of a system. Then S(ρ) + S(ρB) ≤ S(ρAB) + S(ρBC). In
particular, if we take B to be 0-dimensional, then S(ρ) ≤ S(ρA) + S(ρC).

6. Triangle Inequality: Let (A,C) be a partition. Then |S(ρA)− S(ρC)| ≤ S(ρ). We thus have |S(ρA)− S(ρC)| ≤
S(ρ) ≤ S(ρA) + S(ρC) for any partition (A,C).

There is another way to view von Neumann entropy: Suppose ρ is some state, possibly mixed. Note that measuring
ρ against some basis V := {|ψ1⟩, . . . , |ψN ⟩} yields a probability distribution on V , namely, where the probability
associated to |ψi⟩ is the probability that it is the outcome of the measurement.
Furthermore, to any probability distribution {pi}, we can associate a Shannon entropy, given as:

H
(
{pi}

)
=
∑

pi log2

(
1

pi

)
Then one can show that

S(ρ) = min
U

H(diag(UρU†))

Let C be the canonical basis in which ρ is expressed. Then UC = {|ψ1⟩, . . . , |ψN ⟩} is an orthonormal basis. Then
note that (UρU†)ii = Pr(We obtain |ψi⟩ on measuring ρ against UC). Thus diag(UρU†) contains the probabilities of
obtaining individual basis vectors in UC, and H(·) represents the entropy of this distribution.
Note that the above characterization immediately shows that the von Neumann entropy of pure states is 0: Indeed,
if we measure the density matrix of a pure state against a basis containing the state, we get a deterministic outcome,
i.e. a probability distribution with support of size 1, which has 0 entropy. Another way of seeing this is: If ρ is a
pure state, then ρ has exactly one non-zero eigenvalue, which must be 1, since tr(ρ) = 1. But log(1) = 0, and thus
S(ρ) = 0.
Before we can quantify the entanglement of a system, we introduce the notion of Schmidt decomposition: Let |ψ⟩ =∑
i,j αij |i⟩A ⊗ |j⟩B be a pure state. Write A := 2a, B := 2b, and WLOG assume A ≥ B. Let α ∈ CA×B be the matrix

collecting the coefficients αij . The SVD decomposition of α looks something like:

α = U

[
Σ
0

]
V †

where U ∈ CA×A, V ∈ CB×B are unitary matrices, and Σ ∈ CB×B is a square diagonal matrix with non-negative
entries. Write U =

[
U1 U2

]
, where U1 ∈ CA×B . Then α = U1ΣV

†. Finally, writing U =
[
|u1⟩ · · · |uB⟩

]
, V =
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[
|v1⟩ · · · |vB⟩

]
,Σ =


λ21 · · · 0
...

. . .
...

0 · · · λ2B

, we get that α =
∑B
ι=1 λ

2
ι |uι⟩⟨vι|.

Now, note that there is a linear bijective correspondence between {|i⟩A ⊗ |j⟩B} and {|i⟩A⟨j|B}. Thus,

|ψ⟩ =
∑
i,j,ι

(λ2ι |uι⟩⟨vι|)ij |i⟩A ⊗ |j⟩B =
∑
ι

λ2ιuι ⊗ v∗ι

Let r be the number of strictly positive λ∗. Then r is known as the Schmidt rank of |ψ⟩.
We can now define the entanglement entropy of a pure state:

Definition 2.3. Let ρ be the density matrix of a pure state. Then the entanglement entropy of ρ w.r.t the partition
(A,B) is defined to be S(ρA) = S(ρB).

Remark. A few remarks are due:

1. The pure state assumption is necessary for the above definition. Mixed states make life complicated since von
Neumann entropy is not linear.

2. Why is S(ρA) = S(ρB)? Letα ∈ C2a×2b be thematrix collecting the coefficientsαij . Then ρB = (α†α)T = αTα∗.
On the other hand, for the computation of ρA, we have to replace α by αT, and we get ρA = αα†. Note that
αα† and αTα∗ have the same non-zero spectrum, as can easily be seen by writing the SVD decomposition of
α. Since the definition of von Neumann entropy only depends on the non-zero spectrum, S(ρA) = S(ρB).

3. Note that the notion of entanglement entropy is basis independent, as it should be.

4. Let |ψ⟩ be a pure state, and let rψ be its Schmidt rank. If rψ = 1, then |ψ⟩ = |uA⟩⊗|vB⟩ for some |uA⟩, |vB⟩. Then
note that ρA = |uA⟩⟨uA|, i.e. ρA is a pure state. Consequently, S(ρA) = 0, i.e. the entanglement entropy of |ψ⟩
w.r.t the partition (A,B) is 0! Conversely, suppose rψ > 1. Note that the non-zero eigenvalues of αα† are pre-

cisely λ21, . . . , λ2rψ , by the properties of the SVD decomposition. Since rψ > 1, S(ρA) = H

({
λ21, . . . , λ

2
rψ

})
> 0,

since the entropy of any probability distribution with support size > 1 is non-zero. Summarizing the entire
discussion above, we have:

Theorem 2.2. Let |ψ⟩ =
∑
i,j αi,j |i⟩A ⊗ |j⟩B be a pure state, where {|i⟩A}, {|j⟩B} are arbitrary bases of HA,HB

respectively. The number of non-zero eigenvalues of αα† is known as the Schmidt rank of |ψ⟩. If the Schmidt
rank of |ψ⟩ is 1, then |ψ⟩ has 0 entanglement entropy. Otherwise, the entanglement entropy of |ψ⟩ is given by
H({λ2∗}), where {λ2∗} are the non-zero eigenvalues of αα†.

5. Note that the entanglement entropy of a state depends on the partition. For example, take |ψ⟩ = |0⟩⊗ |00⟩+|11⟩√
2

.
Let’s label the qubits 1, 2, 3. Then the entanglement entropy of |ψ⟩w.r.t the partition {{1}, {2, 3}} is 0. However,
the entanglement entropy w.r.t the partition {{1, 2}, {3}} is not zero.

Example. Let’s see a few examples of entanglement entropy:

1. Consider the EPR state |00⟩+|11⟩√
2

. The Reduced Density Matrix of Bob is 1
2

[
1 0
0 1

]
, whose eigenvalues are 1

2 ,
1
2 .

Thus the entanglement entropy of the EPR state w.r.t. the natural partition is 1
2 · log2(2) +

1
2 · log2(2) = 1. Note

that 1 is the maximum possible entropy for 2× 2 matrices, and thus the EPR state has the maximum possible
entropy.
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2. Consider |ψ⟩ = 3
5 |0⟩|+⟩+

4
5 |1⟩|−⟩. Then the Reduced Density Matrix for Bob is

9

25
|+⟩⟨+|+ 16

25
|−⟩⟨−|

Note that the eigenvalues of a matrix remain the same regardless of what basis we express it in. Thus, ex-

pressing the above matrix in {|+⟩, |−⟩} basis, we get the matrix
[
9/25 0
0 16/25

]
{|+⟩,|−⟩}

, whose eigenvalues are

9
25 ,

16
25 . Consequently, the entanglement entropy is

9

25
log2

25

9
+

16

25
log2

25

16
≈ 0.942

What this means is that if Alice and Bob shared 1000 copies of |ψ⟩ among themselves, then no protocol could
transmit more than 942 qubits by exploiting the entanglement of |ψ⟩.

2.2.1. Quantifying Entanglement for Mixed States

Suppose we’re in the quantum teleportation setting. Also assume that Alice and Bob can communicate as much as
they want via classical channels, and both of them can do as many local operations on their qubits as they want. This
assumption is also known as unbounded ‘LOCC’ (Local Operations and Classical Communication).
Let ρ be a density matrix. Define EF (ρ) to be the number of ebits needed to teleport ρ under the assumptions of un-
bounded LOCC, and the fact that Alice and Bob are using the best possible protocol they can. The ‘F’ inEF stands for
‘Formation’. Define ED(ρ) to be the number of ebits extracted from ρ under the assumptions of unbounded LOCC,
and the fact that Alice and Bob are using the best possible protocol they can. The ‘D’ in ED stands for ‘Distillation’.
Firstly, EF ≥ ED: If we could create more ebits out of ρ than it took to make ρ, then we would have an in-
finite money glitch, which can’t occur. Secondly, it can be shown that if ρ is a pure state, then EF = ED =
The Entanglement Entropy of ρ. However, if ρ is a mixed state, then it is even possible that EF > 0 = ED, i.e.
no entanglement can be distilled from ρ, even though ρ is entangled. Such a ρ is called a bound entangled state.
We call a state ρ separable if ρ =

∑
pi|ui⟩A⟨ui|A ⊗ |vi⟩B⟨vi|B for some {|ui⟩A} ∈ HA, {|vi⟩B} ∈ HB , and probability

distribution {pi}. A state is called entangled if it is not separable.
Note that if ρ is pure, then the Schmidt rank criterion gives us away to decide if ρ is entangled or separable. However,
if ρ is mixed, then a result due to Gurvits says that deciding if ρ is entangled or separable is NP-hard!

