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Notation

Letn € N={1,2,...}. Then we refer to the set {1,2,...,n} as [n].

Given two sets S, T C [n], we use SAT or S & T to denote the symmetric difference of Sand T',i.e. (S\T)U(T'\ S).
We shall canonically identify F5 with {—1,1}", with (21, ..., z,) mapping to ((—1)™,...,(—1)*"). Note that 1 €
maps to —1 € {—1,1},i.e. —1 is the “true” bit according to our scheme.

Acknowledgements

All the material in these notes is from Ryan O’Donnell’s CMU Lecture series [ ], and his notes [ ]. The
order, and the depth in which topics have been covered, though, is our own prerogative.

§1. Boolean Function Analysis: Introduction and Preliminaries

Theorem 1.1 (Fourier Analysis on the Boolean hypercube). Let n be a natural number. Consider any function
f:{~1,1}" = R. Then there exists a unique function f : 2"l —+ R such that

f@) =" f(Sas

SCn]

for every « = (z1,...,2,) € {—1,1}".
The function f is also known as the Fourier transform of f.

Proof. We prove this statement by induction on n. For n = 1, note that any function f : {—1,1} — R can be written

as f(z) = (f (l)gf(*l)) + (f(l)}j'(*l)) -z, and further note that this representation is the unique representation of

~ ~

the form f(@) + f({1}) - =.
Thus the base case of our induction hypothesis is verified. Now, suppose the statement is true for somen = k—1,k >
2. Then note that any function f : {—1,1}* — R can be written as

(f(l,xg,...,xk)—|—f(—1,x2,...,m;€)> n <f(1,x2,...,a:k)—f(—l,x27...,a:k))
2 2 S

f(x17x27~-~7$k) =

) — f(17w27---,wk)+2f(—1,$27-~~,wk) and h( f(17l’27---,mk)—zf(—l%m---,ﬂfk)

But g(za, ..., 2% Toy...,Tg) = are functions on the
(k — 1)-dimensional Boolean hypercube and thus by the induction hypothesis possess a unique Fourier transform.
Then combining the Fourier transforms for those two functions yields a Fourier transform for f.

We shall shortly see why this expansion is unique. n

Definition 1.1 (Multilinear Polynomials). A multivariate polynomial is called multilinear if it is linear (affine) in
each of its variables. For example, 3z — 4zy + 52 — 2 is a multilinear polynomial in z, y, z, but 2 + 4zy is not.

Corollary 1.2. Any function on the Boolean hypercube is equivalent to a multilinear polynomial of degree at most
n.
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Proposition 1. Every polynomial of degree d over the Boolean hypercube is equivalent to a multilinear polynomial
of degree at most d. Furthermore, because of the uniqueness of the Fourier transform, this multilinear polynomial
is also the Fourier transform of our polynomial.

Proof. Note that over the Boolean hypercube, every polynomial is equivalent to a multilinear polynomial of lower
degree: One can see this even without invoking the Fourier expansion of the polynomial. Indeed, note that if =; €
{~1,1}, then 2? = 1. Consequently, every term [[)"_, 2 in the polynomial can be replaced by the multilinear term

[T, z¥ ™°42 and thus we get an equivalent multilinear polynomial with a degree at most the original polynomial,

as desired. [ ]

Corollary 1.3. Multilinear polynomials are their own Fourier decompositions.

The material covered upto here can also be found, verbatim, in my notes on the SoS hierarchy.
We now define the character functions.

Definition 1.2. For every S C [n], we define xs := g, i.e. xs:{—1,1}" — {—1,1} C Ris a function.

Remark. When we represent the boolean cube as F3, then the character function s : Fy — {—1,1} is:
XS(x) = (_I)EiES Ti

Note that ys(z + y) = xs(z)xs(y).

Then note that every function on the Boolean hypercube can be written as f = > SCn) f(S)xs,ie {xs}scm) span

~

R{=11}" . Now, we shall quickly define the notion of a dot product in our vector space R{=1:1}":

Definition 1.3 (Dot Product). Given f, g € R{=11}", we define (f, g) := 27" Z:L’E{fl,l}" f(@)g(x) = Eqqg_1,13» [f9l,
where z is sampled uniformly from {—1,1}".

This dot product is just the rescaled version of the usual dot product on R-vector spaces. In the case that f, g are
themselves Boolean-valued functions, the dot product measures “similarity” between them, i.e. if f,g: {—1,1}" —
{—1,1} are two functions, then

E. [fg] = Pr(f(x) = g(x)) — Pr(f(z) # g(x)) = 1 — 2Pr(f(z) # g(x)) = 1 — 2dist(, )

where dist(f, g) is the fractional Hamming distance between f and g.
We now lay the basis (no pun intended) for Boolean function analysis.

Theorem 1.4. {Xxs}sc[n form an orthonormal basis of R{=11}" under the aforementioned dot product, i.e.

Xs, XT) = Ls—7. In particular, the Fourier expansion of a function f € R{-51}" is unique, since the Fourier expan-
p p a q P
sion of f is the expression of f in terms of a basis of R,
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Proof. Note that (xs, x7) = E; [2s - z7] = Ey [tser]. If S # T, then xggr is not identically equal to 1 and thus will
vanish when we take expectations. ]

Corollary 1.5. For any f € R{=11", we have f(S) = (f, xs)-

Corollary 1.6 (Plancherel’s theorem). For any f,g € RI=11" we have (f, g) = >_sCn] F(9)3(S).

Corollary 1.7 (Parseval’s Theorem). For any f € R{=11" we have ||f|3 := (f, f) = > sCln] F(S)2. In particular, if
f:{=1,1}" = {~1,1} is a Boolean valued function, then 35, F(8)2=1.

Remark. For any p > 1, we can similarly define || f||, := E [|f|"] P and |||, is a norm on R{=11}". Recall from
analysis, thatif a > b > 1, then || f||, > ||f|l» with equality holding iff f is a constant function. Also recall Holder’s
inequality, which says that [| f|l, - lg]lq = [ fgll for any p,q > 1 such that S + 2 = 1.

Definition 1.4. For any f € R{=11}", we define the weight of f at S to be f(S)2. Given any 0 < k < n, we also define
WE(f] == Z|s\:k F(8)?, WSF[f] := Z\s\gk F(8)?, W>k[f] := Z|S\>k f(8)2.

Remark. As our intuition about Boolean functions develops further, we shall see that “complicated” Boolean func-
tions have a non-negligible fraction of their total weight in their high-frequency components. Conversely, functions
for which WSk /I S™ ratio is close to 1 for some “small” k, are easy to deal with, and more easily understood and
characterized.

o~

Proposition 2. For any f € RI=0L1U" E[f] = f(2).
Proof. Note thatE [f] = E[f - xz], since x is identically equal to 1. The proposition follows. |
Proposition 3. Forany f € RUM", Var(f) = E [1*] = EIf]* = Ysciu 40 [(S)? = WIS

Proof. Note that E [f*] = | f|13, and thus, by Corollary 1.7, E [f?] = Y gcp F(S)2 We are then done by Proposi-
tion 2. N [ |

We end by proving a short identity about the variance of a Boolean function.

Lemma 1.8. Let f : {—1,1}"™ — {—1,1} be a Boolean-valued function. Then Var(f) = 4Pr(f(x) = 1) - Pr(f(z) # 1).
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Proof. Write a = Pr(f(z) = 1). Note thatE [f] = a—(1—a) = 2a—1. Thus Var(f) = E [f?] ~E[f]’ = 1-(2a—1)%? =
4a(1 — «), as desired. [ |

We now recast the basic notions of probability in our language. This will be useful later on, when we have to deal
with the Fourier transforms of the convolutions of PDFs.

Definition 1.5 (Probability Density Functions). A function ¢ : F3 — Ry is a PDF if E,up [p(z)] = 1, ie.
2—n Zmemg p(x) = 1. Equivalently, the probability mass function corresponding to ¢ is: Pr(z) = 27 "¢(z).

Evidently, the uniform distribution is ¢ = 1. The dirac delta concentrated on (0, ...,0) € F3 is ¢y (7) = 2" 1 y—gn.
We now prove that sampling and taking inner products are the same operations.

Proposition 4. Let p be a PDF. Then E,,, [f(y)] = (¢, f), where f : F} — R is any Boolean function.

Proof. Note that E,, [f(y)] =27" Eyeﬂ?g o) f(y) = (p, f)- u

The reason why probability densities arise in the study of Boolean Function Analysis is that Fourier coefficients mul-
tiply under the convolution of PDFs.

Before that, let’s recall what convolutions were: Let ¢, be probability distributions. Sample y ~ ¢,z ~ ¥ (inde-
pendently), and set z := y + z. Now, note that the PDF of z is given by E,,, [¥(z — y)]. But E,, [¢(z —y)] =
Ey~rp [0(y)¢(x — y)]. We thus define the convolution of ¢, 1) to be:

(p*9)(2) == Eynry [p(y)(z — )]

Standard probability theory tells us that * is commutative and associative. We can now state the connection between
convolutions and Fourier coefficients:

Theorem 1.9. Let f, g be PDFs. Then m(S) = f£(9)g(S).

Proof. Note that

—

Fxg(S) = (f*g,xs) =Eanr [(f *9)(@)  x5(2)] = Eguryp [Engr [f(W)g(z —y)] 'XS(m)}

= E%zl%jﬂ?g [f(y)g(z)xs(y + Z)]

Note that xs(y + z) = xs(y)xs(z). Thus

— ~

Frg(8) =E  ae, [fW)xsW)9(2)x5(2)] = Eynry [/ (0)xs(W)] Eanry [9(2)x5(2)] = F()5(S)

as desired. m

1.1. Linearity Testing
Note that if a function f : F} +— Fs is linear, then:
1. flx+y) = f(z)+ f(y) for all z, y.
2. f(z) =1, a;z; where a; € Fy = {0,1} foralli € [n], i.e. f = xs, where S := {i:a; = 1}.
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Thus, we say that a function f : F§ +— Fy is approximately linear if dist(f, xs) = € for some S C [n], i.e. f is close to a
character.

The notion of approximate linearity lends itself well to the setting of property testing, which we describe below:
Suppose we have a function f : F§ — F9, and suppose we have oracle access to f,i.e. we can query the value of f(z),
given some z € F3. Using as few oracle queries as possible, we want to determine if f is approximately linear.

The very famous Blum-Luby-Rubinfeld (BLR) test | ] provides a rather surprising resolution to this question.

Theorem 1.10 (BLR Linearity Test). Given f : F3 — Fy, choose z, y from % in an i.i.d manner. Declare f to be linear

if f(z+y) = f(z)+ f(v)

If the above test declares f to be linear with probability 1 — ¢, then f is e-close to some xg.

Remark. We repeat the above test M/ times to obtain an estimator for ¢.

Proof. View f as a map from F3 to {—1,1}, and thus the BLR test is £ (x)f (y)==f (x+y), or equivalently, we accept
iff 1 + 2 f(z)f(y)f(z +y) = 1, and reject if the expression is 0. Thus,

1 = Pr(BLR accepts f) = B |5+ 5 0o+ )| = 5+ 5By [F0f 0o+ )]

=SB @) P D@ =5+ 5 lffe N =45 3 FSTFS) =5 +5 3 F(S)
SCln] SC[n]
Thus,
>RSP =1-2¢
SCn)
However,

1-2= Y f(S)P*< (g&ﬁf@) Y f(s)?

