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A discussion of fullerene structures

Arpon Basu

Abstract

We aim to highlight and present various interesting aspects of struc-
tures of fullerenes, including a theorem about the number of pentagons
in spherical fullerenes [1], and use that discussion to present a few points
about truncated polyhedra [2], and finally conclude by talking about trun-
cated icosahedral C60 fullerenes[1][2].

1 Introduction

Fullerenes are a very interesting group of compounds which constitute an in-
tense field of research due to their unique structures and electronic properties,
and also because of their potential applications in nanotechnology and material
sciences.[1] In this article we will discuss various aspects of its structures from
a graph theoretic and topological point of view.[3] Then we will proceed onto
a mathematical treatment of various truncated polyhedra[2] and take a cursory
glance at truncated icosahedral C60 fullerenes[1][2].

2 Theory

Before beginning to talk about fullerenes, we present some mathematical pre-
liminaries.
Though the scope of the theorem we wish to present is more general, we present
only the portions relevant to our study:
For any polyhedron with V vertices, E edges and F faces, the relation V −
E + F = 2 holds true.[3] One may verify it for simple examples: A cube has 8
vertices, 12 edges and 6 faces, and 8 − 12 + 6 = 2.A tetrahedron has 4 vertices,
6 edges and 4 faces, and 4 − 6 + 4 = 2.
The ”2” in the equation V − E + F = 2 is known as Euler’s Characteris-
tic, which basically is an invariant in topology, basically meaning that any
”spherical” (convex) polyhedron will necessarily have its Euler’s characteristic
to be 2.Although we shall not explore that avenue here, Euler’s characteristics
help determine the structures of non-spherical fullerenes as mentioned below.For
example, the Euler’s characteristic of a torus (a doughnut) is zero, for a polyg-
onal tiling of a torus, V − E + F = 0.

With this basic introduction, we now move onto our main area of interest,
fullerene structures.Fullerenes are allotropes of carbon having various struc-
tures and shapes.Although there are ellipsoidal and ”tube” shaped fullerenes
too (they are the well known carbon nanotubes)[4], and scientists regard the
planar graphene as being an extreme, as in asymptotic, case of fullerenes, the
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main class of fullerenes (Cn) discovered are shaped as hollow spheres.Graph the-
ory forces any spherical structure composed of polygons to include pentagons
or heptagons within its tiling of polygons[1], and as actual fullerenes do have
pentagons in them, then some more mathematics forces that n be even (that’s
why we never encounter something like C61 composed only of pentagons and
hexagons).Moreover, each carbon in these fullerenes have 3 σ bonds emanat-
ing from it, and one π bond too, with one of its neighbours (the π bonds are
arranged so as to make the hexagonal rings aromatic).As mentioned ear-
lier, the whole Cn molecule is composed of hexagonal and pentagonal rings.In
fact, the first topic of our discussion will be to prove a conterintuitive result
about the number of pentagons and hexagons contained in a fullerene, as de-
scribed below:

2.1 Numbers of polygons in spherical fullerenes

So lets suppose we have a fullerene Cn composed entirely of pentagons and
hexagons, more specifically, say p pentagons and h hexagons.Suppose we try to
express the number of vertices (which we already know to be n) in terms of p
and h as follows: 5p + 6h is the total number of vertices there would’ve been
if the polygons were freely arranged in space instead of being joined together
as they are in the fullerene.But as we know, in the process of coming together
to form a fullerene, every carbon links up with 3 others, ie:-every vertex is
a member of exactly 3 polygons.Thus 5p + 6h over-counts the number of
vertices by a factor of 3, and hence:

5p+ 6h = 3n (1)

(1)

Now, for the second equation we need to use the theorem introduced earlier: V
is clearly n, and F is p+h.For E, observe that each edge in a fullerene is shared
between two polygons: Thus the number of edges is 5p+6h

2 (Why? 5p+ 6h over-
counts the number of edges by a factor of 2), which, from equation 1 is known
to be 3n

2 (One may observe that since E is an integer, that’s why n needs to
be even .This was the mathematics mentioned above which was forcing n to be
even). Thus,

n− 3n

2
+ (p+ h) = 2 (2)

(2)

Solving the equations yields p = 12 and h = n−20
2 . Here comes the interest-

ing part: Every spherical fullerene composed of only pentagons and
hexagons has 12 pentagons in it irrespective of the number of car-
bons in it.[1]
Quickly calculating the number of hexagons in the most common fullerenes, C60

and C70 yields that they have 20 and 25 hexagons respectively.
Although one may continue to present more facts about the number of vertices,
polygons etcetera, at this point the reader might wish to actually visualise the
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structures of at least the common fullerenes such as C60.This takes us towards
our next topic, that of truncated polyhedra[2], as described below.