2.3. Bell's Inequality and the CHSH Game

Clauser, Horne, Shimony, and Holt, in 1969, proposed a game called the CHSH game. In the game, we have Alice,
Bob, and a referee named Charles. Charles generates two uniformly random bits x and y, and gives them to Alice
and Bob. After the game begins, Alice and Bob are not allowed to communicate; However, they can decide on some
strategy beforehand though.
On receiving x, Alice must propose to Charles some a = a(x) ∈ {0, 1}. Similarly, on receiving y, Bob must propose
to Charles some b = b(y) ∈ {0, 1}. Alice and Bob are said to have won the game if a(x) +F2

b(y) = xy.
Note that there are 4 possible boolean functions a(·) : {0, 1} 7→ {0, 1}: a(·) = 0, a(·) = 1, a(·) = ·, a(·) = 1 − ·, and
thus there are 16 possible strategies for Alice and Bob combined.
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Alice/Bob b(·) = 0 b(·) = 1 b(·) = · b(·) = 1− ·

a(·) = 0

x y Outcome
0 0 W
0 1 W
1 0 W
1 1 L

x y Outcome
0 0 L
0 1 L
1 0 L
1 1 W

x y Outcome
0 0 W
0 1 L
1 0 W
1 1 W

x y Outcome
0 0 L
0 1 W
1 0 L
1 1 L

a(·) = 1

x y Outcome
0 0 L
0 1 L
1 0 L
1 1 W

x y Outcome
0 0 W
0 1 W
1 0 W
1 1 L

x y Outcome
0 0 L
0 1 W
1 0 L
1 1 L

x y Outcome
0 0 W
0 1 L
1 0 W
1 1 W

a(·) = ·

x y Outcome
0 0 W
0 1 W
1 0 L
1 1 W

x y Outcome
0 0 L
0 1 L
1 0 W
1 1 L

x y Outcome
0 0 W
0 1 L
1 0 L
1 1 L

x y Outcome
0 0 L
0 1 W
1 0 W
1 1 W

a(·) = 1− ·

x y Outcome
0 0 L
0 1 L
1 0 W
1 1 L

x y Outcome
0 0 W
0 1 W
1 0 L
1 1 W

x y Outcome
0 0 L
0 1 W
1 0 W
1 1 W

x y Outcome
0 0 W
0 1 L
1 0 L
1 1 L

The above table collects the results of all possible strategies Alice and Bob could adopt. ‘W’ stands for ‘Win’, while
‘L’ stands for ‘Lose’. Thus, no deterministic strategy can make Alice and Bob win more than 75% of the time (this
fact is known as Bell’s Inequality). Furthermore, since any randomized strategy on Alice and Bob’s part will just be a
mixing of some of the above 16 deterministic strategies, it follows that no randomized strategy can make Alice and
Bob win more than 75% of the time either. Thus, no classical strategy can make Alice and Bob win more than 75%
of the time.
We shall now see how entanglement can make Alice and Bob win more than 75% of the time.
Define vθ := cos(θ)|0⟩ + sin(θ)|1⟩. Also suppose Alice and Bob have a qubit each from an EPR pair (which is also
known as a Bell pair). Then Alice and Bob’s strategy is:

1. If x = 0, Alice measures her qubit in the {|0⟩, |1⟩} basis. If she obtains |0⟩, she sends 0 to Charles. If she obtains
|1⟩, she sends 1 to Charles.

2. If x = 1, Alice measures her qubit in the {|+⟩, |−⟩} basis. If she obtains |+⟩, she sends 0 to Charles. If she
obtains |−⟩, she sends 1 to Charles.

3. If y = 0, Bobmeasures his qubit in the {vπ/8, v5π/8} basis. If he obtains vπ/8, he sends 0 to Charles. If he obtains
v5π/8, he sends 1 to Charles.

4. If y = 1, Bob measures his qubit in the {v−π/8, v3π/8} basis. If he obtains v−π/8, he sends 0 to Charles. If he
obtains v3π/8, he sends 1 to Charles.

How do we analyze the winning probability of this protocol? WLOG assume Alice measures first. We have 4 cases:

1. x = y = 0: Note that Alice and Charles lose only if they send different bits to Charles, which can only happen if
Alice measures |0⟩ and Bob measures v5π/8, or if Alice measures |1⟩ and Bob measures vπ/8. If Alice measures
|0⟩, then Bob’s qubit collapses to |0⟩. The probability that he obtains v5π/8 is |⟨v5π/8|0⟩|2 = cos2(5π/8) =

sin2(π/8). If Alice gets |1⟩, the probability that Bob gets vπ/8 is sin2(π/8). Thus, the probability that Alice and
Bob lose is sin2(π/8), or alternatively, their winning probability is 1− sin2(π/8) = cos2(π/8).

2. The cases of x = 0, y = 1, and x = 1, y = 0 are similar. In both of them the winning probability is cos2(π/8).

3. x = y = 1: Alice and Charles lose only if Alice measures |+⟩ and Bob measures v3π/8, or if Alice measures |−⟩
and Bob measures v−π/8. Note that Alice measuring in the {|+⟩, |−⟩} basis is equivalent to Hadamarding her



Quantum Computation Theory 21 / 41 Arpon Basu

qubit and then measuring in the original basis. Now, (H⊗ I) · |00⟩+|11⟩√
2

= |00⟩+|01⟩+|10⟩−|11⟩
2 . Getting |+⟩ is now

equivalent to getting |0⟩. If Alice gets |0⟩, Bob’s state collapses to |+⟩. The probability that Bob gets v3π/8 now

is
∣∣∣∣〈v3π/8|+〉∣∣∣∣2 = sin2(π/8). If Alice gets |1⟩, Bob’s state collapses to |−⟩. The probability that Bob gets v−π/8

now is
∣∣∣∣〈v−π/8|−〉∣∣∣∣2 = sin2(π/8). Thus, once again the winning probability is cos2(π/8).

Thus, using entanglement, Alice and Bob can win cos2(π/8) ≈ 85% of the time, which is significantly more than
75%. Furthermore, while cos2(π/8)might seem like an artefact of the above protocol, Tsirelson’s bound shows that
no quantum protocol can win in the CHSH game with probability more than cos2(π/8). 9

A philosophical point: Note that in classical local realism, we assume that Alice and Bob can’t communicate faster
than the speed of light, and thus in the context of the CHSH experiment, they can’t communicate at all. We also
assume that our universe is classical. However, in the classical setting, we can’t beat 75% in the CHSH game. Since
experiments have repeatedly demonstrated that we can beat 75% in CHSH, our universe doesn’t follow classical local
realism. But note that to beat 75% in a purely classical universe, we would have to have communication between Bob
and Alice in the game, which would entail faster-than-light communication. However, our universe doesn’t support
faster-than-light communication either. The only conclusion is that our universe is fundamentally quantum, and
that any classical “simulation” of our universe would necessarily have faster-than-light communication.

9while Tsirelson’s bound is somewhat tricky to prove, the following weaker version is much easier to establish: Suppose Alice measures in the
{vθ0 , vθ0+π/2} basis if x = 0, and measures in the {vθ1 , vθ1+π/2} basis if x = 1. Similarly, Bob measures in the {vϕ0

, vϕ0+π/2} basis if y = 0,
and measures in the {vϕ1

, vϕ1+π/2} basis if y = 1. Then these class of protocols can’t achieve more than cos2(π/8).
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�3. Quantum Algorithms

Given an arbitrary unitaryU , constructing the smallest circuit to simulate/approximateU is a very difficult problem.
Thus, to sidestep this difficulty, we study a more restricted model of computation, called query complexity. In this,
we’re given a boolean function f : {0, 1}n 7→ {0, 1}. We are also given an oracle Of which acts as Of (|x⟩) =
(−1)f(x)|x⟩. The only thing we care about is how many calls we have to make to Of to achieve some particular task.
Furthermore, in practice, querying Of is often the most time-consuming step. Consequently, the query complexity
is also a very good proxy for the running time of the algorithm.

The oracleOf might seemweird at first. A more natural thing to do would be to send |x⟩ to |f(x)⟩. However,
this operation is not reversible. The next best thing to do would be to add an ancilla bit, and perform aCNOT
type operation, i.e. |x⟩ ⊗ |b⟩ 7→ |x⟩ ⊗ |b ⊕ f(x)⟩, and in particular |x⟩ ⊗ |0⟩ 7→ |x⟩ ⊗ |f(x)⟩. This oracle is
known as the XOR-oracle. As it turns out, the XOR-oracle is equivalent to Of : Indeed, suppose we had the
XOR-oracle, and we want to simulate Of . Given the input |x⟩ to Of , pass |x⟩ ⊗ |−⟩ to the XOR-oracle. The
XOR-oracle converts it to |x⟩⊗|f(x)⟩−|x⟩⊗|1−f(x)⟩√

2
. If f(x) = 0, |x⟩⊗|f(x)⟩−|x⟩⊗|1−f(x)⟩√

2
= |x⟩ ⊗ |−⟩. If f(x) = 1,

|x⟩⊗|f(x)⟩−|x⟩⊗|1−f(x)⟩√
2

= −|x⟩ ⊗ |−⟩. Thus XOR(|x⟩ ⊗ |−⟩) = (−1)f(x)|x⟩ ⊗ |−⟩. Note that we have managed
to implement Of .

3.1. Deutsch-Jozsa Algorithm [DJ92]

Suppose we have a function f : {0, 1}n 7→ {0, 1}, and we’re promised that f is either a constant function, or is
balanced, i.e. |f−1(1)| = 2n−1. We have to determine which of the two cases it is, with perfect correctness, 10 i.e. we
have to get the correct answerwith probability 1. It is easy to see that any classical algorithm for thismust necessarily
query f ≥ 2n−1 + 1 times. We present the Deutsch-Jozsa algorithm which achieves this just 1 query to Of !
The circuit which achieves this is as follows: H⊗n · Of ·H⊗n. Suppose we apply this circuit to |0⟩⊗n. On application
of H⊗n, our state becomes

H⊗n|0⟩⊗n =

(
|0⟩+ |1⟩√

2

)⊗n

=
1√
2n

∑
x∈{0,1}n

|x⟩

Applying Of to this state makes it 1√
2n

∑
x∈{0,1}n(−1)f(x)|x⟩. Now, when we apply H⊗n on |x⟩, we obtain the state

n⊗
i=1

|0⟩+ (−1)xi |1⟩√
2

=
1√
2n

∑
y∈{0,1}n

(−1)⟨x,y⟩|y⟩

Thus, our final state is
|ψ⟩ := 1

2n

∑
x,y∈{0,1}n

(−1)f(x)+⟨x,y⟩|y⟩

In particular, the coefficient of |0⟩⊗n in the above sum is

1

2n

∑
x∈{0,1}n

(−1)f(x)

Note that if f is constant, then the above term is ±1, while if f is balanced then the above term is 0, i.e. when we
measure |ψ⟩, either we’ll obtain |0⟩⊗n with probability 1, or we’ll not obtain it at all! Thus, when we measure the
state |ψ⟩, if we obtain |0⟩⊗n, then f is constant, otherwise it is balanced.