SCln] SCln]

Since f is a Boolean-valued function, by Parseval’s theorem, 3 g, 7(5)? =1, and thus max SC[n] f(S) = 1—2¢,and

thus there exists some S* C [n] such that f(S*) > 1—2¢. Butthatimplies f(S*) = (f, xs+) = 1—-2dist(f, xs+) > 1—2¢,
and we're done. u

Note that even though we can determine if f is close to some linear function in O(1) queries, actually determining
the linear function will take us > n queries.

This naturally leads us to the next question: Suppose f is e-close to some x g-, but we don’t know what S*. Can we
nevertheless evaluate the output of xg« on some given input z? Note that directly querying f may not work, as z
may be one of those inputs where f gives the wrong output.

Thus, consider the following algorithm:

For this algorithm, we are assured that there is some S* C [n] such that dist(f, xg-) < e. Note that this algorithm

Algorithm 1: Local-Correct

Data: f € {—1,1}% 2 c F}

Result: xg-(x), correct with probability > 1 — 2¢
1 Pick y uniformly from F%;
2 return f(z)f(z + y)

returns the correct value of xgs-(z) (with high probability) for every z, while if we directly queried f(z), then for
some x, we would be wrong with probability 1. Thus, while averaged over F3, the success probability of Algorithm 1
and f(x) is the same, Algorithm 1 gives us a pointwise guarantee which direct querying doesn't.
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Proof of correctness of Algorithm 1. Since y,x + y are uniformly distributed (though not independent), except with
probability < 2¢, f(y) = xs- (), f(x +y) = xs-(z +y), and thus f(y) f(z +y) = xs- (Y)xs- (z +y) = xs+ (¢ +2y) =
Xs+(x), as desired. .
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§2. Social Choice Theory

Observe thata function f : {—1,1}" — {—1, 1} can be seen as a voting scheme of an election between two candidates,
1 and —1. For every possible voting instance in {—1,1}", f selects an output for that instance.
To quickly see some voting rules, we have:

1. Majority (Maj,,): Assume n is odd. Then Maj,, simply selects the majority vote. In other words, for any
U {_15 1}n’ Ma.]n(x) = Sign(ml +oF xn)

2. Weighted Majority: The weighted majority rule, also known as the linear thresholding rule, is defined as
sign(ag + a1x1 + - - - + apx,), where ag, ..., a, € R.

3. Dictator: Boolean functions of the form x;; =: x; are called dictators since their entire output depends upon
a single bit ;.

4. k-juntas: Boolean functions whose output depends upon < k input bits. For example, the number of 1-juntas
is 2n + 2 (2 constant functions, n dictators, and n anti-dictators (of the form —y;)).

5. OR,, : {—1,1}" — {—1,1}: The OR function is —1 if and only if the inputis (-1,...,—1).
6. AND,, : {—1,1}" — {—1,1}: The AND function is 1 if and only if the inputis (1,...,1).
7. Tribes: We define Tribes,, s : {—1,1}** — {—1,1} as follows:
Tribesy s(T1,1, - s 1wy Ts,15- -, Tsw) = OR(AND(x1,1,...,&Z1,0),. .., AND(Ts1,...,Tsw))
Note that E [Tribes,, ;] =1 —2(1 — 27%)*. Thus, if s ~ 2* In 2, then E [Tribes,, ;] ~ 0.

We say that a voting rule is unbiased if E[f] = 0 (this is assuming that the co-domain of f is {—1,1}): Maj,, and x;
are unbiased. Tribes,, s, where s ~ 2% In 2, is also approximately unbiased.
A function f : {—1,1}" — {—1,1} is called unanimous if f(b,...,b) = b for b € {—1,1}. Unanimity is an obvious

requirement for any voting rule. A function f : {—1,1}" — {—1,1} is called odd if f(—z) = —f(z) for all z €
{-1,1}".

We call a function f : {—1,1}" — R monotone if f(x},z},...,2)) > f(x1,22,...,2,) whenever 2} > z,25 >
Za,..., T, = T,. Monotonicity is also a very natural requirement for a voting rule.

A function f : {—1,1}" — {—1, 1} is called symmetricif f(o(z)) = f(z) for every permutationo € S,z € {—1,1}".
Mayj,, is symmetric.

A function f : {—1,1}" — {—1,1} is called transitive if for any ¢,j € [n], there exists a permutation 7 € S,, such
that 7(i) = j, and f(n(z)) = f(z) for every € {—1,1}". Symmetric functions are obviously transitive. Tribes is
transitive but not symmetric.

Maj is the most common voting rule. In fact, it is the only voting rule satisfying a few obvious requirements:

Theorem 2.1 (May’s Theorem). Let f : {—1,1}" — {—1, 1} be a monotone, unanimous, odd and symmetric boolean
function. Then f = Maj,,.

Proof. Since f is symmetric, the output of f only depends on the number of —1s among its n input bits. Thus there

exists a function g : {0,1,...,n} — {—1,1} such that f(z) = g(wt(z)), where wt(x) is the number of —1s among its
n input bits. Since f is monotone, g is a non-increasing function. Since f is unanimous, ¢g(0) = 1,g(n) = —1. Itis
now easy to see that since g is odd, g corresponds to the majority function, as desired. n

We also define the very important notion of influence:

Definition 2.1 (Influence). For any ¢ € [n], and any Boolean function on F%, we define the influence of i on f,
denoted Inf;(f), to be Prygy (f(2) # f(x @ i)), where z &1 is just 2, with the i*" bit flipped. Interpreted differently,
the influence of a bit 7 is the probability that it flips the result with its vote.
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Example. We shall work out some examples of influence:

1. Inf;(AND,,): Note that the only time the i*" bit has the power to flip the result is if all the other bits have the
same value. Thus Inf;(AND,,) = 2= (=1,

2. Ttis easy to see that Inf;(x;) = 1;=;, and Inf;(x},)) = 1.
3. Note that

Indeed, the i*" bit flips the vote if and only if the other votes are evenly split between 1 and —1.

4. The tribes function: Since Tribes is transitive, the influence of all variables on the tribe function is the same.
Calculating the influence yields

202w — 1 s—1
Inf;(Tribes,, s) = ¥
’ 2/11)5
Putting n = ws, s ~ 2% In 2 (to make Tribes,, s approximately unbiased), and simplifying yields Inf; (Tribes,, s) =

o(lun).

The influence of the Tribes function is essentially as low as it gets, thanks to the famous Kahn-Kalai-Linial theorem:

Theorem 2.2 (Kahn-Kalai-Linial Theorem ([ ])). For every f : {—1,1}" — {—1,1}, there exists an i € [n],

such that
Inn

tufy(£) > (1) - Var()

Remark. The Var(f) factor is just a ‘normalizing factor’. Note that if f is unbiased, i.e. E[f] = 0, then Var(f) =1
(since f is Boolean valued).

An even stronger version of the KKL theorem holds, thanks to Talagrand:

Theorem 2.3 (Talagrand’s Theorem ([ ]1)). Forevery f:{—-1,1}" — {—1,1},

5> ) > oqvar(f)
= I (wd)

Remark. Talagrand’s theorem shows that the total amount of influence can’t be too small, i.e. if the maximum influ-
ence of any variable is small, then lots of variables must have that influence.

The notion of influence is so important that it deserves a definition even in the case the co-domain of our Boolean
function is R.

Definition 2.2 (Derivative operator). Let f : {—1,1}" — R be a function, and let i € [n] be some bit. Then the
derivative w.r.t i, D;(f) : {—1,1}" — R, is defined as

where 277 := (1‘1, e, Ti_1, b, Tig1y.-- 71‘.”), forb e {—1, 1}
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Note that when the co-domain of f is {—1,1}, the range of D;(f) is a subset of {—1,0, 1}. Furthermore, (D;(f)) (z) #
0 only when the i*® bit is pivotal for x, i.e. flipping the i*" bit changes the output of the function. Thus, an indicator
variable for whether the i*" bit is pivotal at z is given by (D;(f)) (z)>.

Now, when the co-domain of f is R, (D;(f)) (z)? is not an indicator variable in general, but it continues to indicate
the extent to which i is pivotal, i.e. if i is not pivotal, then (D;(f)) (z) = 0, while if i is pivotal, then (D;(f)) (z)?
measures the “magnitude of the flip”. Thus, we define,

Definition 2.3 (Influence for general Boolean functions). Let f : {—1,1}" — Rbe a function. We define the influence
of the i*" bit as

Wfi(f) = Eq [(Di(f)) (@)

Remark. Note that
If,(f) = Ex | (Di(9) (@)?] = (DilF): D) = |1 D:F)

If f is monotone, then D;(f) > 0, which conforms to our intuition of derivative from real analysis. Also note that all
of the voting rules we have seen so far ((weighted) Majority, AND, OR, Tribes), are monotone.
We prove another very useful property of derivatives.

~ o~

Proposition 5. Let f = ngn] f(S)xs be the Fourier decomposition of f. Then D;(f) = >_,cq f(5)xs\i}-

Proof. Since D; is a linear operator, we're done by observing that D;(xs) = Lics - Xs\{i}- [ |

~

Corollary 2.4. Let f: {—1,1}" — R be a function. Then Inf;(f) = >, 5 f(5)>.

For monotone Boolean-valued functions, we have a remarkable characterization of influence.

o~ ~

Lemma 2.5. Let f : {—1,1}" — {—1, 1} be a monotone function. Then Inf,;(f) = f({i}) = f(7).

Proof. Since f is a monotone Boolean valued function, D;(f) > 0, and thus the range of D;(f) is a subset of {0,1}.
Consequently, D;(f)? = D;(f), and thus E [D;(f)?] = E [Di(f)] = Di(f)(@) = f(i), as desired. [ |

Under some symmetry assumptions, we can prove even more.

Lemma 2.6. Let f: {—1,1}" — {—1,1} be a monotone and transitive function. Then Inf;(f) < ﬁ for every i € [n].

~ ~

Proof. Since f is transitive, f(i) = f(j) for all4,j € [n]. ' Now, applying Parseval’s theorem yields:

L= > J(87 2 3 f@) =nf(1)?

SCin] i=1

as desired. [ |

ndeed, f(z) = {f,xi) = Ez[f(@)z;] = Ez[f(0(x))zs(4)] for any permutation o. Now suppose o flips 7, j, and keeps everything else fixed.

Since f is transitive, f(o(x)) = f(x). Thus E¢[f(z)z;] = Ez[f(x)x;] = f(j), as desired.
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We now define the total influence of a function.

Definition 2.4 (Total Influence). Let f : {—1,1}" — R be a function. We define the total influence of f to be:

I[f] := Z Inf,(f)

Remark. Some remarks are as follows:

1. Note that I[x(,)] = n, [[xz] = [[1] = 0. It’s easy to see that these are extremal among Boolean-valued functions,
ie if f:{-1,1}" — {—1,1} is some function, then 0 < I[f] < n.

2. 1f f : {—1,1}" — {—1,1} is a monotone function, then I[f] = 3", F(i).