2.2 Truncated Polyhedra

By virtue of the definition of polyhedra being broad, the domain of truncated
polyhedra is broad too.But here we shall concern ourselves with the truncated
polyhedra of the platonic solids only.
A truncated polyhedron is derived from its parent polyhedron by ”chopping”
of small sections from all its vertices: Note that we aren’t concerned with the
”metric” properties such as volume etcetera of our truncated polyhedra, only
its topological properties. The image of a truncated tetrahedron[2] is given
below for clearer understanding:

Figure 1: Truncated Tetrahedron, en route to the explanation of appearance of
truncated polyhedra in chemical structures

(Courtesy:Wikipedia, refer [2])

By virtue of this definition, if suppose our platonic polyhedra has E edges,
then its truncated daughter will have 2E vertices, 3E edges and E+2 faces:
Why? A justification of this statement is given below:

(a) Faces Note that our truncated polyhedron will have V + F faces because
apart from the F faces of the parent polyhedron, each of the parent’s
vertices will also become a face of the daughter polyhedron.By the math-
ematical theorem given above, V + F = E + 2.

(b) Vertices Let the number of edges leaving a particular vertex Vi of the
parent polyhedron be di, also known as the degree of that vertex. Then
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note that the number of vertices of our daughter polyhedron is Σdi: Why?
Because every vertex Vi of the parent polyhedron was converted into a di
sided polygon in the daughter polyhedron.But also note that Σdi is twice
the number of edges of the parent polyhedron, because in the process of
counting the total degree of all vertices of a polyhedron, all edges are
counted twice, once each for their endpoints.Thus Σdi=2E, and we rest
our case here.
Note how all carbons in all the spherical fullerenes (under our study) are
of degree 3.

(c) Edges Once number of vertices and faces are known, number of edges is
the sum of the numbers of vertices and faces minus 2.

Note the fact that we were able to calculate the number of vertices, edges and
faces of the truncated polyhedron just by knowing the number of edges of the
parent polyhedron only.
Returning to fullerenes, we now introduce the fact that a fullerene is a trun-
cated icosahedron[2].Before analysing what a truncated icosahedron is though,
we first mention a few things about icosahedra first.The image of a icosahedron
is given (Fig.2):

Figure 2: Icosahedron, as a precursor to its truncated version (Cour-
tesy:Wikipedia, refer [2])

An (regular convex) icosahedron has 20 faces (all of them being triangles),
30 edges and 12 vertices[2].

Moving on to truncated icosahedra, they, by our derived formula will have
60 vertices (the 60 carbons of C60), 90 edges and 32 faces (12 pentagons + 20
hexagons), as shown (Fig.3):
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Figure 3: Truncated Icosahedron, to better illuminate the structure of C60

(Courtesy:Wikipedia, refer [2])

As mentioned earlier, the hexagonal rings of fullerenes are aromatic[1], lead-
ing to different bond lengths between carbon atoms in the compound.Also note
however, that fullerenes don’t exhibit superaromaticity. The aromatic π
cloud of a hexagonal ring is not delocalised over the entire framework (un-
like the ”asymptotic” fullerene graphene, where there does exist a delocalised
π cloud over the entire planar structure), and rightly so because of the strain
in the carbon atoms which are most stable being planar but are forced to wrap
themselves up in a spherical framework.In fact, this strain is the cause of some
minor reactivity displayed by fullerenes, which are otherwise quite chemically
inert.

3 Conclusions

In this article we wished to present various interesting facts about the geometry
of fullerenes, like the fact that any spherical fullerene composed only of
pentagons and hexagons will always have exactly 12 pentagons in it,
and then proceeded to study of truncated polyhedra, mentioning a formula to
readily calculate the numbers of vertices, edges and faces of truncated polyhedra
from the number of edges of the parent polyhedron using the topological formula
mentioned at the beginning of the article, finally concluding by passing a cursory
glance at fullerene reactivity.

References

[1] Fullerenes
https://www.nobelprize.org/uploads/2018/06/kroto-lecture.pdf

6

https://www.nobelprize.org/uploads/2018/06/kroto-lecture.pdf


[2] Regular Polytopes (Second Edition), 1948 Pitman, Great Britain, Coxeter

[3] Graph Theory (First Edition), 1969 Westview Press, United States of Amer-
ica, Harary

[4] Inorganic Structural Chemistry (Second Edition), 2006 John Wiley & Sons,
Ltd., England, Muller
pp 114-117

7


	Introduction
	Theory
	Numbers of polygons in spherical fullerenes
	Truncated Polyhedra

	Conclusions