10If wewanted a classical algorithm that succeedswith probability 1−δ, thenO(log 1/δ) queries to f suffices. Thus, for all “practical purposes”,
the above quantum speedup is not all that impressive
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3.2. Bernstein-Vazirani Algorithm [BV97]

Suppose we are given f : {0, 1}n 7→ {0, 1}, and we’re promised that f(x) = ⟨s, x⟩ for some s ∈ {0, 1}n. Our task is to
find s.
Note that any classical algorithm for this must make ≥ n queries to f (because otherwise the system of linear equa-
tions will remain under-determined). On the other hand, 1 query to Of suffices!
Turns out the exact same circuit as Deutsch-Jozsa works! Thus apply H⊗n · Of ·H⊗n to |0⟩⊗n. We get the state

1

2n

∑
x,y∈{0,1}n

(−1)f(x)+⟨x,y⟩|y⟩ = 1

2n

∑
x,y∈{0,1}n

(−1)⟨x,s⟩+⟨x,y⟩|y⟩

The coefficient of |s⟩ in the above state is 1
2n

∑
x∈{0,1}n(−1)⟨x,s⟩+⟨x,s⟩ = 1. Thus, simply measuring |ψ⟩ gets us the

string s!

3.3. Simon's Algorithm [Sim97]

We are given a function f : {0, 1}n 7→ {0, 1}n. The function satisfies the property that there exists a string s ∈
{0, 1}n, s ̸= 0n, such that

f(x) = f(y)⇐⇒ x = y ⊕ s,∀x, y ∈ {0, 1}n, x ̸= y

Note that the above condition implies that any element in f
(
{0, 1}n

)
has exactly two pre-images in {0, 1}n. Further-

more, for any z ∈ f
(
{0, 1}n

)
, the two pre-images of z xor upto s. Thus, it suffices to find a collision in f to calculate

s, i.e. find two distinct x, y ∈ {0, 1}n such that f(x) = f(y). Then x⊕ y gives us s.
Again, any deterministic classical algorithm must make ≥ 2n−1 + 1 queries to f to compute s. What about random-
ized classical algorithms? Using a standard birthday paradox argument, to find (with high probability) a collision
among the 2n input values of f , it suffices to sampleO∗(

√
2n) 11 uniformly random strings in {0, 1}n and query f on

them.
Using a so-called adversary argument, one can show that any randomized classical algorithmmust also take Ω∗(

√
2n)

12 queries: To do so, we invoke Yao’s Minimax principle:

Yao’s Minimax Principle

Supposewe have a problemwith inputs coming from the setX . LetA be the set of all deterministic algorithms
solving the problem. For any a ∈ A, x ∈ X , let c(a, x) be the runtime of the algorithm a on the input x.
Let π be any probability distribution on A, and let σ be any probability distribution on X . Then

max
x∈X

E
a∼π

c(a, x) ≥ min
a∈A

E
x∼σ

c(a, x)

Now, let a0 be our randomized algorithm. Note that a0 naturally corresponds to a distribution π on A, where A is
the set of all deterministic algorithms for our problem. Thus Ea∼π c(a, ·) = c(a0, ·). Also note that for our problem,
the “set of inputs” X is just the set of possible ‘s’, i.e. X = {0, 1}n \ 0n. Let σ be the uniform distribution on X , i.e.
s is chosen uniformly amongst {0, 1}n \ 0n. Also, let a∗ ∈ argmina∈A Es∼σ c(a, s). Let the series of queries in a∗ be
x0, x1, . . .. Now, suppose we have queried t values. Then we have managed to generate ≤

(
t
2

)
possible candidates

for s, and thus the probability that we have found a collision is ≤ (t2)
2n−1 .

Thus, by the union bound, we won’t observe any collisions until t = Ω∗(
√
2n), and thus Es∼σ c(a∗, s) = Ω∗(

√
2n).

But
max

s∈{0,1}n\0n
c(a0, s) ≥ min

a∈A
E
s∼σ

c(a, s) = E
s∼σ

c(a∗, s) = Ω∗(
√
2n)

Thus, for any randomized algorithm, picking out the worst-case s leads to a run-time of Ω∗(
√
2n), as desired.

We will now show that a quantum algorithm named Simon’s algorithm can perform the task withO(n) queries toOf .
In this context, we define:

Of (|x⟩ ⊗ |0⟩⊗n) := |x⟩ ⊗ |f(x)⟩
11O∗(f(n)) stands forO(f(n) · poly(n))
12Ω∗(f(n))means Ω∗(f(n)/poly(n))
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Simon’s algorithm goes as follows: We begin with |0⟩⊗2n. The first n qubits are meant to be the input registers, and
the remaining qubits are meant to be the output registers. Apply the circuit (H⊗n ⊗ I⊗n) · Of · (H⊗n ⊗ I⊗n) to our
input.
On the application of (H⊗n ⊗ I⊗n), our state becomes 1√

2n

∑
x∈{0,1}n

|x⟩

⊗ |0⟩⊗n
Then the application of Of yields

1√
2n

∑
x∈{0,1}n

|x⟩ ⊗ |f(x)⟩

The application of (H⊗n ⊗ I⊗n) once again yields:

|ψ⟩ := 1

2n

∑
x∈{0,1}n

 ∑
y∈{0,1}n

(−1)⟨x,y⟩|y⟩

⊗ |f(x)⟩ = 1

2n

∑
x,y∈{0,1}n

(−1)⟨x,y⟩|y⟩ ⊗ |f(x)⟩

Write Z := f({0, 1}n), and for any z ∈ Z write f−1(z) = {αz, βz}. Then

|ψ⟩ = 1

2n

∑
y∈{0,1}n,z∈Z

(
(−1)⟨αz,y⟩ + (−1)⟨βz,y⟩

)
|y⟩ ⊗ |z⟩ = 1

2n

∑
y∈{0,1}n

|y⟩ ⊗

∑
z∈Z

(
(−1)⟨αz,y⟩ + (−1)⟨βz,y⟩

)
|z⟩


Now, measure the first n qubits of |ψ⟩. Suppose we get the output y. Then note that ⟨αz, y⟩ and ⟨βz, y⟩ must have
had the same parity for some z ∈ Z , because otherwise the coefficient of |y⟩ ⊗ |·⟩ would have been nullified. This is
further equivalent to saying that ⟨αz⊕βz, y⟩ = ⟨s, y⟩ is even. Thus, when wemeasure the first n qubits and get some
output ‘y’, that tells us ⟨s, y⟩ =F2

0. Now, if we repeat Simon’s algorithm k = O(n) times, with high probability we
get (n− 1) linearly independent outputs (amongst those k) y(1), . . . , y(n) satisfying ⟨y(i), s⟩ = 0 mod 2. At this point,
we can run Gaussian elimination (in F2) to uniquely recover s, as desired.
To make this argument more precise, define Y := {y ∈ {0, 1}n : ⟨y, s⟩ = 0 mod 2}. Now, note that the probability
that some y ∈ Y gets outputted on measuring the first n qubits of |ψ⟩ is proportional to:

1

4n

∑
z∈Z

(
(−1)⟨αz,y⟩ + (−1)⟨βz,y⟩

)2
= 41−n · |Z|

In other words, every element of Y is equally likely to appear as the output of measuring the first n qubits of |ψ⟩.
Thus, k runs of Simon’s algorithm is equivalent to k uniformly random samples from Y . Now, the probability that
the span of the k chosen samples is at most (n− 2)-dimensional is

≤
∑

S⊆Y,dim(S)=n−2

Pr(span({y(i)}) ⊆ S)

Now, note that Y = s⊥, and thus Y is a (n − 1)-dimensional vector space. It has 2n−1 − 1 (n − 2)-dimensional
subspaces. Thus the above quantity becomes

(2n−1 − 1)
1

2k
< 2n−k−1

Thus, by choosing k = 2n, we can ensure 1− exp(−Ω(n)) probability of success.
Simon’s algorithm also leads to some interesting philosophical points:

1. Doesn’t Simon’s algorithm prove that there is an exponential gap between quantum and classical algorithms?
No. Note that in Simon’s algorithm, f is completely black-box. Now, the moment we try to apply Simon’s
algorithm to some specific function f , we also have to account for the possibility that classical algorithmsmight
exploit some particular property of that function to also give a poly-time algorithm. For example, if A ∈ Fn×n2
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is a (n−1)-rank boolean matrix, then f(x) = Ax satisfies the hypotheses of Simon’s problem (with s being the
non-zero element in the null-space of A). However, in this case, a classical algorithm can simply run Gaussian
elimination on A to find s in polynomial time! Till date, no one has been able to find a specific instantiation of
a “Simon function” which respects the Ω(

√
2
n
) lower bound.

2. Back-Reaction: Note that in the final step, when we measure, we only measure the first n qubits. This might
lead one to think that the remaining n qubits are actually useless, and just an artefact of our oracle. Indeed, one
might ask how storing the values of f(·) in the last n qubits affect the first n qubits. This leads to the principle
of back-action in quantummechanics, which says that if a system affects another system (in our case, the first n
qubits being one system, and the last n qubits being the other system), then the first system itself gets affected.