3. I[Maj,| = ©(vn).
4. Let f: {—1,1}" — Rbe any function. Note that

1] =S () “EVHSSTfs)r = S 18] f(s)?
i=1 i=14i€S S5C[n)

o Proposition 3

Furthermore, I[f] = > g, [5] - ]?(S)2 =D f(S) Var(f). We have thus proven what is known

as Poincaré’s inequality, and we state our conclusions below.

Theorem 2.7 (Fourier Characterization of Total Influence). For any function f : {—1,1}" — R,

/=Y IS F($)2 =D k- W*f]
SCl[n) k=0

~

Theorem 2.8 (Poincaré’s Inequality). For any function f : {—1,1}" — R, I[f] > Var(f). Equality holds iff f(S) =0

~ ~

forall |S| > 2,ie. f= f(@)+ > f(i)z; ie f— f(2)is linear.

Remark. Recall from Lemma 1.8 thatif f : {—1,1}" — {—1,1}is a function, then Var(f) = 4Pr(f(z) = 1) -Pr(f(x) #
1). Now, WLOG assume E [f] > 0, and write S := f~1(1).

Note that f can be viewed as a 2-coloring of the Boolean hypercube, with vertices in S being “colored” 1, and the
other vertices being colored —1. Also, we call an edge (of the Boolean hypercube) “i-directed” if the endpoints of
that edge differ in their i*" coordinate. Then observe that Inf;(f) = Pr(f(z) # f(z @ i)) is the fraction of i-directed
edges whose endpoints have different colors. Along similar lines, LI[f] = 1 3" | Inf;(f) is the fraction of edges
whose endpoints have different colors. In other words, L1[f] is a (normalized) measure of the surface area of S
since the edges with differently colored endpoints are precisely the edges emanating from S.

Thus an inequality between I[ f], which measures the surface area of S, and Var(f), which is linked to |S| = vol(5),
is an isoperimetric inequality associated to the Boolean function f. This is why Poincaré’s inequality is sometimes

also referred to as an isoperimetric inequality. We shall explore this connection in greater detail later.

We finish our discussion with a nice social-scientific perspective on total influence.
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Lemma 2.9. Let f : {—1,1}" — {—1,1} be a function. Then

E, [Number of voters who agreed with the outcome| = % e % Z A(z)

Proof. Note that

Remark. In social choice theory, one of the objectives while designing a voting mechanism is to ensure that as many
people agree with the outcome as possible, in expectation. Thus, achieving this goal is equivalent to maximizing

o~ o~

>i_, f(i). Furthermore, if f is monotone (as most voting schemes are), then maximizing >, f(¢) is equivalent to
maximizing I[f].

~

We shall now prove that among all Boolean valued functions, Y., f(i) is maximized by Maj,,. Thus, according to
the social objective desired above, Maj,, is the “optimal” voting mechanism.

Theorem 2.10. Amongall f: {—1,1}" — {-1,1}, > | (i) is maximized by Mayj,,.

Proof. Note that

n

i=1

Clearly this expression is maximized when f(z) = sign(z; + - - - + x,) = Maj,,(x), as desired. |

Corollary 2.11. For all monotone f : {—1,1}" — {—1,1}, I[f] < I]Maj,] = ©(v/n).
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§3. Noise Stability and Arrow’'s Theorem

We will investigate how stable a Boolean function is to perturbations in its input. To do that, we first define a model
of perturbation.

Definition 3.1 (p-perturbation). Let z € {—1,1}", and let p € [—1, 1] be a parameter. Construct a random string
y € {—1,1}", as follows:
_Jx;  with probability 157”
vi= —z; with probability +52

We write y ~ N,(x) to denote that y was generated through the above process.

Remark. Some remarks are as follows:
1. y should be viewed as a “noisy” version of z.
2. If p =1 (resp. —1), then y is always equal to x (resp. —z). If p = 0, y is a uniformly random string in {—1, 1}".

3. We call (z,y) a p-correlated random pair if z is uniformly random in {—1,1}", and y ~ N,(z). If (z,y) isa
p-correlated random pair, then E [z;] = E [y;] = 0, but E [z;;] = p.

4. Let x be arbitrary (z is not random), and let y ~ N,(z). Then y; and y; are independent, for every i # j.

We can now define the main notion of interest, namely noise stability:

Definition 3.2. For f € RI=11" p € [—1,1], the noise stability of f, denoted Stab,|[f], is defined as:

Stabp [f] = ]E(:c,y) p-correlated random pair [f(x)f(y)]

Remark. Note that Stabp [XS] = IE(z,y) p-correlated random pair [XS (x)XS (y)] = IE(z,y) p-correlated random pair [HiGS -Tiyi:| =
[LiesElzivi] = p!%1, ie. Stab,[xs] = pl¥l.
Note that for any f : {—1,1}" — {—1, 1}, and any distribution D on {—1,1}" x {—1,1}", we have

E(zy)~p [f(2) f(y)] = Pr(f(z) = f(y)) = Pr(f(z) # f(y)) = 1 = 2Pr(f(z) # f(y))

We thus define the noise sensitivity of f as follows:

Definition 3.3. For f : {—1,1}" — {—1,1}, and a parameter ¢ € (0, 1], we define the noise sensitivity of f to be:

NSs[f] := f(@) # f(y))

r
(z,y) (1—26)-correlated random pair

In other words, if every bit of « is flipped with probability ¢, then noise sensitivity measures the probability that the
output changes.

Remark. Note that NS;[f] = 3 (1 — Stab;_25[f]).
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We can prove, using the Central Limit Theorem, that,

n—oo

n (o] 2 . .
Stab,[Maj,] =3 = arcsin(p) = NS;[Maj,] =3 =v§ + 0(5°/?)
7r

3w

We now make the process of adding noise an “operator”.

Definition 3.4 (Noise Operator). Given a parameter p € [—1, 1], we have an operator 7}, : R{=11}" s RI=11}" such

that
(T,(f)) (@) := Eyn, @) [f ()]

~

Proposition 6. For any f € R{-L1}" where f = Zsc (8)xs.

f
=g

Proof. Note that T}, is linear, so it suffices to show that T,,(xs) = p18lxs. Now,

Ty(xs) = Eyn, () [Xs@)] = Eyan, @) H yi| = HE [ys] = p!*!
ies ies

Remark. A few remarks are in order:

1. Note that 7}, is a “smoothening” operator: It replaces f(x) by some weighted average of f(y), where the y's
“closer” to x are given more weightage.

2. Another way to look at the smoothening effect of T}, is to notice that the “high-frequency” components, namely
f(S)zs, where | S| is large, are dampened more.

3. Note that 7, is a self-adjoint operator (i.e. the matrix representing 7, in the { x5} sc[,,] basis is symmetric), i.e.

(Tof,9) = (f,T,g) for any f, g.

4. By Parseval’s theorem, it is easy to see that ||7), f||2 < || f||2. T}, is thus a contractive map. Later on, we will prove
a vast generalization of this fact, namely |7}, f||; < || f||, forall p € [O 1} ,i.e. provided p is small enough,

not only is 7}, is contractive in the ||-||, norm, but it is also contractive in the I]l norm (recall that || f||o = || fll»
if a > b for any f € RI=11") je. it is “hyper”-contractive.

We shall now establish a connection between noise stability and the noise operator.
Lemma 3.1. For any f € RI=L1" Stab,[f] = (f, T,(f))-

Proof. Note that
Stabp [f] = ]E(ac,y) p-correlated random pair [f(x)f(y)] = IEacw{—Ll}n f('r) ']EyNNp(w) [f(y)]}

= B, [f(2) - (T,)(@)] = (£.T,()))
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Corollary 3.2. Forany f € RI=:1", Stab,[f] = Y gcp,, PISIF(9)2 = S0, pF WIS,

Proof. Follows by applying Corollary 1.6 on Lemma 3.1. |

We would now like to characterize the most stable functions in terms of noise stability.

Theorem 3.3. Let f : {—1,1}" — {—1,1} be an unbiased Boolean function, i.e. E[f] = 0. Then Stab,[f] <
Stab,[xi| = p forany p € [0,1],i € [n], i.e. dictators have the maximum noise stability among all unbiased Boolean-valued
functions.

Proof. Note that
Stab,[f] = > p"W*(/]
k=0

Since E [f] = f(@) = 0, Y7_, pP"WF[f] = S27_, p¥W*[f], and furthermore,

Y AWHA<p YWHS =0
k=1 k=1
—_———
=1 by Corollary 1.7

Since Stab,[x;| = p for any i € [n], we're done. |

Remark. Note that the noise stability of anti-dictators, i.e. —x;, is also p. Thus a more inclusive phrasing of the above
theorem would say 1-juntas instead of dictators.

3.1. Arrow’s Theorem

We shall now present Kalai’s proof [ ] of Arrow’s theorem, one of the crown jewels of modern social choice
theory, using Boolean Function Analysis.

We first lay down some basic definitions: Suppose we have candidates a, b, ¢ standing in an election, and suppose n
voters give their (strict) preference orders over a, b, c.

The Condorcet winner of this election, is decided as follows: Fix some voting scheme f : {—1,1}" — {—1,1}. Fix a
pair, say {a, c}, and decide a winner among «, ¢ by restricting all preference orders to {a, c}, and then applying f.
Suppose the winner is a, so we say ¢ < a. Do the same for the pairs {a, b}, and {b, c}.

To give an example, suppose we have 3 candidates, a, b, ¢, and n = 5 voters, with preference orders ¢ < ¢ < b,b <
¢=<a,b=<a=<cc=a=bc=<b= a. Further, let our voting rule f simply be Majs. Then, restricted to the pair {a, c},
we have the preferences a < ¢,c¢ < a,a < ¢, ¢ < a, ¢ < a. Thus, if we denote a < ¢by —1, and ¢ < a by 1, we have the
input (—1,1,—1,1,1), and Maj;(—1,1,—1,1,1) = 1 = ¢ < a, i.e. a defeats c in a pairwise election. Similarly, we note
that a defeats b and b defeats c in pairwise elections too, and thus we have the order ¢ < b < q, i.e. the Condorcet
winner of this particular instance of preference orders is a.

However, if we get a cycle in our order, then we are doomed, since a Condorcet winner can’t be consistently defined.
Indeed, for the candidates a, , ¢, the preference ordersa < b < ¢,b < ¢ < a,c¢ < a < b, and the voting rule f = Majs,
pairwise elections between {a, b} yields a < b, pairwise elections between {b, c} yields b < ¢, and pairwise elections
between {c, a} yields ¢ < a. Clearly the pairwise results a < b,b < ¢, ¢ < a can’t be consistently extended to a total
order, and thus we can’t define a Condorcet winner for this particular instance of preference orders.

If a particular preference list induces a cyclic Condorcet order, we call that preference list irrational. Naturally, we
want voting rules f which don’t have any irrational preference list, and thus a Condorcet winner can always be
found. Arrow’s theorem says that the only such functions are the dictators.
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Theorem 3.4 (Arrow’s theorem ([ ). Letf: {—1,1}" — {—1, 1} be a unanimous function which doesn’t have
any irrational preference list. Then f must be a dictator.

