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Statement:
We define two functions :

π : R>0 −→ Z

π(x) := The number of primes in (0, x]

p : Z>0 −→ Z

p(1) = 1
p(n) is the largest prime divisor of n, n ≥ 2

Thus, for example, p(20) = 5, π(1) = 0, π(13) = 6, and so on. Prove that for
any n ∈ Z>0, we have

n∑
k=1

max(π(
n

k
)− π(p(k)) + 1, 0) = n

First Proof:
Consider a tree with n vertices, containing the numbers 1, 2, ..., n amongst
them. The tree satisfies these properties :

� The root of the tree is the vertex containing 1.

� The parent of the vertex containing the number m > 1 is the vertex
containing the number m/p(m).

Since m
p(m) < m ∀m > 1, we can iteratively build a unique tree with the above

rules.
Then for any vertex containing the number k > 1, note that it’s child (assum-
ing it has one) can have a maximum possible value of kq, where q is the largest
prime ≤ n/k, while the minimum possible value of it’s child is kp(k) (note that
if ∃t a child of k such that t = kt′ < kp(k), where t′ is a prime, then the largest
prime divisor of t is p(k), which contradicts the definition that the ratio of a
child to it’s parent must be the greatest prime divisor of the child).
Thus the number of children k has (assuming it has at-least one child), is the
number of primes between p(k) and q, which is π(nk )− π(p(k)) + 1. Since some
vertices don’t have children (such as say k = n−1 for n > 2), we can summarize
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the number of children as max(π(nk )− π(p(k)) + 1, 0); k > 1.
Finally, for k = 1, we note that it has π(n) children (all the primes between 2
and n are the children of 1), while the expression max(π(nk ) − π(p(k)) + 1, 0)
evaluates to 1 + π(n) at k = 1, ie:- over-counts by 1 (note that this exception
arises merely due to the definition of π(p(1)) as 0. We can get the exact count
by redefining π(p(1)) to be 1).
Hence,

n∑
k=1

max(π(
n

k
)− π(p(k)) + 1, 0)

= 1 + Total number of children of all the vertices in the tree

= 1 + Total number of edges in the tree = 1 + (n− 1) = n

since the number of edges in a tree with n vertices is n− 1.
Hence proved.
Second Proof:
We prove the statement by induction. To that end, let S(n) :=

∑n
k=1 max(π(nk )−

π(p(k)) + 1, 0). We have to prove that S(n) = n ∀n ∈ Z>0.
We can verify that S(1) is indeed 1. Assume that S(n) = n for some n ≥ 1, and
consider S(n+ 1). Then,

S(n+ 1) =

n+1∑
k=1

max(π(
n+ 1

k
)− π(p(k)) + 1, 0)

= max(π(1)− π(p(n+ 1)) + 1, 0) +

n∑
k=1

max(π(
n+ 1

k
)− π(p(k)) + 1, 0)

Since n+1 ≥ 2, we have p(n+1) ≥ 2 =⇒ π(p(n+1)) ≥ 2 =⇒ π(1)−π(p(n+
1)) + 1 = 1− π(p(n+ 1)) ≤ 0 =⇒ max(π(1)− π(p(n+ 1)) + 1, 0) = 0
Thus,

S(n+ 1) =

n∑
k=1

max(π(
n+ 1

k
)− π(p(k)) + 1, 0)

=

n∑
k=1

max(π(
n+ 1

k
)− π(

n

k
) + π(

n

k
)− π(p(k)) + 1, 0)

Before proceeding, observe that the term π(n+1
k )−π(nk ) is always non-negative

(but atmost 1, as will be shown in the following paragraphs), but for it to
actually contribute to S(n + 1) − S(n) (which we desire to show to be 1), it
actually has to be positive. But being positive alone is not guarantee enough
that π(n+1

k ) − π(nk ) will contribute : It also has to be the case that (π(nk ) −
π(p(k)) + 1) is also non-negative, as otherwise, since a negative (π(nk ) −
π(p(k)) + 1) would imply that it was atmost -1, and π(n+1

k )− π(nk ) is anyways
atmost 1 (to be shown below), that would effectively mean that the π(n+1

k ) −
π(nk ) term had no contribution at all, due to the maximum clause.
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In that light, note that since n+1
k − n

k ≤ 1 ∀ 1 ≤ k, and also since ∄t ∈ (nk ,
n+1
k )

(as that would imply Z ∋ kt ∈ (n, n+ 1) which is absurd), we have that either
both n

k and n+1
k lie completely between two integers, or that one of them is an

integer itself (and the other isn’t). In any case π(n+1
k )− π(nk ) is atmost 1, and

it becomes 1 only when n+1
k is an integer prime.

To that end let k = n+1
q , where q is a prime divisor of n + 1. Also note that

max(π(nk )− π(p(k)) + 1, 0) = max(π(q)− π(p(k)), 0) (we wish to ascertain the
non-negativity of (π(nk )− π(p(k)) + 1)).
Now note that the above expression is non-negative if and only if q = p(n+ 1),
since if q were some other prime divisor of n + 1, then p(k) = p(n + 1) and
consequently π(q)− π(p(k)) ≤ −1.
Thus, for all those k for which π(n+1

k ) − π(nk ) actually can contribute to the
sum, for exactly one k (ie:- for k = n+1

p(n+1) ) is it actually allowed to do so.

Thus, we have S(n + 1) = S(n) + 1 ∀ n ≥ 1, and combined with the fact that
S(1) = 1, we conclude that S(n) = n ∀ n ∈ Z>0.
Hence proved.
The Motivation behind this Problem:- Let Sn = {1, 2, ..., n}. Consider the
strict divisibility poset (Sn, |), ie:- for any two elements x ̸= y ∈ Sn we have
x ≺ y iff x|y. Consider the Hasse diagram of this poset, and for each vertex
k > 1 keep only it’s smallest (numerically) parent, ie:- delete the edges of that
node to it’s other parents. Thus, for example, in the Hasse diagram of (S6, |),
both 2 and 3 would be parents of 6, but now we keep only the 2-6 edge and
delete the 3-6 one since 2 is it’s smallest parent. The diagram then becomes a
tree where each non-root vertex has a unique parent. That tree is the one we
have described and analysed in the problem.
Some more Interesting Observations:-
We would also like to point out some very interesting properties of the tree
defined in the first proof, which aren’t necessarily limited only to the context of
this theorem. In that vein, we present the paragraphs below.
Let the depth of any vertex in a tree be defined as the length of the path from
the root of the tree to that vertex. Thus, the depth of the root is zero, and so
on.
By the nature of the tree, it’s fairly easy to see that if a vertex contains the

number k, where k =
∏ω(k)

i=1 plii is the prime factorization of the number k, then

the depth of that vertex is
∑ω(k)

i=1 li.
The largest depth in the tree is that of the vertex containing 2l, where 2l is
the largest power of 2 ≤ n. Thus the maximum depth of the tree is ⌊log2 n⌋ =
Θ(log n).
One also notices that the tree rooted at any node is similar to the entire tree
itself due to the fact that if the elements in that sub-tree are divide by their root,
then one in fact re-obtains a smaller version of the original tree itself (smaller
because only primes ≤ n/k were available to it). Our tree, thus, is self-similar
to some extent.
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