3.4. Shor's Algorithm [Sho94]

We shall use ideas from Simon’s algorithm to factorize numbers. Before doing so, we describe a (classical) reduction
from “period-finding” to factorization. Some of the intermediate supporting lemmata has been taken from [Vaz04].
Let N be a natural number. When we say we want an efficient algorithm for factorizing N , we mean an algorithm
which runs in time poly log(N): Why? Because the number of digits of N is O(logN), and we want an algorithm
which runs in time polynomial in the number of digits of N . Thus, write n := log(N). Also, what do we mean by
“factorization”? Given N , output a non-trivial factor of N . 1314

Now, WLOG N is odd (since otherwise 2 is a non-trivial factor). Now, there exist algorithms [Ber98] which can
detect if N is a perfect power in n1+o(1) time. 15 Thus, WLOG assume N is not a perfect power.
Now, randomly choose an integer 2 ≤ a < N . If gcd(a,N) > 1, 16 then gcd(a,N) is a non-trivial factor of N , and
we’re done. Thus assume gcd(a,N) = 1. Then there exists a minimal r ∈ N such that ar ≡ 1 mod N . Now, suppose
r is even. Then we have N | (ar − 1) ⇐⇒ N | (ar/2 − 1)(ar/2 + 1). Note that N ∤ (ar/2 − 1), since r was the
minimal natural number satisfying N | (ar − 1). Now, suppose N ∤ (ar/2 + 1). Then note that atleast one integer
among gcd(ar/2 − 1, N), gcd(ar/2 + 1, N) must be a non-trivial factor of N , and thus we would have succeeded in
factorizing N . Also note that gcd(ar/2 ± 1, N) can be calculated, via Euclid’s algorithm, in poly(n) time. ar/2 itself
can be calculated in poly log(r) = poly log(N) time by repeated squaring.
Now, the above reduction makes 3 assumptions: We can find r efficiently 17, r is even, andN ∤ (ar/2+1). Thankfully,
over the random choice of a in [2, N), all these properties are satisfied with positive probability. More formally, let a
be an uniformly random integer in [2, N), where N is an integer with atleast two prime factors. 18 Conditioned on
gcd(a,N) = 1, with probability ≥ 3/8, the following properties hold:

1. r := ordZ×
N
(a) is even. Note that the minimal natural number r satisfying ar ≡ 1 mod N is just the order of a

in the group Z×
N .

2. N ∤ (ar/2 + 1).

Thus, in expected constant number of trials of the above procedure, we can find an a ∈ N such that ordZ×
N
(a) satisfies

all the above properties, and thus leads to a factorization of N .
Thus, given a ∈ N, if we have an efficient way of finding ordZ×

N
(a), we also have an efficient way of factorizing N .

Shor’s algorithm gives us an efficient way (i.e. poly(n) time) of finding ordZ×
N
(a).

3.4.1. Period Finding

A function f : N 7→ N is called periodic with period s if f(x) = f(y) if and only if s | (y − x), for some s ∈ N, for all
x, y ∈ N.
Now, let f : N 7→ N be the function ℓ 7→ (aℓ mod N). Note that the period of f is ordZ×

N
(a). Thus, if we have an

13By [AKS04], we can determine in poly(n) time if N is prime. If it is not, then we proceed onto our factorization routine
14The best known classical algorithm for factorization runs in 2n

O(1) time
15and ifN indeed is a perfect power, then [Ber98] also decomposesN as xk for k > 1. Note that x is a non-trivial factor ofN , and we’re done
16note that gcd(a,N) can be computed in poly(n) time by Euclid’s algorithm
17we need r to calculate ar/2 ± 1
18N has atleast two prime factors sinceN is not a perfect power
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efficient quantum algorithm for finding the periods of functions, we’re done.
The first step of our period finding algorithm is to create a superposition

|ψ⟩ := 1√
Q

Q−1∑
r=0

|r⟩|f(r)⟩

whereQ = 2q > N2 is the smallest power of two strictly greater thanN2. Note that |r⟩ is the binary representation of
the integer rwritten in q qubits. Note that the above superposition can be easily obtained by applyingOf ·(H⊗q⊗I⊗q)
to |0⟩2q . Now, suppose we measure the last q qubits of |ψ⟩ and obtain z = f(r). Then the first q qubits are in the
superposition

|ϕr⟩ :=
|r⟩+ |r + s⟩+ · · ·+ |r + (L− 1)s⟩√

L

where s is the period of our function, and L := ⌈Q/s⌉. Also note that when we write |r + ts⟩, we actually mean
|(r + ts) mod Q⟩.
Thus, given the above state, we have to somehow find s. We do that using theQuantum Fourier Transform. Given
any integer Q, the Q×Q quantum Fourier transform is the matrix FQ ∈ CQ×Q given by

(FQ)i,j := ⟨i|FQ|j⟩ =
ωij√
Q

where ω := e2π
√
−1/Q is theQth root of unity. FQ is clearly unitary; we shall return to the issue of how to implement

FQ later.
Applying FQ to |ϕr⟩ yields the state

|τ⟩ := 1√
QL

Q−1∑
k=0

L−1∑
ℓ=0

ω(r+ℓs)k|k⟩ = 1√
QL

Q−1∑
k=0

ωrk

L−1∑
ℓ=0

ωℓsk

 |k⟩ = 1√
QL

Q−1∑
k=0

ωrk·

(
1− ωLsk

1− ωsk
· 1ωsk ̸=1 + L · 1ωsk=1

)
|k⟩

Before we describe in general what happens, let’s look at a special case, when s | Q: Then note that L = Q/s.
Now, if Q ∤ ks, then ωks ̸= 1, and ωLsk = ωQk = 1. Thus, if s | Q, then the probability of getting |k⟩ on
measuring |τ⟩, where Q ∤ ks ⇐⇒ L ∤ k, is zero. Thus, when we measure |τ⟩, we obtain one of the outcomes
{|0⟩, |L⟩, . . . , |(s − 1)L⟩} with equal probability. Thus, by running Shor’s algorithm repeatedly, we will obtain out-
puts of the sort |x1L⟩, . . . , |xtL⟩, where x1, . . . , xt are i.i.d samples from {0, . . . , s− 1}. By suitably adjusting t, with
very high probability gcd(x1L, . . . , xtL) = L. Once we obtain L, we obtain s := Q/L, as desired.
Now, in general we wouldn’t know if s | Q or not. In particular, if s ∤ Q, then we wouldn’t have perfect interference
as above, where the only possible outputs are multiples of L. However, our outputs will still be concentrated around
multiples of L = ⌈Q/s⌉.
Thus, write

|τ⟩ =
Q−1∑
k=0

αk|k⟩

where αk := 1√
QL
ωrk

(∑L−1
ℓ=0 ω

ℓsk
)
. We now make precise the notion that if sk mod Q is small (i.e. sk is close to a

multiple of L), then |αk| is large. For the following lemmata, assume that x mod Q ∈ [−Q/2, Q/2]∩Z for any x ∈ Z.

Lemma 3.1. If −s/2 ≤ sk mod Q ≤ s/2, then |αk| ≥ 1√
8s
.

Proof. Write β := ωsk. Note that |αk| = 1√
QL

∣∣∣∑L−1
ℓ=0 β

ℓ
∣∣∣, and thus WLOG we focus on bounding the norm of v :=∑L−1

ℓ=0 β
ℓ. Now, note that the angle between the vectors β0 and βL−1 is

(L− 1) · 2π|sk mod Q|
Q

≤ πs(L− 1)

Q
≤ π
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Now, since the angle between β0 and βL−1 is ≤ π, and since v lies along the bisector of the angle created by β0 and
βL−1, atleast half of the terms in the series β0, . . . , βL−1 make an angle of≤ π/4with v. Since they make an angle of
≤ π/4 with v, they contribute ≥ cos(π/4) = 2−1/2 to the magnitude of v. Thus

|v| ≥ L

2
· 1√

2
=⇒ |αk| ≥

1√
QL
· L

2
√
2
≥ 1√

8s

■

Now, we show that |sk mod Q| ≤ s/2 happens fairly often.

Lemma 3.2. Let |k⟩ be the measurement of |τ⟩. Then |sk mod Q| ≤ s/2 with probability ≥ 1/16.

Proof. As k varies over {0, . . . , Q− 1}, atleast s/2 values of |sk mod Q| lie in [−s/2, s/2]∩Z. Each of these k’s satisfy
|αk| ≥ 1√

8s
. Consequently, with probability ≥ 1

8s ·
s
2 = 1

16 , |sk mod Q| ≤ s/2. ■

Thus, with probability ≥ 1/16, we sample a k such that

|sk mod Q| ≤ s

2
⇐⇒ |sk − cQ| ≤ s

2
⇐⇒

∣∣∣∣ kQ − c

s

∣∣∣∣ ≤ 1

2Q

for some c ∈ Z.
Now, we get to know k

Q when we measure |τ⟩. We know that it is very close to c
s . Now, clearly s ≤ N . On the other

hand, we have chosenQ to be much larger thanN . Thus, even though the fraction itself is corrupted, it is very close
to another fraction with a small denominator.
Wenowdescribe the continued fractionmethod for finding out lowdenominator approximations to any real number.
Consider the real number 0.25001. We can write it as:

0.25001 =
25001

100000
=

1
100000
25001

=
1

3 + 24997
25001

=
1

3 + 1
25001
24997

=
1

3 + 1
1+ 4

24997

Note that the “residual fraction” at this point is 4
24997 , which is very small. Thus, if we neglect it, we obtain 0.25001 ≈

1
3+ 1

1

= 1
4 , i.e. we recover the “uncorrupted” version of 0.25001. Also note that we can calculate the continued fraction

expansion of k
Q simply by long division.

We now present a lemma about continued fractions which seals the deal.

Lemma 3.3. Let α ∈ R be a real number, and let

αm = a0 +
1

a1 +
1

···+ 1
am

=
Pm
Qm

, gcd(Pm, Qm) = 1

be the mth continued fraction expansion of α. Then αm is the best rational approximation of α with denominator
≤ Qm, i.e. |α− αm| ≤ |α− P ′

m/Q
′
m| for all Q′

m ≤ Qm, gcd(P ′
m, Q

′
m) = 1. Furthermore, if α ∈ Q, then there exists an

m such that α = αm.