Proof. Suppose we have n voters, and each voter picks one of the 6 preference lists on «, b, ¢, uniformly (and inde-
pendently of others). Let z,y,z € {—1,1}" be 3 strings such that z; = 1 if and only if the i‘"* voter prefers a over b,
and similarly, y; = 1 if and only if the i*" voter prefers b over ¢, and z; = 1 if and only if the i*" voter prefers c over a.
This preference list is irrational if and only if f(z) = f(y) = f(z). Now, define the “Not-All-Equals” function
NAE: {-1,1}3 ~ {0,1}, such that NAE(—1, -1, —1) = NAE(1,1,1) = 0, and NAE is 1 on all other inputs. It is easy
to verify that

NAE(wl,wg,wg) = % %wﬂug i’lUQ’LUg - Zw3w1
Thus,
. . 3 1 1 1 3 3
Pr(f is rational) = Eu.y.. | 1 = 7/(@)/(4) = TfWF() = 10 @)] = 2 = TEay [F@)f W)

Now, note that Pr(z; = 1) = Pr(y; = 1) = 3, since the preference orders were chosen (uniformly) randomly. Also,
note that #; = y; if and only if ¢ < b < aora < b < c. Thus Pr(z; = y;) = %, and thus (z;,7;) are (—1/3)-correlated.
? Consequently, E, ,, [f(z)f(y)] = Stab_y3[f], and thus

N _3 3 3 3 o _ L pn Loz
Pr(f is rational) = 1 4Stab 13lf] = 171 (1 WP[f] 3 W=Hf] + 9 W=[f] )
3 3 1
<2_2(_2 0 1 2 ) =1

-3 (-3) (v e )
where the last equality follows by Corollary 1.7.
Thus, note that Pr(f is rational) = 1 if and only if W'[f] = 1, and W°[f] = W?2[f] = W3[f] = --- = 0. Finally,
observe thatif f : {—1,1}" — {—1,1} is a function such that W![f] = 1, then f is either a dictator or an anti-dictator:
Indeed, W'|[f] = 1 implies that f = ZL 1 a;Xi- Now, note that a; = f(l’l’ = Hf( - ), and thus a; € {-1,0,1}
(and similarly, a; € {—1,0, 1} for every i € [n]). Furthermore if |a;| = 1 for some i€ [ |, then a; = 0 for every j # 1,
since > a7 = 1.
Finally, the unanimity condition forces that f can’t be an anti-dictator, and thus, f must be a dictator. [ |

Remark. Fourier analysis also yields a “robust” version of Arrow’s theorem, i.e. if Pr(f is rational) = 1 —¢, then f is
O(e)-close to a dictator/anti-dictator. This robust version was proved by Friedgut, Kalai and Naor in 2003.

Znote that x;,y; are negatively correlated since had they been independent, Pr(z; = y;) = 1/2,and 1/3 < 1/2
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§4. The Hypercontractivity Theorem

Recall that the T, operator is contractive. In this chapter, we will initiate our journey towards the so-called hypercon-
tractive theorem, which says that if p is small enough, then |7}, f||; < || f||, evenif ¢ > p, i.e. the contractivity of T}, is
so strong that even increasing the norm doesn’t kill off the contraction.

We begin with a simpler lemma, called Bonami’s lemma:

o~

Lemma 4.1 (Bonami’s Lemma). Let f : {—1,1}" — R be a degree-k function, i.e. f(S) = 0if |[S| > k. Then
E[fY] <9*E[f?]"

Proof. The statement is trivial for £ = 0. Thus assume k > 1. We will prove the statement by double induction on
n, k. Once again, the base case of n = 0 is trivial.
Now, note that

f=ua, -poly (x1,...,2n_1) + polyy(z1,...,Tp_1) =, -d+e
where d, e are polynomials in z1, . .., z,—1. Note that deg(d) < k — 1, since deg(f) > 1 + deg(d). Now,
fr=atd + 423 de + 622 d%e? + 4x,de + e
Since d, e don't involve z,, (and thus are independent of it), E [zi!d/2e/s| = E [24! ] - E [d’2e3] for any ji, j2,j3 > 0.
Furthermore, E [22/71] = 0, and E [#%/] = 1 for every j > 0, since z,, equals +1 with equal probability. Thus
E [f‘l] —E [d“] 4 6E [d%ﬂ +E M
Similarly,
2 2 2
E [fQ] —E [dQ] +E [62} — E [fQ] —E [dQ] +2F [dﬂ E [eﬂ +E [62]

Since e has only n — 1 variables, 9* E [62]2 > E [e']. Similarly, since d has only n — 1 variables, and deg(d) <
k—1,9"1E [d2}2 > E [d*]. Finally, by Cauchy-Schwartz, E [d*¢?] < /E[d*] - \/E[e!]. But /E[dY] - /E[e*] <
9% E [¢?] E [d?], and we thus have:

1

E [fﬂ2 > o E[d] + gikﬂ-z '] + Q%]E [2e?] > gik (]E @] +E[e!] +6E [d%QD

as desired. m
Remark. A few remarks are in order:

1. Note that (D, f)(z) = (f(z™*1) + f(z™~ 1)) /2 = d(x1,...,7,_1),i.e. d is the derivative of f w.r.t z,,. Further-
more, E, [f] = e(x1,...,2n-1) = f(x1,...,2p-1,0). Thus, f = f(x1,...,24-1,0) + (Dpf)(z1,...,24-1,0)
is basically the “Taylor expansion” of f about x,, = 0! Furthermore, since every function over {—1,1}" is a
multilinear polynomial, the said Taylor expansion doesn’t have any order 2 terms, since the double derivative
of any function f : {—1,1}" — R w.r.tany z; is 0.

2. Toillustrate the next point, consider a random variable X, such that Pr(X = 0) = 1-27" = 1-Pr(X = 1). Then
E[X?] =E[X*] =27, and thusE [X2]2 /E [X*] =27". Now, some reflection on why E [X2]2 /E [X*]isso
small reveals that the behavior of X is not really random: Indeed, it assumes the value 0 with overwhelming
probability and is thus “almost” deterministic. Thus, E [X2]* /E [X*] is a good proxy for how random the
variable is, or how close to uniform it is. Consequently, Bonami’s lemma, and by extension the Hypercon-

tractivity theorem, by providing a lower bound for E [ X?] 2 /E [X*], can also be viewed as anti-concentration
results.
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Corollary 4.2. Forany f : {—1,1}" — R with deg(f) <k, || fll2 < ||f]la < \/§k||f||2,where I fllp :=E [fp}l/p for any
p=1l

Corollary 4.3. Forany f: {-1,1}" — R, ||T L F=*lla < N1f=|l2, where f=F := 375 _ L F(S)xs

ko
Proof. Recall that T+ [T = = |5|=k ( ) f(S)xs, from which the result follows. |

o~

Remark. Note that ||T%f||§ = (T%f, T%f> = > _sCn = f(8)? = = Staby [f]. Thus, ||T%f||2 has a combinatorial
meaning too.

Although the inequality as stated works for only homogenous polynomials, we can obtain a “free” upgrade.

Theorem 4.4 ((2,4)-hypercontractivity theorem). Forany f: {-1,1}" — R, ||T%f|\4 < |1 £1l2-

Proof. We mimic the proof of Lemma 4.1. Wehave f =z,d+e = Tf =z, - %Td + Te, where T = T%. Thus
3

E {(Tf)“} = (\}3)41143 {(Td)ﬂ + (\%)2-6]143 [(Td)2(Te)2} +E [(Te)ﬂ <E {(Td)ﬂ +2E [(Td)Q(Te)z} +E [(Te)ﬂ

Cauchy—échwartz]E[(Td }+2\/E Td)* \/E Te) ]+E[T€ } <\/IE Td Jr\/E Te)? )

induction hypothesis 2 2
< (e[ +ue]) -5 (]

as desired. [ |

We can easily prove another hypercontractivity result from the above, using Holder’s inequality.

Theorem 4.5 ((4/3, 2)-hypercontractivity theorem). For any f : {—1,1}" — R, ||T f||2 1f]la

Proof. Observe that

9 Holder Theorem 4.4
1T fI3= T o ) S Il T T fls S I 1T Al

as desired. [ ]

Remark. Since ||T%f||§ = Staby /3] f], we have Staby /5[ f] < [ fII3/s-

To further emphasize the “anti-concentration” nature of Bonami’s lemma, we frame it in a corollary.
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Corollary 4.6. Let f : {—1,1}" — Rbe a non-constant function of degree < k. Write 1 := E[f], 0 := /Var(f). Then

o glfk
P —ul = =
e CORESA B

Proof. Write g := (f — p)/o. Then [|g||2 = 1, and thus by Lemma 4.1, E [¢*] < 9*. Then

o 1 1 o1,
Pr (If | = 2) Pr (Igl > 2) Pr (gl > 292) Pr (g > E [g D

We now invoke the Paley-Zygmund inequality, to get that

2
2o 1 2 EE[gﬂ 9'—k
Pr<g >4E[9D>16 Elgl] ~ 16

as desired. m

Remark. For a proof of the Paley-Zygmund inequality, note that Z = E [Z 1z ]E[Z]} +E [Z Ly ]E[Z]} <OE[Z]+
E(z. 1220&4, and now E [Z- 1229&2@ < VE[ZT - /E []12291@[2]} = Pr(Z > 0E[Z]) - VE[Z7] ie.

Z<OE[Z]+Pr(Z>0E[2) - VE[Z2] = (1-0)E[Z] < Pr(Z > 0E[Z)) - VE[27]

and we get that Pr(Z > 0E [Z]) > (1 - 0)°E [2]* /E [2?].

Even though Bonami’s lemma is a very special case of the Hypercontractivity theorem, it is already sufficient to
prove the Friedgut-Kalai-Naor theorem.

Theorem 4.7 (Friedgut-Kalai-Naor Theorem). Suppose we have f : {—1,1}" + {—1,1} such that W![f] :=
S, f(i)> =1 —46. Then f is O(d)-close to some +Y; for some i € [n].

Proof. Let £ = f=' =" | F(i)xi, and thus E [2] = W'[f] = 1 — 4. Towards our goal, we first show that Var(£?) <
64006 °. Indeed, by Corollary 4.6,

Pr (|€2 —(1-9)> ;\/Var(€2)> > 9 !

16 144

Now, assume for the sake of contradiction that Var(¢?) > 64005, and also assume WLOG that § < 1555. Then
Pr (W‘ —(1-8)|> 40\/3) < Pr (|1z2 1> 39\/3). Now, since |f| = 1 and § < 1/1600, |2 — 1| > 390v/5 —

(¢ — £)? > 1696, and thus E [(¢ — )?] > 182 > §, which is a contradiction since E [(¢ — f)?] =1 — W[f] = 4.
Now,

B[] =3 fay+6 > F@rfu)
i=1 1<i<j<n
E[ﬁzrzz:f(i)‘“r? > F@rFG)”
i=1 1<i<j<n

3note that if f = #+x;, then £2 = 1 and Var(£2) =0
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Thus

J Var(?) =2 702 F)? = (Z f@)?) STt = -0 -

1<i<j<n i=1 i=1 i=1

<

n

= (1-20)— z: Fi)* < 32000 = 1 — 32026 < ;f(z‘)‘* < <£r€1?;]< f(z')2> : if(z‘)2 < max f(i)? < max |f(i)|

as desired. [ |

Remark. We immediately have a “robust” version of Arrow’s theorem, i.e. if Pr(f isrational) = 1 — §, then f is
O(d)-close to a dictator.

We will now begin our journey towards the KKL theorem, once again by deriving some corollaries of Lemma 4.1 *.
Corollary 4.8. Let A C {—1,1}" have volume o, i.e. |[A| = a - 2. Then Stab; /3[14] < o®/2.

Proof. We know that Stab, /3[f] < ||fH§/3 forany f: {—1,1}" — R. Thus set f = 14, and observe that

3/4\ 2 3/2
ILallfs = (E {ﬂi/s} ) —E [Ili/?’} = E[14]%? = o3/

as desired. [ |

Exactly similar to the above proof, we have the proof of the following result:
Proposition 7. If g : {—1,1}" — {—1,0, 1} is a function such that & = Pr(|g| = 1), then Stab, /3[g] < a®/2.
We are now finally ready to prove the Kahn-Kalai-Linial theorem:

Theorem 4.9 (Kahn-Kalai-Linial Theorem (| 1)). Forany f: {-1,1}" — {-1,1},

logn

max Inf,[f] > Q (

1€[n]

)Vt

Proof. If f : {—1,1}" — {—1,1} is a function, and ¢ € [n], then ¢g := D, f has co-domain {—1,0, 1}. Now, using the
facts that Stab, /3[h] = ||T1/\/§h||§ = ng[n](1/3)‘s|h(5)2, and D;f = >, . f(S)xs\{i} (see Proposition 5), we get

that Staby j3[g] = Y2,c5(1/3)15171 ().
At the same time, by the definition of influence, Pr(|g| = 1) = Inf;[f]. Thus

IS|-1 _
> (;) F(8)? < Infi[f]*/2 (4.1)
€S

4Lemma 4.1 captures a significant section of the power of the Hypercontractivity theorem, it is thus unsurprising that it has so many powerful
consequences
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Summing up Eq. (4.1) for all i € [n], we get:

n 1 |S|—1 o n 3
> (3) f(8)? <3 nilf]
i=114€eS i=1

Now, set
M = r‘nffu](lnfi[f]
en

to obtain >_7 | Inf,;[£]3/2 < MY/2 3" Inf;[f] = MY/ - 1[f]. Now,
n 1\ IS 1\ IsI=1 1\ 8 .
SY(3) Fer=Xsi(3) Fer=sX(3) 752 =ssubial]
i=1i€S S£@ S£@

We now define the so-called “spectral sample” .#, which is a probability distribution supported on 2"\ {7}, where
each S is sampled with probability f(5)2/ Var(f). Then note that Yoo (3) 51 7(9)2 = Var(f) - E» {3*\5‘@ . Apply-

ing Jensen’s inequality (since z — 3~% is convex) yields E »~ {345 ‘] > 37Er [151]. But

_ (92 If 5
h
fhus 31-11f] 91-11f]

MY2. 001 = 3Var(f) -3~ 1] — /2> 2 — M >
(] ar(f) T TP

Now, if I[f] > 0.31log, n, then I[f] > 0.3 - Var(f)logn = M > 0.3 - Var(f)logn/n. Otherwise, note that 91~ /22 is
a decreasing function of z, and thus

g1—0.3log, n/n

Z T
0.091ogs n/n?

— Q(n0319829) — (=091} > Var(f) - Q <10gn)
n

as desired. |
Remark. Recall that the unbiased Tribes function has Var ~ 1, and maximum influence equal to ©(logn/n), thus
showing that the KKL inequality is sharp.

4.1. General Hypercontractivity

The general hypercontractivity theorem is as stated below:

Theorem 4.10 (General Hypercontractivity ((p, ¢)-hypercontractivity)). Let f € R{=11}" and assume 1 < p < ¢ <
oo. Then || T, f|lq < || f]lp forall 0 < p < ,/’q’%i.

We shall prove a weaker version of general hypercontractivity, namely (p,2)-hypercontractivity. The strategy for
proving the general hypercontractivity theorem is very similar to the strategy for proving (p, 2)-hypercontractivity.
We first show that (p, 2)-hypercontractivity immediately implies (2, ¢)-hypercontractivity:

Proposition 8. Let p € [1,2] and p € [0, 1] be such that ||T,f||2 < || f||, for all f € R{=%1". Then for ¢ such that
2+ 1=1,and forall f € R&=11", we have [T, f[lq < || f]l2-
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Proof. We use the following fact: For any v € R{=11}" we have
[vlly = sup (v, g)
lgllp=1

This fact simply follows from the sharpness of Holder’s inequality.
Since T, is self adjoint, we have that (7, f,g) = (f,T,g9). Thus, for any f, (T,,f,q9) = (f,T,9) < ||fll2 - |Tpgll2 <
1]l2 - lgll,, and thus [ 7, f]l, < ]2, as desired. m

We now state the (p, 2)-hypercontractivity theorem:

Theorem 4.11 ((p, 2)-hypercontractivity). For any p € [1,2],p € [0,v/p — 1], and f € RI=11" we have ||T,f|2 <
[[£1lp-

We first prove this theorem for n = 1, where it is an exercise in one variable calculus:
Lemma 4.12. Forany p € [1,2],p € [0,/p—1],and f : {—1,1} — R, we have ||T, f|l2 < || f||p-

Proof. It suffices to prove the above statement for f > 0: Indeed, if it is true for f > 0, then for any arbitrary g, we
have || Togll2 < [|T,]glll2 < lllglll, = llgll,, as desired.

Note that f(z) = a + bz for z € {—1,1} for some a,b € R. Since f > 0, wehave a +b > 0,a — b > 0, implying that
a > 0. If a = 0, the statement is obvious, so assume a > 0. Note that multiplying f by a scalar doesn’t affect the
inequality, so WLOG assume a = 1. Then f = 1+ bz, and f > 0 implies b € [—1, 1].

Thus f =1+ bz with b € [-1,1]. Then T, f = 1 + pbz, and consequently,

1T, 7187 = o (= b+ (14 b))

On the other hand, )
1
2 _ L (1 _ 12 2
1712 = 5 (=02 + (1 +0)?)
The inequality then follows by some routine calculus. ]

We now wish to extend this theorem to all » via induction. Now, it may seem natural to write the one function analog
of the above statement as the induction statement, but that fails to work: Intuitively speaking, even if we start with
a single function f, we end up with two different functions f and 7}, f the moment we apply the T}, operator.
Consequently, it is more natural to write a “two-function” analog of the induction statement. Before doing that, we
convert Lemma 4.12 to two functions:

Proposition 9. Write p = /rs, where r, s € [0, 1]. Then for any f,¢: {—1,1} — R, we have:

Eyn, () [f(x)g(y)] < fllitr - Nlgllits

Proof. Note that if y ~ N,(z), then E [zy] = p, while E [z] = E[y] = 0. Consequently, if f(z) = a1 + biz,g(y) =
as + boy, then
Ewap(w) [f(a?)g(y)] = IEy~Np(gg) [a1ag + asbix + a1bay + bibaxy] = aras + bibap = aras + (Vrb1) - (V/sb2)

Note that (Tﬁf)(x) =aj + \/Fblx, (T\/gg)(y) =as + \/gbgy, and thus <T\/;f, T\/gg> =aiaz + (\/Fbl) . (\/gbg)
Consequently,

Cauchy-Schwartz

Lemma 4.12
Eyon, @) [f(@)9W)] = (Tmf, T s59) < ITmfllz- 1T 59l < N flliser - llglliss n



Boolean Function Analysis 23 /37 Arpon Basu

We now extend the above theorem to n variables via a very simple induction.

Lemma 4.13 (Weak Two-Function Hypercontractivity Theorem). Write i = /rs, where 7, s € [0, 1]. Then for any
frg:{-1,1}" — R (where n > 1), we have:

Ewa‘L(z) [f(x)g(yﬂ < Hf||1+r . ||g||1+s

Remark. The above theorem is “weak” since the restriction 7, s < 1 can be removed.

Proof. Write z = (2, 2,,),y = (¥, yn). Note thatif y ~ N, (x), theny’ ~ N,(2’), and y,, ~ N, (z,). Also assume the
theorem is true for functions on n — 1 variables. Thus

IEy~N“(:c) [f(x)g<y)] = Ey,LNNM(ocn) [Ey’NNu(z’) [f(x)g(y)]}
Write f, () :== f(-,«), where o € {—1,1}. Then
EyanM(mn) |:]Ey’~N“,(.1:’) [f(x)g(y)]} = Eyanu(mn) |:Ey’~N“,(.r’) [fmn (x/)gyn (y/)]] < Eyanﬂ(mn) “|f:vn||1+7‘ ! Hgyn”l‘i’s}

where the inequality follows from the induction hypothesis. Now, let F' be the function given by x,, — || fz., |14+,
and define G analogously. Then

14s] = By, () [F@n)Gyn)] < IFllr - [Gllass

Eyn’\‘Np.(zn) [Hf:vn 147 - Hgyn

Now,
IFIRET = Ea, [[F(@a) 7]

But F(2,) = || fa, |1+, and thus [F(@a)[1*7 = Eur [|fa, (2)[177] = Eo [|f(2)|"+], and thus E,, [|F(z,)[1*7] =
Ev, [Bor [F@)]] = Ea [1F@)1] = 1AREE te IFIEE = I = 1Fler = 11, as desired. .

Proof of Theorem 4.11. Take f = g, and r = s = p? in Lemma 4.13. Indeed, note that

Eyon, o) [F@)F@)] = Y F(S)2u =175 f13
]

SCln
But = 75 = %, and thus [T,z 13 = T, 13 Meanwhile, |l - [ flhpe = 2, 0. Since p < vF=T, we
have 1+ p* < p, and thus || f[|7, > < || f]|;, as desired. [ |

4.2. Hypercontractivity for General Random Variables

The proof of hypercontractivity of general random variables isn’t very different from the proof of (p, 2)-hypercontractivity.
Consequently, we just state the theorems and leave them as it is:

Theorem 4.14 (General Hypercontractivity for Product spaces). Let Q4,...,Q, be finite sets, and let 7y, ..., m, be
probability distributions on €4, . . ., Q,, respectively. Let A be the minimum probability mass placed by any distribu-
tion, i.e.

A:=min min 7;(w)
i€[n] wesupp(m;)

-1

Fix ¢ > 2, and let p be the Holder conjugate of g, i.e. p~! + ¢~ = 1. Also suppose

o A\L/2-1/q
Y S e—
Vi1

Then we have
1Tpfllq < [1fll2s 1o fll2 < N fllp
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Remark. Note that we define
||f||£ =Epnm@-mn [ f(x)|p]
A version of hypercontractivity even holds for general random variables on discrete spaces:

Deﬁnition 41. Fix 1 < p < ¢ < o0, and 0 < p < 1. Let X be a real-valued random variable such that || X||, :=
E [|X|? ] < o0. We say X is (p, ¢, p)-hypercontractive if for all a,b € R, we have

la+ pbXllg < lla+bX|,

Theorem 4.15. Let X be a mean 0 discrete random variable, and let A < % be the least value of its probability mass
function. Write u = In /\’\ Fix ¢ > 2, and let p be the Holder conjugate of g. Then X is (2, ¢, p)-hypercontractive,
and (p, 2, p)-hypercontractive for

0<p< sinh(w/q)
=7\ sinh(u/p)

4.3. Applications of Hypercontractivity

We shall see some applications of hypercontractivity:

Lemma 4.16. Suppose f : {—1,1}" — R has degree < k, i.e. f(S) = 0 for all S such that |S| > k. Then:
1. For ¢ > 2, wehave [|flly < (¢ = 1)*/2||f]l2.
2. For p < 2, we have || f]l2 < (€27 — 1)*[| ]l

Remark. Note that if we didn’t have the low-degree information about f, then bounds upper bounding ¢,-norms
in terms of ¢-norms would have involved n, which is the number of variables. Thus, the power of this inequality
comes from the fact that it is independent of n.