Thus, given k/Q, we compute the continued fraction expansion of it until the denominator exceeds N . The rational
approximationweget thus is c/s: Why? Suppose therewere two fractions, c/s and c′/s′, such that

∣∣∣ kQ − c
s

∣∣∣ , ∣∣∣ kQ − c′

s′

∣∣∣ ≤
1
2Q . Then ∣∣∣∣ cs − c′

s′

∣∣∣∣ ≤ 1

Q
=⇒ Q|cs′ − c′s| ≤ ss′ ≤ N2
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However, |cs′ − c′s| ≥ 1, and thus Q ≤ N2, which is a contradiction.
Thus, the continued fraction approximation of k/Q uniquely recovers c/s. Now, if gcd(c, s) was 1, then we could
recover s too. We argue that this happens with 1

poly(n) probability:

Lemma 3.4. gcd(c, s) = 1 with Ω
(
1
n

)
probability.

Proof. A little thought reveals that c is uniformly distributed in {0, . . . , s− 1}. Now, s has at most lg s prime factors.
On the other hand, by the prime number theorem, there are Ω(s/ ln s) prime numbers in {0, . . . , s− 1}. Thus there
areΩ(s/ ln s) prime numbers in {0, . . . , s−1}which don’t divide s. The probability that c equals one of those primes
is Ω(1/ ln s) = Ω(1/n), since s ≤ N =⇒ ln s = O(n). ■

Thus, with probability Ω(1/n), we obtain the ‘correct’ s by measuring and processing the qubits of (FQ ⊗ I⊗q) · Of ·
(H⊗q ⊗ I⊗q) · |0⟩⊗2q . Also, note that whatever answer we get for s, we can quickly verify if as ≡ 1 mod N . Also, if
ax ≡ 1 mod N , then s | x. Thus, suppose we run the period-finding routine T times, and retain only those outputs
which satisfy ax ≡ 1 mod N . Among those ‘correct’ x, we choose the minimal value as our s. Then with probability
Ω(1/n), this value for s is indeed the correct value.
Thus, if we run the period-finding routine T = Θ(n2) times, then we fail with probability ≤ (1 − Ω(1/n))Θ(n2) =
exp(−Ω(n)), i.e. with very high probability we obtain the correct period. Thus, to summarize Shor’s algorithm:
Algorithm 1: Shor’s Algorithm
Data: N , N is an odd composite number which is not a perfect power
Result: A non-trivial factor of N

1 a
$←− [2, N) ∩ Z

2 if gcd(a,N) > 1 then
3 return gcd(a,N)

4 s← order(a,N) (see Algorithm 2)
5 if 2 ∤ s then
6 go to line 1
7 if gcd(as/2 − 1, N) > 1 then
8 return gcd(as/2 − 1, N)

9 return gcd(as/2 + 1, N)

Algorithm 2: Period Finding Algorithm
Data: a,N , gcd(a,N) = 1
Result: ordZ×

N
(a)

1 Let Q = 2q be the smallest power of two greater than N2

2 retval← N

3 counter← 5 log2(N)
4 |ψ⟩ ← (FQ ⊗ I⊗q) · Of · (H⊗q ⊗ I⊗q) · |0⟩⊗2q

5 Measure first q qubits of |ψ⟩ to obtain |k⟩
6 Let c/s be the continued fraction approximation of k/Q
7 if counter > 0 and as ≡ 1 mod N then
8 retval← min(retval, s)
9 counter← counter−1
10 go to line 4
11 return retval
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3.4.2. Implementation Issues

We’ll now see how to implement FQ and Of . Implementing Of is easy: Note that f(ℓ) := aℓ mod N is a function
that can be computed easily classically in poly log(ℓ) steps. Since the maximum ℓ we invoke Of for is Q− 1, we can
implement Of in poly log(Q) = poly(n) gates. The classical circuit to compute f also works as the oracle Of (which
simply treats the qubits as bits).
Implementing FQ is much trickier: Firstly, we note that

FQ =
1√
2

[
FQ/2 BQ/2FQ/2
FQ/2 −BQ/2FQ/2

]
=

1√
2

[
IQ/2 IQ/2
IQ/2 −IQ/2

]
·
[
IQ/2 0
0 BQ/2

]
·
[
FQ/2 0
0 FQ/2

]
= (H⊗IQ/2)·

[
IQ/2 0
0 BQ/2

]
·(I2⊗FQ/2)

where

BQ/2 :=


1

ω
ω2

. . .
ωQ/2−1


is a diagonal matrix. Note that although the above matrix relations for FQ might appear mysterious, they’re in
fact quite straightforward: The first equality simply expresses a recursion, in a condensed, matrix form. The other
equalities are then simply matrix manipulations.
It is easy to convince oneself that if we can implement BQ/2, then we can implement FQ too. Implementing BQ/2 is
easy: If the first qubit is 1, then some rotation is applied. If the second qubit is 1, some other rotation is applied, and
so on. Thus, we only require poly logQ = poly(n) gates to implement BQ/2.
With some effort, one can show that FQ itself can be implemented in poly logQ = poly(n) gates, as desired.

3.5. Hidden Subgroup Problem

Shor’s algorithm can be interpreted as trying to find a “hidden” subgroup in an abelian group. Before we elucidate
on this connection further, let’s define the Hidden Subgroup problem:

Problem (Hidden Subgroup Problem (HSP)). Let G be a group, and let H be a subgroup of G. We are given a
function f : G 7→ S, and we’re promised that f assigns a unique element to each coset of H , i.e. f restricts to an
injective function G/H 7→ S. Our task is to describeH (by producing a generating set forH), given oracle access to
f .

Remark. Note that if |H| = ℓ, then there exists a generating set for H of size ≤ lg ℓ: Indeed, define a set of groups
inductively as H0 := {idG}, Hi := ⟨Hi−1, xi−1⟩, for i ≥ 1, where xi−1 ∈ H \ ⟨Hi−1⟩. Since xi−1 forms atleast two
distinct cosets of Hi−1, |Hi| ≥ 2|Hi−1|, and we’re done.
All HSPswe’ll see have group sizes bounded by exp(poly(n)) for relevant parameter n, and thus a poly(n) generating
set will always exist.
This is how we reduce Simon’s and Shor’s problems to HSPs:

Problem (Simon’s Problem). Let G = Zn2 . G has a subgroupH := {0, s}. We are given a function f : G 7→ Gwhich
assigns a unique element to every coset of H . Our task is to find H .

It is easy to see the equivalence of this formulation with the one we saw earlier.
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Problem (Shor’s Problem). Let G = ZN . Let a ∈ Z×
N be some given integer, and let r = ordZ×

N
(a). Let H = ⟨r⟩ be

the subgroup generated by the element r ∈ G. Let f : G 7→ G be the function given by g 7→ ag mod N .

Turns out we can encode even more problems using this:

Problem (Discrete Logarithm). Let G = Zn × Zn. Let G′ = ⟨g⟩ be another group such that |G′| = n, and let
h ∈ G′. Let H := {(x, y) ∈ Zn × Zn : gxhy = 1} be a subgroup of G. Consider the function f : G 7→ G′ given by
f(a, b) := gahb.

One can also show that the Graph Isomorphism problem 19 reduces to a HSP over Sn. One can also show that the
Shortest Vector Problem 20 reduces to a HSP over the dihedral group Dn.
We shall now show how quantum computing can be used to give efficient solutions for all HSPs on abelian groups.
Many of these abelianHSPs have no known efficient classical algorithms. Despite intense research, efficient quantum
algorithms haven’t been found for HSPs over non-abelian groups. In particular, the Graph Isomorphism Problem, or
the Shortest Vector Problem, remain out of reach for polynomial time quantum algorithms.
Let N = 2n be the smallest power of two greater than or equal to |G|. We embed G into {0, 1}n. Let f : G 7→ S
be our HSP function. Note that WLOG |S| = |G/H| ≤ |G| ≤ 2n. Thus we can embed S into {0, 1}n as well. For
g ∈ G ⊆ {0, 1}n, and x ∈ {0, 1}n, define the oracle

Of (|g⟩ ⊗ |x⟩) := |g⟩ ⊗ |x⊕ f(g)⟩

For y ∈ {0, 1}n \G, we leave Of (|y⟩ ⊗ |x⟩) undefined.
While we shall not go into the details of our algorithm, note that the key ingredient in Shor’s algorithm was the
Quantum Fourier Transform (QFT). Using ideas similar to that, we can implement Quantum Fourier Transform on
all abelian groups. HSPs for abelian groups then follow by massaging the Fourier transform into desired states.

3.6. Grover's Algorithm [Gro96]

We have the following problem: We are given N elements X := {x1, . . . , xN} in our database, and a function f :
X 7→ {0, 1}. We are promised that f−1(1) is non-empty. We call the elements of f−1(1) “marked items”. We have to
find an element x ∈ X such that f(x) = 1.
Right off the bat, we make a few assumptions: We assume N = 2n is a power of two. This can be ensured easily by
adding garbage elements to X if necessary, and setting their f -values to 0. Since N = 2n, we may also assume that
X = {0, 1}n. Finally, we assume that there is a unique x∗ ∈ X such that f(x∗) = 1. 21

Note that any classical algorithm (even randomized) for this must necessarily take Ω(N) time. We now provide a
quantum algorithm, called Grover’s algorithm, which achieves this in O(

√
N) time.

Our input is |0⟩⊗n. The initial steps of the algorithm are quite obvious: Apply H⊗n to |0⟩⊗n to obtain

|ψ⟩ := 1√
2n

∑
x∈{0,1}n

|x⟩ = 1√
N

∑
x∈{0,1}n

|x⟩

At this point, we introduce the so-called Grover Diffusion Operator: If D is the diffusion operator, and if |α⟩ :=∑
x∈{0,1}n αx|x⟩ is a state, then

Dα :=
∑

x∈{0,1}n
(2α− αx)|x⟩

19which gives two isomorphic labeled graphs and asks us to find a bijection between the labels which takes one graph to the other
20which gives us a lattice L := {a0z0 + · · ·+ an−1zn−1 : a0, . . . , an−1 ∈ Z}, where z0, . . . , zn−1 are given vectors in Rn. Our task is to find

a O(
√
n)-approximation to the shortest vector in L

21this assumption can be removed without much difficulty
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where α := 2−n
∑
x∈{0,1}n αx is the average of the coefficients.

In other words, D flips all coefficients about the mean. The explicit form of D is

D :=


2
N − 1 2

N · · · 2
N

2
N

2
N − 1 · · · 2

N
...

...
. . .

...
2
N

2
N · · · 2

N − 1


It can be easily verified that D is unitary. We shall return to the issue of actually implementing D later.
Then Grover’s Algorithm is as follows: Apply (D · Of )T to |ψ⟩, for some carefully chosen parameter T .
Informally speaking, Of first flips the amplitude for |x∗⟩, while keeping all others as it is. Since only the amplitude
for |x∗⟩ gets flipped, the mean of the amplitudes stays ≈ 1√

N
. Now, when D flips all coefficients about the mean,

since the coefficients of |x⟩, x ̸= x∗ are approximately equal to the mean anyways, they stay put. However, the am-
plitude of |x∗⟩ gets a boost, since it was of the opposite sign as the mean. Repeating this procedure (of applying Of
and then D) many times boosts the amplitude of |x∗⟩ to Ω(1), while the other amplitudes stay at O(1/

√
N). At this

point, measuring our state outputs x∗ with good probability.
To formally analyze Grover’s algorithm, denote by α(t) the amplitude of |x∗⟩ after t steps, and let β(t) be the ampli-
tudes of the other elements. Then α(0) = β(0) = 1√

N
. Also note that α(t+1) = −α(t) + 2(N−1)

N β(t): Indeed, after

application of Of , the amplitude of |x∗⟩ becomes −α(t). The mean of the amplitudes at this point is −α(t)+(N−1)β(t)

N .
Thus, at the next step, we have

α(t+1) = 2 · −α
(t) + (N − 1)β(t)

N
+ α(t) =

N − 2

N
α(t) +

2(N − 1)

N
β(t)

Now, (α(t))2 + (N − 1)(β(t))2 = 1. Thus β(t) = ±
√

1−(α(t))2

N−1 . Assume β(t) ≥ 0. Then

α(t+1) =
N − 2

N
α(t) +

2
√
N − 1

N

√
1− (α(t))2

Write α(t) := sin(θ(t)), θ := cos−1
(
N−2
N

)
. Then

sin(θ(t+1)) = sin(θ(t) + θ) =⇒ θ(t+1) = θ(t) + θ = θ(0) + (t+ 1)θ

Thus, for small t (to ensure β(t) stays positive), we have θ(t) = sin−1
(

1√
N

)
+ t · cos−1

(
N−2
N

)
. Thus, if we set

T :=

 cos−1
(

1√
N

)
cos−1

(
N−2
N

)
 ∼ π

4
·
√
N

After application of T steps, π2 − θ ≤ θ
(T ) ≤ π

2 , and thus α(t) ≥ sin(π/2− θ) = cos(θ) = 1− 2/N . Consequently, after
applying (D · Of )T , if we measure the resulting state, we will obtain x∗ with probability 1−O(1/N).
Some interesting points about Grover’s algorithm:

1. Suppose we let Grover’s algorithm run too long, say upto T = π
2

√
N . Then the probability of observing x∗

goes to 0! Thus Grover’s algorithm is an example of a randomized algorithm whose success probability drops
if we let it run too long!

2. Suppose |f−1(1)| = K. Then the optimal stopping time T to observe an element of f−1(1) is π4
√

N
K . So what is

the optimal stopping time whenK is unknown? We binary search over the possible values ofK: First assume
K is N , run Grover’s algorithm for π/4

√
N/K steps. If we find a marked item, we stop. Otherwise assumeK

isN/2, and run Grover’s algorithm for π/4
√
N/K steps. We continue this process until we go down toK = 1.

This process still takes O(
√
N/K∗) queries, where K∗ = |f−1(1)| is the number of marked items (which we

don’t know, and don’t need to know).
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3. Note that if multiple runs of Grover’s algorithm (suitably adapted for variousK) fail to find any marked item,
then with high probability we can be certain that there is no marked item. More precisely, since Grover search
succeeds in finding a marked item (if there is any) with Ω(1) probability, by running Grover’s algorithm O(1)
many times, we can also certify with Ω(1) probability if there is any marked item.

3.6.1. Implementation Issues

How do we actually implementD? Note thatD = H⊗nAH⊗n, where A =


1
−1

. . .
−1

 = ⟨0|n|0⟩n− I . Thus,

if we can implement A, we’re done. Note that for any x ∈ {0, 1}n,

A|x⟩ =

{
−|x⟩ if x = 0n

|x⟩ otherwise

Thus, A negates |x⟩ if and only if x = 0n. Note that it is easy to implement A as a classical circuit: We first apply the
n-bit OR gate on the input, and if the output is 0, we apply −I , else we apply I .
We can implement the above circuit using O(n) = O(lgN) Toffoli gates. Since H⊗n can also be implemented using
O(lgN) gates, the Grover diffusion operator takes O(lgN) gates to implement, and Grover’s algorithm itself takes
O(
√
N lgN) gates to implement.

3.7. Applications of Grover's Algorithm

3.7.1. OR-of-ANDs

Suppose we have N input bits arranged in a
√
N ×

√
N table. We have to find out if there is any row in the table

which contains only ones. This type of a problem is known as an OR-of-ANDs problem: Indeed, if the bits of our
table are arranged as {xij}, then the above problem asks if the following OR-of-ANDs expression is 1:

√
N∨

i=1

√
N∧

j=1

xij

Once again, any classical algorithm for this takes Ω(N) time. Grover allows us to do this in Õ(
√
N) time: In

O(
√√

N) = O(N1/4) time, we can search if any given row has a 0. We call a row ‘marked’ if running Grover
on that row failed to find a 0. We now run an ‘outer’ Grover over all rows, trying to find a marked row. The oracle
for the outer Grover checks if a row is marked by running the above ‘inner’ Grover on that row in O(N1/4) time.
Thus, inO(N1/4 ·N1/4) = O(N1/2) time, we can find if a row contains only ones. We run the Grover routines polylog
many times to reduce error to 1/ poly(N), thus taking our run-time to Õ(

√
N). With some cleverness, these poly-log

factors can be removed, and thus the OR-of-ANDs problem can be solved in O(
√
N) time.

In fact, suppose we have an OR-of-ANDs tree, i.e. a tree whose root is an OR, and the rest of the tree is an alternat-
ing pattern of ORs and ANDs, with the variables at the leaves. Also assume there are N leaves. Then a result due
to Farhi, Goldstone and Gutmann shows that one can solve the OR-of-ANDs problem in O(

√
N) time. However,

the general case is much trickier than the one above, since controlling errors in Grover’s algorithm across arbitrary
depths becomes much tougher.

3.7.2. The Collision Problem

Let N be an even integer, and let f : [N ] 7→ [N ] be a 2-to-1 function, i.e. every element in the image of f has exactly
two pre-images. Our task is to find x, y, x ̸= y such that f(x) = f(y).
A typical birthday paradox argument gives us aO(

√
N) algorithm for the above problem, and the adversarymethod

also yields a Ω(
√
N) lower bound for classical problems.
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On the other hand, the naive quantum algorithm also runs inO(
√
N) query complexity: Indeed, run Grover’s algo-

rithm on [N − 1] to find an element x such that f(x) = f(N).
So can we do better? Once again, a “layered” Grover gets us what we want: Randomly choose N1/3 elements from
[N ], and query the oracle for their values. Once we have their f -values, sort them to enable fast lookup. Let F be
the sorted set of these f -values. Note that if we detect a collision within F , then we’re already done.
Now, choose N2/3 elements from [N ] \ {the elements already chosen earlier}. An element x chosen in this round is
marked if f(x) ∈ F . Run Grover on theseN2/3 elements to find amarked element. Now, since the aboveN1/3+N2/3

elements were chosen randomly, with Ω(1) probability there is a marked element among theN2/3 elements. 22 Fur-
thermore, Grover will find that element in O(

√
N2/3) = O(N1/3) queries. Thus, the total number of queries is

N1/3 +O(N1/3) = O(N1/3), i.e. with Ω(1) probability we can find a collision in O(N1/3) queries.

3.7.3. Element Distinctness

Here, we’re given a function f : [N ] 7→ [N ]. We have to determine if f is injective.
Classically, we can solve this problem in Õ(N) time by hashing/sorting.
Quantumly, we can solve this in Õ(N3/4) time using a “layered” Grover as above. However, as we shall see later, the
optimal algorithm for this problem comes via quantum random walks, and takes O(N2/3) time.

22indeed, with high probability |F| = Ω(N1/3). We call x ̸= y partners if f(x) = f(y). Note that none of the partners of theΩ(N1/3) elements
chosen in the first roundwere sampled in theN1/3+N2/3 samples. The probability of this occurring is≤ (1−Ω(N1/3)/N)N

1/3+N2/3
= O(1)
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�4. Lower Bounds against Quantum Algorithms

We have seen many quantum algorithms; we’ll now see matching lower bounds for many of them. Before we do
that, we define some terminology:

1. Search Problems: We call a problem a search problem if the output is some string/object.

2. Decision Problems: We call a problem a decision problem if the output is a yes/no.

3. Promise Problems: We call a problem a promise problem if the class of possible input functions is promised
to have some property.

4. Total Problems: Problems which are not promise problems are called total problems.

Avery exciting theorem says that for total decision problems, quantumalgorithms can’t offer an exponential speedup
over classical algorithms!