Proof. Let g be the Holder conjugate of p,i.e. p~! + ¢~! = 1. Now,

1fllg =Ty yg=1Tyg=1/lq

Note that we have (p, 2)-hypercontractivity for p = -1= \/T We thus have (2, ¢)-hypercontractivity for

P= 7= Hﬂ/ﬁﬂﬁf\\q T /=1 fll2- But

IITme%: (Tya=if Tya=if) = Y (@a= DP9 = 3" (@ =) < (@ =) D F(9)* = (a = D)*IIfI3
SCIn] |SI<k |SI<k

Thus, || f]lq < (¢ = D)*/2[|f]|2-

Now, let 6 € (0, 1) be the solution to § = Q + ;Z,

1112 < 11252 - 171l < (2 +e)* =02 170 - 1 £11p

Assuming || f||2 # 0 (because otherwise the inequality is trivial), we have

115 < () D2 flly = [Ifl2 < (1+e)* = £,
Taking ¢ ™\, 0 yields the desired result. u

for some ¢ > 0. Then by generalized Holder’s inequality, we have
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Remark. In the setting of Theorem 4.14, we have a similar result stating that for ¢ > 2, we have || f|l, < (Vg—1-
A/2=1/a)k| f||,. Similarly, for p = 1 (for other p in [1, 2] similar results follow), we have || f||2 < ¢(\)*||f|1, where

1

c(N) = (1—)\A) e

Corollary 4.17 (Khintchine’s inequality). Suppose Xi,..., X, are mean 0 i.i.d +1-valued random variables. Also
suppose ai, . . ., a, € R are any real numbers. Then for any p € [1, c0), there exist constants 0 < ¢, < C), such that

1/2 A\ P 1/2

p Za? < |E Zaixi <Gy Za?
5 5 :

1/p
Proof. Define the function f(z) := > ;" a;x;. Note that <]E “21 aﬁQﬂ) = || f]lp, and (¥, a?)l/Q = || f|l2, for
any a € [1,00). Now, if p € [1,2], we may take C, = 1 and ¢, = (¢?/P — 1)1
For p > 2, we may take ¢, = 1and C}, = /p — L. |

We can have concentration for general polynomials too:

Theorem 4.18. Suppose f : {—1,1}" — R has degree < k, and also assume f is not identically 0. Then for any
t > (2¢)*/? we have:

P (@)1 > Hfl) < exp(=k*/(20))

Remark. A few remarks are due:

1. Note that for k = 1, this recovers the Chernoff bound (upto quantitative factors). Thus, the above theorem can

be seen as a generalization of Chernoff’s bound from sums to low-degree polynomials.
2. In the setting of Theorem 4.14, we have for any ¢ > (2¢/))*/2,

Pr(|f(2)] =t fll2) < A* exp(—kAt*/*/(2¢))

Proof. Note that

Markov [E [| ﬂq] Lemma 416 (g — ]_)]“Cq/2 qk9/2
- a > | £|2 :

Pr([f(x)] = tllfll2) = Pr(lf ()" = ] fll2) < aE S T < m

Taking ¢ = t?/* /e proves the desired theorem. |

We can also use hypercontractivity to obtain anti-concentration results (generalizing Corollary 4.6)!

Theorem 4.19. Suppose f : {—1,1}" — R is a non-constant function with degree < k. Then:

(e —1)~*

P (f(2) >EL) >

~{£1}"
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Proof. We can replace f by f — E[f] to assume WLOG that E[f] = 0. Now, write g(z) := f(z) - 1f(3)>0, and let
h=g—f.Theng,h > 0. Also,0 =E[f] =E[g] — E[h] = |lg|l1 — ||h]|1. At the same time, ||g||1 + ||2|l1 = || f]|1. Thus

lglli = 1. Thus

IL£11
1

2 Cauchy-Schwartz Lemma 4.16 )
—E[g* =E[f@) L] < E[f| E[us0] < (@-DASRPrf@ >0 W

Remark. In the setting of Theorem 4.14, we have Pr (f(z) > E[f]) > (15/A)7*.

We turn our attention to something called small-set expansion: Basically, if f is the indicator of a “small set”, i.e. if
f =14, where |A|/2" < 1, then most of the mass of f lies in high frequency components. Another consequence is
that the “noisy hypercube” is a small set expander.

Theorem 4.20 (Noisy Hypercube is a small-set expander). Suppose A C {—1,1}" has volume «- 2", i.e. E[14] = c.
Then for any p € [0, 1],

Stab,(14) = (xeAye A <a?+r

Pr
e~ {1} YN, (o)
Equivalently, for a # 0,

Pr c A< a1=p)/(1+p)
INA,yNNp(m)(y )

Proof. Note that

Pr  (wedyed)=(1aTla) = ITH0al3 < [1al2,, = a2+ .
{1} YN (2) ’ Y veralz s e

Remark. Why do we use the term “small-set expander”? Suppose o < 1, and also suppose p = 0, i.e. the hypercube
is very noisy. Then };—Z ~ 1, and thus Pry 4 yn,(2)(y € A) < a1=0)/(+0) ~ o < 1, i.e. with very high probability,
one step of the random walk escapes the set.

Theorem 4.21 (Generalized Small-Set Expansion Theorem). We have a generalized product space analog of
Lemma 4.13. Applying that to this setting yields the following result: Suppose A, B C {—1,1}" are such that their
normalized volumes are exp(—a?/2), exp(—b?/2) respectively. Suppose p € [0,1] is such that 0 < pa < b < a. Then

yNNp(w)

a? — 2pab + b?
P A B) < -
r (reAyeB) exp( )

Remark. The hypercontractivity theorem can be “reversed”. In particular, consider the same setting as the above
theorem, except that we don't have the restriction 0 < pa < b < @, i.e. p € [0, 1] is arbitrary. Then

Pr (xe/LyeB)}exp(—

a® + 2pab + b?
y"’Np(l‘)

2(1-p?)

Theorem 4.22 (Level k-Inequalities). Suppose we have f = 1 4 for some A C {—1,1}", and suppose E [f] = a. Also
suppose k < 2In(1/a). Then

2
—eln

weiln < (5 (1/a>)ka2
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Proof. We know that Stab,[f] = > gcp pIS17(S)? by Corollary 3.2. Thus W<F[f] < p~* Stab,[f] for p < 1. By

Theorem 4.20, we also know that Stab,(14) < o?/(+P). Thus W<F[f] < p~*a?/(1+0) for all p € [0,1]. Setting
p= W proves the desired claim. [ |
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§5. p-biased Analysis

We often come across scenarios where we have Bernoulli Random variables, with parameters that aren’t necessarily
1/2. For example, take the Erdgs-Rényi model G(n, p), or Bernoulli percolation on lattices in general.

We would thus like to develop a theory of Fourier analysis where all z € {—1, 1}" aren’t sampled uniformly; rather,
r is sampled with probability p*(1 — p)"~*, where k is the number of entries of = that are —1.

To that end, let 7, denote the distribution of the Bernoulli/Rademacher random variable, which assumes —1 with
probability p, and 1 with probability 1 — p, i.e.

Mg 2= Ea:,iNTrp [mz] =1-2p
o; =/ Var(z;) = 24/p(1 — p)

For simplicity, we will assume that all our variables z, ..., z, are ii.d sampled from 7, i.e. x is sampled from 75"

Now, define
o= (25)

We have ¢(1) = \/p/(1 — p),#(—1) = —/(1 — p)/p. Furthermore, E [¢] = 0, E [¢?] = 1. Now, forany S C [n], define
¢s(x) =[] o(=:)

i€S

Note that if p # 1/2, then ¢s - ¢r # dser in general. However, E, _ on [¢s(z) - ¢r(2)] = 0, sinceany i € (S\ T)U
(T'\ S) factorizes out and gives 0 expectation.
Now, for any f : {—1,1}" — R, we can define our Fourier coefficients as:

o) =B, pon [f(2)¢5(2)]

Since the {¢s } scy is still an orthonormal basis under the modified inner product space, our Fourier decomposition
f =2 scm ﬁ(S)(bs continues to hold.

We now define the derivative and influence operators: Note that B%i = Ba
operator is defined as:

D, ,f :=0D;f =2+/p(1—p)D;f

Thus the p-biased derivative is just a rescaled version of the “original” derivative operator. Similar to Proposition 5,
we have the equality

9. ng = 0 - 52-. Thus the new derivative

Dip(f) =D Fo(S)si

€S

Using the above definition of derivatives, and simplifying Inf; ,[f] :=E, s« [(D;,f)?] yields:

IN‘ITP

Wfiylf)i=0® Pr (f(@) # f®))

Also define: .
Ip(f] == Inf;,[f]
=1

Furthermore, similar to Lemma 2.5, if f is monotone, we have

Int; [ f] = o.f, ()

The reason p-biased Fourier analysis is so important is that it allows us to track the behavior of the system as we
change p, which is a proxy for the expectation of the system. For example, consider the Boolean function feonn :

{-1, 1}(2) — {—1,1}, which tracks whether the graph described by {—1, 1}(2) is connected or not. Clearly then,
tracking phase transitions in fconn as we vary the parameter p is the theory of Erdés-Rényi random graphs!
One of the most fundamental lemmata in this regard is the Margulis-Russo formula:
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Lemma 5.1 (Margulis-Russo formula). Let f : {—1,1}" — R be a function, let p € [0,1], and set u = 1 — 2p. Then

Jﬂ%w"@m=jiﬁm

In particular, if f : {—1,1}™ — {—1, 1} is monotone, then
dp

Proof. Let f = SCn] f(S )xs be the ordinary Fourier expansion of f. Then

won (1= (s won [xsl= D F(S) - pl!

SCln] SCln]

Thus

éﬂﬁdeM=i Zf =20 FS) 18t =3 0N Al

d
K SCln] S#D i=11€8S

At the same time, from the definition of fp(S ), we have:

=Y J(DE E, o [XT0s]

TC[n]

Now, if i € S\ T, then E [xrds] = 0, since E [(;S(xl)] will factorize out and become 0. On the other hand, if S C T,
then the expectation becomes p!”1=15I. Thus

= Zf( ITI=IS] f Zf LTI

scT ieT
and we're done. u

Note that one of the central objectives of random graph theory, percolation theory, and many other fields throughout
probability theory and computer science, is to show that the emergence of some property exhibits a phase transition, i.e.
there is a certain parameter ‘p’, and a certain threshold p., such thatif p < p,, then the probability of the phenomenon
is ~ 0, while if p > p,, then the probability of the phenomenon is ~ 1. Furthermore, once we have established a
phase transition, we are also interested in showing that the transition is sharp, i.e. for every ¢ > 0, there exists a small
quantity ¢ = d(¢) > 0, such that if p < p. — J, then the probability of our phenomenon is < ¢, while if p > p. + 4,
then the probability of our phenomenon is > 1 — ¢.
Indeed, such phase transitions have been rigorously proven in many contexts: For example, using standard proba-
bility theory, it is not too difficult to establish that the emergence of a clique, or the graph becoming connected, in
the Erdés-Rényi model G(n, p), exhibits a sharp phase transition. In an infinite context, the emergence of infinite
clusters in random lattices exhibit a sharp phase transition.
The following theorem, by Friedgut and Kalai ([ 1), proves a sharp phase transition for all monotone properties °!
Before we state and prove the theorem, we fix a bit of notation: Let f : {—1,1}" — {—1,1} be a function. Define a
function v : [0, 1] — [0, 1], where:
vip) == Pr (f(x)=-1)
TTp

Recall that our convention was that ‘—1" is the ‘true’ value.
Also, we shall need a small lemma for p-biased cubes, which we shall not prove. Instead, we present a proof for the
unbiased case.

5

we need our property to be monotone, so that when we increase our parameter p, the probability of the property increases
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Corollary 5.2. There is an absolute constant ¢ > 0 such that for every function f : {—1,1}" — {—1,1}, thereis a
variable i € [n] such that Inf; ,[f] > ¢n’log n/n, where iy’ := min(v(p),1 — v(p)), for every p € [0, 1].

Proof for p = 1/2. By Lemma 1.8, Var(f) = 4v(p)(1 — v(p)) > 21. The result now follows from Theorem 4.9. |

Theorem 5.3 (Monotone properties exhibit sharp thresholds). Let f : {—1,1}" — {—1,1} be a symmetric monotone
Boolean-valued function such that v(-) is a strictly increasing function. Then there exists an absolute constant ¢ > 0

such thatif 1/2 > v(pg) > ¢, then
log(1/2
V<pO+CM> S1_e
logn

Remark. Recall that a function f : {—1,1}" — R is called symmetric, if for any permutation ¢ of [n], and any
(w1,...,2,) € {=1,1}", we have f(z1,...,2n) = f(To)s - To(n))-

Proof. Since f is symmetric, the influence of every variable is the same, and thus, by Lemma 5.1,

dv n

% = m Infl,p[ﬁ

At the same time, by Corollary 5.2, Inf; ,[f] > ¢'v(p) log n/n for some absolute ¢’ > 0, for every psuch thatv(p) < 1/2.
Thus, for p < v=1(1/2),

dv _ dvlogn

dv
— > —2_>vlogn = — >plogn = d(logv) > c'plogn 5.1
dp ~ 4p(1—p) v (log ) 51

Now, let v(pg) > €, p* = v~!(3). Then integrating Eq. (5.1) yields:

log(1/2
,og(/€)>p*

1
log = —loge > ¢ (p* — po)logn = pg +c
2 logn

1log(1/2¢)
logn

Thus, by symmetry, at ¢ = po + 2¢ , we will have v(gq) > 1 — ¢, as desired. |
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§6. Hastad's Hardness of Approximation Results

We will now use Fourier analysis to prove some hardness of approximation results. Let us first review some standard
terminology.

Problem (MAX-E3-SAT). Consider a CNF formula, where every clause has exactly 3 literals, all of which correspond
to distinct variables (i.e. clauses like z1 V-1 Vx5 arenot allowed). Ourjob is to find a Boolean assignment of variables
that maximizes the number of clauses satisfied.

Problem (MAX-E3-LIN). Consider a system of linear equations over 3, where each equation looks like z;, + x;, +
x;, = b;, where i1, i3, i3 are distinct, and b; € Fo. Once again, we have to find an assignment {z1, ..., z,} — F5 that
maximizes the fraction of equations satisfied.

Both of these problems are NP-complete, so we look for approximation algorithms for them. In particular, we will
look for («, 3)-approximation algorithms, i.e. on any instance of the problem with optimum value > 3, our algo-
rithm should output > « °.

There is a very easy 7/8-approximation algorithm for MAX-E3-SAT: Assign each variable a(n uniformly) random
Boolean value. Each clause is satisfied with probability 7/8, and thus in expectation, 7/8 fraction of the clauses is
satisfied. Furthermore, this randomized algorithm can be efficiently derandomized.

Similarly, there is a trivial 1/2-approximation algorithm for MAX-E3-LIN, which assigns z; either 0 or 1 with equal
probability.

Now, a landmark result of Héstad [HO1] in complexity theory says that it is NP-hard to obtain a (7/8 + 4, 1)-
approximation of MAX-E3-SAT, and it is also NP-hard to obtain a (1/2+ 4, 1 — 0)-approximation of MAX-E3-SAT, i.e.
the trivial approximation algorithms are the best we can hope for.

We will now start our journey towards Hastad’s results. While Héstad’s results are quite technical, we can still
establish a somewhat weaker version, which says that assuming the Unique Games Conjecture, it is NP-hard to
(7/846,1—¢)-approximate MAX-E3-SAT, or (1/2+ 6,1 — §)-approximate MAX-E3-LIN. While this is not completely
satisfactory (since Héstad’s results are completely unconditional, while the Unique Games Conjecture is still a con-
jecture), the ideas used in proving this more or less capture Héstad’s main ideas; indeed, with a little more technical
wrangling on top of the ideas described here, even Héstad’s results can be established.

We first define an “attenuated” version of influence, inspired by the T}, operator.

Definition 6.1. For f : {—1,1}" — R, p € [0,1] and ¢ € [n], we define the p-stable influence of f at i to be:

It [f] = Stab,[Dif] = 3 oI5 f(5)2

€S

We also define I(?)[f] := 37" | Inf?[f].

Remark. A few remarks are in order:
1. Recall that this expression arose in the proof of the KKL theorem too.
2. Clearly, Inf\")[f] = Inf;[f].
3. One can easily verify that ") [f] = i Stab,[f] = 323_, kp*~ - W¥[f].

%if our algorithm is randomized, then the expectation of the random variable outputted by our algorithm should be > o
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We define a “noise-stable” version of small influence using the definition above:

Definition 6.2. For f : {—1,1}" — R, p € [0,1] and i € [n], we say that i is (¢, §)-notable if Infglf‘;) [f] > e

Remark. Note thatase — 1,5 — 0, (¢, §)-notability captures the notion of dictatorship.

As it turns out, proving hardness-of-approximation is intimately connected to “dictatorship tests”.

Definition 6.3 ((«, §)-Dictator vs. No-notables test). A («a, §)-Dictator vs. No-notables test is a local tester for func-
tions f : {—1,1}" — {—1,1} such that:

1. If f is a dictator, then the test accepts with probability > /.

2. If f hasno (g, ¢)-notable coordinates, i.e. if Inf 5175) [f] < eforeveryi € [n], then the test accepts with probability
< a+os(1).

Remark. Alocal tester queries the function O(1) many times.

We will now design a dictatorship test for the MAX-E3-LIN problem. Naturally, our test must involve linear equations
with 3 variables to maintain a connection with the MAX-E3-LIN problem.

We will modify the BLR test (Theorem 1.10) to accept dictators with high probability, and reject “egalitarian” func-
tions with probability ~ 1/2.

Firstly, the “BLR”-way to design a test would simply check if f(z)f(y)f(z ocy) = 1, where zx oy € {—1,1}" is the

Algorithm 2: Héstads-test
Data: f: {—1,1}" s {—1,1}
1 Pick z, y independently and uniformly from {—1,1}";
2 Pick b uniformly from {—1,1},and set z =b- (x o y) (z oy € {—1,1}" is the pointwise product of z, y);
3 Choose 2’ ~ Ny_s(z);
+ Acceptif f(2)f(y)f(z') = b

pointwise product of z,y. Clearly, dictators pass this test 7. However, the constant function f = 1 passes this test
too, despite having no notable coordinates. Thus, to eliminate the constant 1 function, we introduce a “global flip”
b. However, even with the flip, we still accept xs for odd |S|. Furthermore, if |S| is large, then no coordinate in xs
is notable. Thus, to eliminate xg, we introduce some noise to z = b - (z o ). The noise destroys the careful parity
balance between the LHS and RHS, while still accepting dictators with high enough probability.

Thus, let’s now formalize the above design intuitions:

Proof of correctness of Algorithm 2. Note that
. 11 11 )
Pr(Hastad5 accepts f|b = 1) =Epy, B} + if(x)f(y)f(z ) = ) + 9 Eey [f(l’)f(y) ‘B [f(z )|5€,y]]

But note that given z,y and 2z’ ~ Ny_s(t), where t = b- (zoy) = z oy, we have E./ [f(2')|z,y] = (T1-sf)(t) =
(Tv—sf)(z oy). Thus

Pr(Héstads accepts flb =1) = % + % Eay [f(@)f(y) - (Ti—sf)(zoy)] = % + % By [f(z) - (f * (Thosf))(x)]

7although note that anti-dictators fail
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i > T #Timar(s) - Sty 2 a-a)Ifs)
SCln.

MM—\

Similarly,

Pr(Hastads accepts flb = —1) =E; ./ [; — ;f(i)f(y)f(z')}

where 2’ ~ N1 _s(—(z oy)) = N_1_5)(x o y), where we note that N,(—x) = N_,(z). Thus

Pr(Hastad; accepts f|b=—1) = % - Z IS = 6)I817(9)3
SC [n]
Consequently,
1 1 ~
Pr(Hastads accepts f) = 3 + 3 Z (1-0)517(9)3

15| odd

If f is a dictator, i.e. f = x;, then the aforementioned probability is 1 — §/2 ®. On the other hand,

Z<1—6>Sf<5>3<<max< 5)I51F(s ) SRS \max< 1-6)PIF(S) <,/ max (1 - §)251f(S)2

|S] odd |S] od |S| odd
|S| odd |S| odd

< 1_5|S|—1A52< If( d)
@ggd( JEILE(S) max In (£]

Thus, if f has no (9, §)-notable coordinates, then
Pr(Hé&stads accepts f) <

as desired. m

Thus, we have a (1/2 + 6,1 — ¢)-dictatorship test for MAX-E3-LIN. At this point we're done, by simply invoking a
black-box result from [ ]:

Theorem 6.1. Suppose for each n € N, we have a («, §)-Dictator vs. No-notables tester for f : {—1,1}" — {-1,1},
such that our tester uses predicates of some CSP U. Then, assuming the Unique Games Conjecture, a (a + d, 8 — )-
approximation to MaxCSP(¥) is NP-hard.

Remark. When we say our tester uses “predicates of ¥”, we mean that our tester evaluates it’s queries using al-
lowed predicates. For example, Algorithm 2 made it’s decision by composing f(x), f(y), f(2’) using a MAX-E3-LIN
predicate.

Thus, under the Unique Games Conjecture, it is NP-hard to find a (1/2 + §,1 — ¢)-approximation for MAX-E3-LIN.
As mentioned earlier, Hastad proved this result unconditionally, but nevertheless, we have managed to convey the
key ideas of his proof.