Theorem 4.1 ([ABDK+21, ABB+17, BS21, SSW23]). Let P be a total decision problem with parameter N . Let
D(N), R(N), Q(N) be the deterministic, randomized, and quantum query complexity of P respectively. Then
D(N) = O(Q(N)4), which automatically implies R(N) = O(Q(N)4).
Furthermore, there exists a promise problem for whichD(N) = Ω(Q(N)4). There also exists a promise problem for
which R(N) = Ω(Q(N)3).

Note that both Grover’s problem and the Element Distinctness (ED) problem can be viewed as total decision prob-
lems: ForGrover, we have to decide if a database contains anymarked item, and for the ElementDistinctness problem
we have to decide if the function is injective. In both cases, there are no promises on the database or the function.
Thus, the above theorem explains why we don’t get exponential speedups for Grover and ED like we do for Simon’s
problem.
We shall now see the polynomial method for proving lower bounds.

4.1. The Polynomial Method

Instead of assuming our input is a function f : [N ] 7→ [M ], we assume its a string w ∈ [M ]N , which we have oracle
access to. Our oracle to w will be denoted Ow, and depending on the context, Ow(|i⟩) = (−1)wi |i⟩ (if [M ] ∼= {0, 1}),
orOw(|i⟩|y⟩) = |i⟩|y⊕ f(i)⟩ (ifM ∼= {0, 1}m, N ∼= {0, 1}n). Also denote by w̃i,c, where i ∈ [N ], c ∈ [M ], the indicator
variable:

w̃i,c :=

{
1 if wi = c

0 otherwise

We now prove a basic statement about the polynomial method.

Lemma 4.2. Let A be a quantum query algorithm which makes t queries to Ow, where w ∈ [M ]N . Also assume
[N ] ∼= {0, 1}n, [M ] ∼= {0, 1}m. Then the amplitude of any basis state after the application of A is a multilinear
polynomial in w̃ := {w̃j,c}j∈[N ],c∈[M ] of degree ≤ t.

Proof. WLOG the input to A is |0⟩⊗n ⊗ |0⟩⊗m ⊗ |0⟩⊗a, where n is the number of input qubits/registers, m is the
number of output registers, and a is the number of ancilla qubits. Then note that

A =

t∏
i=0

(Ow · Ui)
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where U0, . . . , Ut are some unitaries.
WLOG it suffices to carry out all measurements at the end of A by the Deferred Measurement Principle (see Sec-
tion 1.12).
After application of U0, the state becomes∑

j∈{0,1}n

∑
b∈{0,1}m

∑
z∈{0,1}a

αjbz|j⟩|b⟩|z⟩

Note that αjbz is a constant (i.e. polynomial of degree 0) w.r.t w̃, becauseOw hasn’t been invoked yet. Thus the base
case of the induction (for t = 0) is verified.
Now, suppose after k steps our state looks like

|ψ⟩ =
∑

j∈{0,1}n

∑
b∈{0,1}m

∑
z∈{0,1}a

Pjbz(w̃)|j⟩|b⟩|z⟩

where Pjbz(w̃) is a polynomial of degree ≤ k. Now, note that applying a unitary transformation doesn’t change the
degree w.r.t. w̃ 23. Thus, we can focus on what happens when Ow is applied:

Ow · |ψ⟩ =
∑

j∈{0,1}n

∑
b∈{0,1}m

∑
z∈{0,1}a

Pjbz(w̃)|j⟩|b⊕ wj⟩|z⟩

=
∑

j∈{0,1}n

∑
b,b′∈{0,1}m

∑
z∈{0,1}a

w̃j,b′⊕b·Pjbz(w̃)|j⟩|b′⟩|z⟩ =
∑

j∈{0,1}n

∑
b′∈{0,1}m

∑
z∈{0,1}a

 ∑
b∈{0,1}m

w̃j,b′⊕b · Pjbz(w̃)


︸ ︷︷ ︸

|j⟩|b′⟩|z⟩

It is clear that the underbraced polynomial is of degree ≤ k + 1, as desired.
Finally, to see that we can take Pjbz(w̃) to bemultilinear, observe that w̃j,c2 = w̃j,c, since w̃j,c is a 0−1 valued variable.
Consequently, we can multilinearize any polynomials we obtain and assume WLOG that Pjbz is multilinear. ■

Corollary 4.3. Let A be a quantum query algorithm which makes t queries to Ow, where w ∈ [M ]N . Also assume
[N ] ∼= {0, 1}n, [M ] ∼= {0, 1}m. Then the acceptance probability of A is a multilinear polynomial in w̃ of degree ≤ 2t.

Proof. The probability of obtaining |j⟩|b⟩|z⟩ is Pjbz · P ∗
jbz . Since deg(Pjbz) ≤ t, the result follows. ■

Suppose we have a decision problem, i.e. given a string w ∈ [M ]N , we have to decide if w satisfies some property P .
Thus the property P is a function P : [M ]N 7→ {0, 1}. Now, let A be a quantum query algorithm for this problem,
and supposeA succeeds with probability≥ 2/3. Let P (w̃) be the degree≤ 2t polynomial given by Corollary 4.3, i.e.
P (w̃) gives us the probability that A accepts. Then note that for all w ∈ [M ]N , we have:

|P (w̃)− P(w)| ≤ 1

3

4.1.1. Lower Bounds for Grover's Problem

Note that Grover’s decision problem can be framed as follows: Given a database {w1, . . . , wN}, where wi ∈ {0, 1},
decide if OR(w1, . . . , wN ) = 1. Note that we say wi is marked if and only if wi = 1. Also note thatM = {0, 1} for
this problem.
Let P (w1, . . . , wN ) be the accepting polynomial of a quantum algorithm for Grover decision with ≤ t queries. Note
that technically P should be a polynomial of w̃j,c. However, since c ∈ {0, 1}, w̃j,1−c = 1− w̃j,c. Thus, it is enough to
consider P to be a polynomial of w̃j,1. But note that w̃j,1 = wj , and thus P (w̃) = P (w1, . . . , wN ).

23Recall that we are using w̃ as a shorthand for {w̃j,c}j∈[N ],c∈[M ]
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We have P (0, . . . , 0) ∈ [0, 13 ] and P (w1, . . . , wN ) ∈ [ 23 , 1] if any of w1, . . . , wN is 1, by the guarantees of our algorithm.
Define the symmetrization of P to be:

Q(w1, . . . , wN ) :=
1

N !

∑
π∈SN

P (wπ(1), . . . , wπ(N))

Note that deg(Q) ≤ deg(P ). Also note that Q(0, . . . , 0) ∈ [0, 13 ], and Q(w1, . . . , wN ) ∈ [ 23 , 1] if any of w1, . . . , wN is 1.
Thus for any w ∈ {0, 1}N , ∣∣Q(w)−OR(w)

∣∣ ≤ 1

3

where OR(w) := OR(w1, . . . , wN ) ∈ {0, 1} ⊆ R is the standard OR function.
Now, note thatQ(w1, . . . , wN ) is a symmetric function: It doesn’t change if we permute its arguments. Consequently,
if we just specify the number of ones among {w1, . . . , wN}, we should be able to compute Q(w). In other words Q
is actually just a function of the Hamming weight of w. Thus, we can view Q as a univariate polynomial over the
integers. We formalize this through the lemma below:

Lemma 4.4. LetQ : {0, 1}N 7→ R be a symmetric multilinear polynomial of degree d. Then there exists a polynomial
q : R 7→ R such that Q(w) = q(wt(w)), and deg(q) ≤ d.

Proof Sketch. Since Q is a symmetric multilinear polynomial, it is easy to see by induction that

Q =

d∑
k=0

αk
∑

T∈([N]
k )

wT

where wT :=
∏
i∈T wi, α0, . . . , αd ∈ R. Now, write pk :=

∑N
i=1 w

k
i . By Newton’s identities,

∑
T∈([N]

k )
wT =

p(p0, p1, . . . , pk), where p is a polynomial of degree ≤ k. On the other hand, since the wi are 0 − 1 valued vari-
ables, pk = p1 for all k ≥ 1. Thus, restricted to {0, 1}N , one can expressQ as a univariate polynomial of p1 (note that
p0 = N is just a constant) of degree ≤ d. But p1 =

∑N
i=1 wi = wt(w), and thus we’re done. ■

The polynomial q obtained in the above lemma satisfies the property that q(0) ∈ [0, 13 ], q(z) ∈ [ 23 , 1] for all z ∈ [N ]. If
we can show that any polynomial satisfying this property necessarily has a large degree, then we’re done. For that,
we shall need Markov’s “other” inequality:

Theorem 4.5 (Markov’s Other Inequality). Let q : R 7→ R be a univariate polynomial of degree d. Let I be an interval
of length ℓ, and let h := maxx∈I |q(x)|. Then for any x ∈ I ,

|q′(x)| ≤ d2h

ℓ

Now, write h := maxx∈[0,N ] |q(x)|. We now make cases:

1. h ≤ 2: Then by Theorem 4.5, for any x ∈ [0, N ], |q′(x)| ≤ 2(deg(q))2

N . On the other hand, since q(0) ≤ 1/3, q(1) ≥
2/3, by the mean value theorem there exists some y ∈ [0, 1] ⊆ [0, N ] such that q′(y) ≥ 1

3 . Thus

1

3
≤ 2(deg(q))2

N
=⇒ deg(q) ≥

√
N

6

2. h > 2: Let y ∈ [0, N ] be such that |q(y)| = h. Let y′ be the integer in [0, N ] closest to y. Then |q(y′)| ≤ 1. Also,
|y− y′| ≤ 1

2 . Thus, by the mean value theorem, there exists y′′ in between y, y′ such that |q(y′′)| ≥ 2(h− 1) > 2.
Thus 2 ≤ 2(deg(q))2

N , and we have deg(q) ≥
√
N .
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Thus deg(q) ≥
√

N
6 . But also note that deg(q) ≤ deg(Q) ≤ deg(P ) ≤ 2t, where t is the number of queries our

algorithm made. Thus we have the following result:

Theorem 4.6 (Lower Bound for Grover Decision). Let {w1, . . . , wN} be a database, and suppose A is a quantum
algorithm, which, with probability ≥ 2/3, determines if the database contains a 1. Then A must necessarily make
≥

√
N

2
√
6
=
√

N
24 queries to Ow.

Now, suppose A is a quantum algorithm for Grover search, instead of Grover decision. Note that if A can find
a marked item (if there is any) with probability ≥ 2/3, then by running A O(1) many times, we can decide with
probability ≥ 2/3 if our database has any marked item in the first place. Consequently, the lower bound for Grover
decision transfers to Grover search, and we have:

Theorem 4.7 (Lower Bound for Grover Search). Let {w1, . . . , wN} be a database, and suppose A is a quantum
algorithm, which, with probability ≥ 2/3, finds out a i such that wi = 1, if there is any such i, or says that our
database doesn’t have any marked item. Then Amust necessarily make Ω(

√
N) queries to Ow.

Consequently, Grover’s algorithm is optimal upto constant factors.

4.1.2. Lower Bounds for the Collision Problem and Element Distinctness Problem

Recall the collision problem: Given f : [N ] 7→ [M ], we have to decide if f is injective, or if it is 2-to-1, i.e. every
element in the image of f has exactly 2 pre-images. Note that this is a promise problem, since we’re promised that
f is either injective or 2-to-1.
By the algorithm presented in Section 3.7.2, we can detect a collision with positive probability, if there is any, in
O(N1/3) time. Consequently, if we don’t find a collision even after running our collision-finding algorithm some
(large) constant many times, then with high probability we can certify that f is injective, also in O(N1/3) time.
We shall now prove a matching lower bound, i.e. any algorithm deciding if a given f : [N ] 7→ [M ] is injective or
2-to-1, must necessarily make Ω(N1/3) queries to Of (or Ow).
Before we proceed onto the proof of this, the above lower bound for the collision problem immediately implies a
lower bound for the Element Distinctness problem.

Theorem 4.8 (Lower Bound for Element Distinctness). Suppose we are given f : [N ] 7→ [N ], and we want to find
out if f is injective. Then any quantum algorithm answering the above problem correctly with probability ≥ 2/3
must necessarily make Ω(N2/3) queries to Of .

Proof. AFTSOC itwas possible to decide the injectivity of f in o(N2/3) queries. We derive a contradiction by violating
the lower bound for the collision problem.
Now, let f : [N ] 7→ [M ] be our input for the collision problem: We’re promised that f is either injective or 2-to-1. Let
w ∈ [M ]N be the word form of f . Randomly sample

√
N elements from [N ]. With high probability, Ω(

√
N) of the

sampled elements are distinct.
Now, ifw is injective, thenw|S is also injective. Conversely, ifw is 2-to-1, thenwith probability≥ 1−(1−

√
N/N)

√
N =

Ω(1) w|S is also not injective. Now, invoke the ED algorithm to decide if w|S is injective in o((N1/2)2/3) = o(N1/3)
queries. Thus, withΩ(1)probabilitywe’re able to decide ifw is injective in o(N1/3) queries, leading to a contradiction.

■

Remark. Note that we only saw aO(N3/4) algorithm for the ED problem. However, aO(N2/3) algorithm for the ED
problem was given by Ambainis [Amb07], thus matching the above lower bound.



Quantum Computation Theory 38 / 41 Arpon Basu

Before we proceed to the lower bound for the Collision problem, we recall the following definition:

Definition 4.1. A function f : A 7→ B is called r-to-1 is every element in the image of f has exactly r pre-images.

Now, let A be a quantum algorithm which decides the collision problem in t queries to Ow, with probability ≥ 2/3.
Let P (w̃) be the accepting polynomial of A, as given by Corollary 4.3. We have deg(P ) ≤ 2t, and for any w ∈ [M ]N ,
we have:

1. If w is injective, then P (w̃) ∈ [0, 13 ].

2. If w is 2-to-1, then P (w̃) ∈ [ 23 , 1].

3. For any w, then P (w̃) ∈ [0, 1]. Note that even though the collision problem is a promise problem, running A
on a w (not necessarily satisfying the promise) will still cause A to output a legitimate probability.

We now present an argument due to [Kut05] for proving the collision lower bound. Now, define:

Definition 4.2. Let a, b, t ∈ N be natural numbers such that a | t, b | (N − t), where t ≤ N . Such a tuple (t, a, b) is
called valid. Then define:

Wt,a,b :=

{
w ∈ [M ]N : ∃T ∈

(
[N ]

t

)
, w|T is a-to-1, w|[N ]\T is b-to-1

}

For example, consider the function f : [10] 7→ [4] given by f(1) = f(2) = 1, f(3) = f(4) = 2, f(5) = f(6) = f(8) =
3, f(7) = f(9) = f(10) = 4. Then f ∈W4,2,3, as is witnessed by T = {1, 2, 3, 4}.
Also note thatWt,a,b = WN−t,b,a. Finally,

⋃N
t=0Wt,1,1 is the set of all 1-to-1 functions. Similarly,

⋃N/2
t=0 W2t,2,2 is the

set of all 2-to-1 functions.
Finally, define the symmetrization of P to be:

Q(t, a, b) := E
w∼Wt,a,b

[
P (w̃)

]
=

1

|Wt,a,b|
∑

w∈Wt,a,b

P (w̃)

Note that Q(t, 1, 1) ∈ [ 23 , 1] for all t ∈ [0, N ] ∩ Z, Q(t, 2, 2) ∈ [0, 13 ] for all t ∈ [0, N ] ∩ 2Z, and Q(t, a, b) ∈ [0, 1] for all
valid tuples (t, a, b). We now claim that the degree of Q(·, ·, ·) is bounded by deg(P ).

Lemma 4.9. There exists a polynomial Q : R3 7→ R such that for any valid tuple (t, a, b) ∈ Z3 ⊂ R3, Q(t, a, b) =
Q(t, a, b). Furthermore, we can take deg(Q) ≤ deg(P ).

Proof. Refer [Kut05], Lemma 2.2. ■

Remark. From now on we will conflate Q and Q.
We shall need another result from approximation theory due to Paturi [Pat92].
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Theorem 4.10. Let q : R 7→ R be a polynomial of degree d. Let a, b ∈ R such that a < b, and let ξ ∈ [a, b] be a real
number. Suppose maxx∈[a,b]∩Z |q(x)| ≤ c1, c2 := |q(⌈ξ⌉)− q(ξ)|. Then

d = Ωc1,c2

(√
(ξ − a+ 1)(b− ξ + 1)

)
In particular, if c1, c2 = O(1), then d = Ω

(√
(ξ − a+ 1)(b− ξ + 1)

)
.

SetM = 2⌊N/4⌋. Now we make cases:

1. Q(M, 1, 2) ≥ 1/2: Write g(x) := Q(M, 1, 2x), and let k be the least positive integer such that |g(k)| ≥ 2. Then
maxx∈[0,k−1]∩Z |g(x)| < 2. Also, g(1)−g(1/2) = Q(M, 1, 2)−Q(M, 1, 1) ≥ 1

6 . Thus invoking Theorem 4.10 (with
a = 0, b = k − 1, ξ = 1/2), we get deg(g) = Ω(

√
k). Now consider the polynomial h(x) := Q(N − 2kx, 1, 2k).

For x ∈ [0, N/2k] ∩ Z, (N − 2kx, 1, 2k) is a valid tuple and thus h(x) ∈ [0, 1], i.e. maxx∈[0,N/2k]∩Z |h(x)| ≤ 1.
However, |h((N − M)/2k)| = |Q(M, 1, 2k)| = |g(k)| ≥ 2. Thus, once again invoking Theorem 4.10 (with
a = 0, b = N/2k, ξ = (N −M)/2k) yields deg(h) = Ω(N/k), where we use the fact thatM ≈ N/2. Now, if k =

Ω(N2/3), then deg(g) = Ω(
√
k) = Ω(N1/3). However, deg(g) ≤ deg(Q) ≤ deg(P ) ≤ 2t, and thus t = Ω(N1/3).

Similarly, if k = O(N2/3), then deg(h) = Ω(N/k) = Ω(N1/3). However, deg(h) ≤ deg(Q) ≤ deg(P ) ≤ 2t, and
thus t = Ω(N1/3). Thus, in either case we have t = Ω(N1/3), as desired.

2. Q(M, 1, 2) < 1/2: Write g(x) := Q(M, 2x, 2), and let k be the least positive integer such that |g(k)| ≥ 2. Then
maxx∈[0,k−1]∩Z |g(x)| < 2. Also, g(1) − g(1/2) = Q(M, 2, 2) − Q(M, 1, 2) ≥ 1

6 . Thus invoking Theorem 4.10
(with a = 0, b = k − 1, ξ = 1/2), we get deg(g) = Ω(

√
k). Now consider the polynomial h(x) := Q(2kx, 2k, 2).

For x ∈ [0, N/2k] ∩ Z, (2kx, 2k, 2) is a valid tuple 24 and thus h(x) ∈ [0, 1], i.e. maxx∈[0,N/2k]∩Z |h(x)| ≤ 1.
However, |h(M/2k)| = |Q(M, 2k, 2)| = |g(k)| ≥ 2. Thus, once again invoking Theorem 4.10 (with a = 0, b =
N/2k, ξ =M/2k) yields deg(h) = Ω(N/k). At this point, we’re done as above.

Thus, to summarize, we have the following result:

Theorem 4.11 (Lower Bound for the Collision Problem). Let f : [N ] 7→ [M ] be a function, that is promised to be
either injective or 2-to-1. Then any quantum algorithm, correctly deciding this problemwith probability≥ 2/3, must
necessarily make Ω(N1/3) queries to Of .

Remark. An exactly similar proof as above works to show that if f is promised to be injective or r-to-1, then the
corresponding lower bound is Ω((N/r)1/3).

24WLOG we can assume N is even: Otherwise it will be impossible for f to be 2-to-1 and we can directly declare f to be injective in the
beginning
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