8note that if f = —Y;, i.e. an anti-dictator, then the above probability is § /2. Thus, the Hastad s-test accepts dictators only, not 1-juntas
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§7. A Brief Taste of Additive Combinatorics over

Let A C F} be a non-empty set. Define A + A := {a +a’ : a,a’ € A}. Also, define p(A) := | A|/2"™ to be the measure
of A. Finally, define the sum-set expansion of A to be

. uA+4)
e(A) = A

Clearly, sincea + A C A+ A forany a € A, and since p(a + A) = pu(A), we have e(A) > 1 for any non-empty set A.
Also note that for any non-empty A, 0 = a + a € A + A since we're working over Fs.

Proposition 10. A = A + A if and only if A is a subspace of F5.

Proof. If A= A+ A, then Ais closed under addition and is thus a subspace of F5: Indeed, linear combinations in [y
are just ordinary sums, and 0 € A + A, so A is a subspace. Conversely, if A is a subspace then A = A + A. [ |

Proposition 11. e(A) = 1 if and only if A = a + H, where H is a subspace of 7.

Proof. Fix arbitrary a¢ € A. Clearly, we must have ag + A = A+ A. Now, if vi,v2 € A+ A, then there exist ai, a2 € A
such that v; = ag + a;,% € {1,2}. Thus v1 + vo = 2ag + a1 + a2 = a1 + ag € A+ A. Thus A + A, being closed under
additions, and having 0, is a subspace. Consequently, A = ay + (A + A) is a translation of a subspace, also known
as an affine subspace. The converse is obvious. ]

Proposition 12. Let H be a subspace of F3, and let A C H be an arbitrary subset of H such that p(A) > u(H)/2.
Then A+ A=H.

Proof. Choose an arbitrary h € H. Since u(A) > p(H)/2, AN (A+ h) # @. Thus there exist a,a’ € A such that
a=d +h = h=a+ad = heA+A — HCA+A — H=A+A. [ ]

Thus, if e(A) > 1, A doesn’t need to have any a priori structure, since we could take a subspace H, take an arbitrary
subset A with p(A)/pu(H) = v > 1/2, and we would have e(A) = 1/v.

However, can we make statements of the sort “e(A) is close to 1 = A + A is a subspace”? Turns out we can:
Freiman proved that if e(4) < 3/2, then A + A is a subspace. Green-Tao further strengthened the statement to hold
for e(A4) < 1.75.

Now, what about the case when e(A) = 1000, i.e. e(A) has a constant-factor, but large, sum-set expansion? Let us
explore 3 sets in this regard:

1. Ais arandom subset of I} with measure 1/1000: Fix ay € A. Forany v € F}, Pr(v —ag ¢ A) = 0.999, and thus
Pr(v g A+ A) ~ 0.9992"/1000 — ¢ (1), i.e. with high probability A + A = F3, and consequently, e(A) = 1000.

2. A is a subspace of F§ with co-dimension 10, i.e. dim(A) = n — 10: In this case, e(A) = 1, even though
p(A) = 2719 2~ 1/1000. Just based on these two examples, one may be tempted to conjecture that “random” sets
have high expansion, while “structured” sets have low expansion. The next example disproves this conjecture.

3. A:={x € Fy : wt(z) < n/2—34/n/2},ie. Aisthe Hamming ball of radius n/2 —3,/n/2 centered at the origin,
an unarguably “structured” set. Using standard Hamming weight estimates, ;1(A) ~ 1/1000. Also, it is easy
to see that A + A = {x : wt(z) < n — 3y/n}, and thus (A + A) ~ 1, leading to e(A) ~ 1000.
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Unsurprisingly, it is hard to get a handle from A based on e(A) alone. However, in all 3 examples, even when A 4+ A
was not a subspace (as is the case when A was the Hamming ball), A + A contains a large chunk of some large
subspace. We formalize this observation through a conjecture.

Conjecture (A + A conjecture). p(A) > o = there exists a subspace H, of co-dimension O(log(1/«)), such that
w(HN(A+A)) >0.99u(H),ie. A+ A contains a significant chunk of some large subspace.

This conjecture implies the following result: If e(4) < 1/a, then A + A + A + A contains a subspace H such that
w(H) > poly(a) - u(A). This statement is also known as the polynomial Bogolyubov conjecture.

The polynomial Bogolyubov conjecture also implies the following statement: If e(A) < 1/c, then there exists an
affine subspace = + H such that u(z + H) < poly(1/«) - p(A), and u((z + H) N A) > poly(«) - 1(A). This statement
is also known as the pelynomial-Freiman-Ruzsa-cenjecture: The Freiman-Ruzsa conjecture, also known as Marton’s
conjecture, was resolved very recently (Nov 2023) by Gowers, Green, Manners and Tao [ ], which was a
huge breakthrough, since Freiman-Ruzsa/Marton’s conjecture was commonly considered to be the most important
open problem in additive combinatorics.

The Freiman-Ruzsa-Marton eenjeeture theorem is equivalent to a rather innocent-looking property testing problem:

Conjecture. Suppose there exists a series of functions f,, : F4 ~— F3" such that Pr, yrs (f(2) + f(y) = f(z+y)) > ¢,
for every m € N. Then there exists a series of linear functions g,, : F4 — F5* such that f,, is poly(g)-close to g,.

The main reason a statement like this is interesting is that even as m shoots to oo, the distance between f,,, g, remains
independent of m.

So while proving any of the above conjectures would be amazing, we now divert our attention to something that has
been proven and is very interesting in its own right.

7.1. A Theorem of Sanders

Theorem 7.1. Suppose A C F3 is such that (A) = a. Then A + A + A contains an affine subspace of co-dimension
<1/a.

Proof. If A+ A + A = F%, then we're done. Otherwise, choose © ¢ A+ A+ A. Then Prypccala +b+c=1x) =0,
where a, b, ¢ are chosen independently, and uniformly, from A. Now, let ¢4 := 1 4/« be the PDF associated with A.
Then a + b + c is distributed according to ¢ 4 := ¢4 * P4 * p4, and thus pa(z) = 0. Now, let g4 := Z%FQ Da(7) X~y

be the Fourier expansion of ¢ 4 in Fj, where y (z) 1= (—1)%i=1 %% = (—1)("*), We know that @4(7) = 5,\4(7)3, and
thus
0=y daly ) = 64(0)* + Z 641 (=1) > 64(0 = ENE!
yeFy Y#0 ¥#0
But gz/SZ(O) =E[p4] =1, and thus

0> 1= T jm0)P > 1~ (maxida)l) - X 5a0)

¥#0 ¥#0

But Y. Lo 6a(7)? = Var(¢a) = E [¢34] — E[64]" = (1 — a)/a. Thus, there exists v* € F5 \ {0} such that [¢.4(v*)| =
a/(1—a). Now, note that ¢4 (v*) = E (¢4, 1)) =Eana [x1+(a)]. Also,let F_ := {z € F} : x+(z) = =1} = (y*)*,
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and Fy :={z € F§ : xy«(2) =1} =Fy \ F_, and let A; := AN F}, where { € {—,+}. Then

Adl = A [JAsl=]Al|_ a
E, . B e B e >
a~A [X’Y (a’)] ‘A| = |A‘ 1—a
Now WLOG assume |A | > |A_|. Then
Ag = [A|| 2144 -14] . a A1 o
= > = P = w(Ay) =2 57—
‘ Al Al 1-a Al © 2(1-a) WAL 2 55—

Thus, pp, (A4) == [AL]/|FL | =2pu(A4) 2 125 > o

Since F; IF;I*I, we can set A; := A, and repeat the above process. Once again, we either obtain A; + A; + A; =
F%5 !, or we can “bump” up the relative density of A; in some (n — 2)-dimensional (affine) subspace of F.

Now, note that /(1 — z) is an increasing function, and furthermore,

a/(l—ta) o

1—(a/(1-ta)) 1—(t+1)a’ vieN

Thus, if the above process repeats k times, we get a subset A;, C A, such that the relative density of A, in some affine
subspace of co-dimension k is > «/(1 — kc). Clearly, k < 1/c, and thus there is some A’ C A such that A’ + A" + A’
contains an affine subspace of co-dimension at most 1/« as desired. |

Remark. This argument is an example of a density increment argument.



Boolean Function Analysis 37 /37 Arpon Basu

References

[Arr50] Kenneth]. Arrow. A difficulty in the concept of social welfare. Journal of Political Economy, 58(4):328-346,
1950. URL: http://www.jstor.org/stable/1828886.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. In
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 90, pages 73-83,
New York, NY, USA, 1990. Association for Computing Machinery. doi:10.1145/100216.100225.

[FK96] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. 1996. URL:
https://api.semanticscholar.org/CorpusID:9721337

[GGMT23] W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of marton, 2023. arXiv:
2311.05762

[H01] Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798-859, jul 2001. doi :10.1145/
502090.502098.

[Kal02] Gil Kalai. A fourier-theoretic perspective on the condorcet paradox and arrow’s theorem. Advances in
Applied Mathematics, 29(3):412-426,2002. URL: https://www.sciencedirect.com/science/article/
pii/S0196885802000234, doi:https://doi.org/10.1016/S0196-8858(02)00023-4.

[KKL88] Jeff D. Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions. [ Proceedings
1988] 29th Annual Symposium on Foundations of Computer Science, pages 68-80, 1988. URL: https://api.
semanticscholar.org/CorpusID:2347606

[KKMOO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O'Donnell. Optimal inapproximability results
for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319-357, 2007. arXiv:https:
//doi.org/10.1137/50097539705447372, doi:10.1137/S0097539705447372.

[O'D12] Ryan O’Donnell. Analysis of boolean functions at cmu. https://www.youtube.com/playlist?list=
PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA, 2012. Accessed 3rd December, 2023.

[O'D21] Ryan O’Donnell. Analysis of boolean functions. CoRR, abs/2105.10386, 2021. URL: https://arxiv.
org/abs/2105.10386, arXiv:2105.10386

[Tal94] Michel Talagrand. On Russo’s Approximate Zero-One Law. The Annals of Probability, 22(3):1576 — 1587,
1994. doi:10.1214/a0p/1176988612


http://www.jstor.org/stable/1828886
https://doi.org/10.1145/100216.100225
https://api.semanticscholar.org/CorpusID:9721337
http://arxiv.org/abs/2311.05762
http://arxiv.org/abs/2311.05762
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://www.sciencedirect.com/science/article/pii/S0196885802000234
https://www.sciencedirect.com/science/article/pii/S0196885802000234
https://doi.org/https://doi.org/10.1016/S0196-8858(02)00023-4
https://api.semanticscholar.org/CorpusID:2347606
https://api.semanticscholar.org/CorpusID:2347606
http://arxiv.org/abs/https://doi.org/10.1137/S0097539705447372
http://arxiv.org/abs/https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA
https://arxiv.org/abs/2105.10386
https://arxiv.org/abs/2105.10386
http://arxiv.org/abs/2105.10386
https://doi.org/10.1214/aop/1176988612

	Boolean Function Analysis: Introduction and Preliminaries
	Linearity Testing

	Social Choice Theory
	Noise Stability and Arrow's Theorem
	Arrow's Theorem

	The Hypercontractivity Theorem
	General Hypercontractivity
	Hypercontractivity for General Random Variables
	Applications of Hypercontractivity

	p-biased Analysis
	Håstad's Hardness of Approximation Results
	A Brief Taste of Additive Combinatorics over Fn2
	A Theorem of Sanders


