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Basic Definitions

One-Way Functions

A family of functions £, : {0,1}" + {0, 1}%(") are called
one-way functions if they are computable in polynomial time
and for every non-uniform PPT adversary A,

Pr  (f,(A(fa(x))) = fa(x)) = negligible(n)

x+{0,1}"

where negligible(n) is a function which decays
super-polynomially with n.
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Basic Definitions

Hard-Core Predicate

A predicate h: {0,1}* — {0,1} is called a hard-core predicate
for a one-way function £ : {0,1}" ~ {0, 1}%(") if h is
computable in polynomial time and for every non-uniform PPT
adversary A

Pr (A(1",f(x)) = h(x)) = % + negligible(n)

x<{0,1}"

«4O0>» «F > «E» « >

Arpon Basu and Hastyn Doshi CS406 Project 3/19

DA



The Goldreich-Levin theorem

Theorem (Goldreich-Levin Theorem)
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The Proof

We proceed via contradiction: Consider a PPT adversary which
can guess the hardcore bit with non-negligible probability over %
We shall construct a PPT adversary which can invert f with
non-negligible probability.

However establishing the theorem requires some lemmata, which
we shall now prove.
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Lemma 1

Lemma
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The Proof

Note that

P F(x),r) = P f

P (AR = ) = Pr (AR 0)

(x,r)|x € Gas) Pr (xe€Gus)+ Pr
x+{0,1}"

x,r{0, 1}"(A(f( )
(x,r)|x & GA75)

X,r)
%G
{0}(X .AJ)

1490
G — 1
X%{O 1} (X < A&) +
Since Pry 0,137 (A(f(x),r) = (
result.

)) > 5+ 0, we get our desired
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Lemma 2

Lemma
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The Proof

Denote by p the value of E[X]
Note that

Var(X) = E[(X — p)?] = E[X? — 2uX + ]
= E[X?] — 2uE[X] + 1

=E ZX2+2 > XX

— 2uE[X] + pi?
1<i<j<m’

S EN2 Y XX -2
i=1 1<i<j<m’
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The Proof

Since X;, X; are pairwise independent for i # j,
E[X:X;] = E[X/]E[X;] = p?>. Moreover, E[X?] = p. Consequently

Var(X) = Z p+2
i=1

> =’ =m'p(1l-Dp)
1<i<j<m’
where the last equality follows since = m’p.

The desired result then follows by invoking Chebyshev's inequality
and noting that p(1 — p) < 7 for every p € [0, 1].
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The Proof (Continued)

Now, let § = m > 0 be the advantage of our adversary A in
calculating the hardcore bit, ie:-

Prx,ﬂ_{oyl}n(A(f(x), r)={(x,r)) > % +J. Set

m:= [%], k :=1+ [logy(m)]. Uniformly choose k random
vectors ty, t, ..., ty from {0,1}. Now, let

S C{1,2,...,k} =: [k] be any non-empty set. Then we define rg
as rs := Y ;cq ti. This way we can generate 2 —1=m' > m
random vectors. Note that all the vectors rs are themselves
distributed uniformly in {0,1}" since a linear combination of
uniform random vectors from {0,1}" is itself a uniform random
vector 1.

lthis can be seen through induction (O AFr AEr (2>
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The Proof (Continued)

Note that for any two sets 51 # Sy, rs,, rs, are independent.
Consequently, all our m’ random vectors are pairwise independent.
Now assume we already know the correct values of (x, t;) for every
i € [k]. Then we know the values (x, rs) for every S C [k], since
<X7 r5> = (x, Zies ti> = ZIGS<X’ ti).

Let e be the i*" unit vector of {0,1}". For any S C [k], since rs
are uniformly random, we get that rs & ¢; is uniformly random too.
Moreover, note that (x, rs @ ;) — (x,rs) = (x, &) = x;.
Consequently, for every S C [k], calculate the value of

A(f(x), rs & ej) — (x, rs), where A is the adversary calculating the
hardcore bit, obtain m’ votes for the value of x;, and take the
majority vote of these values .

2since m’ = 2X — 1 is an odd number, a tie is not pessibles » « = » «
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The Proof (Continued)

Let £s be the Bernoulli random variable denoting the probability
distribution of A(f(x), rs & €;) correctly calculating (x,rs ® ej). If
x € Gy, then the parameter of £ is at least 1 3 by the
definition given in the first lemma.

Consequently, the expected number of correct answers in the m’
votes for the value of x; is at least M, and thus if the majority
vote turns up the wrong answer, that implies a deviation from the
mean of more than 5 Ly By the second lemma, the probability of

this happening is at most /52 < m152 < 21n.
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The Proof (Continued)

Consequently, the probability that any bit is calculated wrongly is
at most % which implies, by the union bound, that the probability
that x is determined wrongly is at most 2—1,7 -n= % Note that x is
simply determined by a concatenation of the bits x; for i € [n].
Consequently, we managed to invert f(x) with probability

> % -Pr(x € Gas) > %. However since § is not negligible, neither
is %, which implies that with non-negligible probability we can
invert f(x), violating the assumption that it was a one-way
function.

Hence proved, contradiction!

«4O0>» «F > «E» « >

Arpon Basu and Hastyn Doshi CS406 Project 14 /19

DA



The Proof: A small catch

We assumed that we know (x, t;) for every i € [n]. But obviously,
that is not true a priori. We deal with this as follows: We run the
aforementioned algorithm for all 28 = m’ + 1 = poly(n) possible
values of ((x, t;))ic]- Every time, we end up with a possible value
of x, whose correctness we test for by checking if applying f(x) is
the correct answer. Since we know that for the correct values of
({x, ti))ic[x), We obtain the correct value of x with probability at
least % we can consequently conclude that we will get the correct
answer with probability at least % by the end of all the 2%
iterations.

The above step blows up our runtime by 2%, but since 2 is
polynomial in n, our algorithm remains polynomial time, and thus
our overall construction of a PPT adversary continues to hold.
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Applications

The most immediate and useful applications of this theorem is to
construct pseudo-random generators (PRGs): Indeed, let
f:{0,1}" — {0,1}" be a one-way permutation. Then

g(x,r) = f(x)||r||{x, r) is a pseudo-random generator 3. Indeed,
through this construction, the Goldreich-Levin theorem lays the
foundation for constructing a large class of PRGs.

3this can be proved through the equivalence of the definitions of

pseudo-randomness and next-bit unpredictability COr <Fr <= o«
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Applications

Theorem

Arpon Basu and Hastyn Doshi

«Or < For o«
CS406 Project

it
v
a
it

1

~

DA
/19



The Proof

We know that pseudorandomness is equivalent to a next-bit
prediction by Yao's theorem.

Now assume for the sake of contradiction that g is not a PRG:
Then there would exist i € [N] and a PPT adversary A such that

Pr(A(rH<fN(X)7f>\|<fN_1(X)7r>H---|!<fi+1(X)7r>) = <f’(X)7r>) =

We describe a PPT adversary B such that given (f(z),r), B tells

us the value of (z, r) with non-negligible probability, thus violating
the Goldreich-Levin theorem.
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The Proof

B chooses an i € [N] randomly. Consider x € {0,1}" such that
fi(x) = z *. Note that for £ > 1, B can efficiently calculate
fi+f(x) = f'=1(f(z)). Consequently, B can, in polynomial time,
generate the string r||[(fV(x), N)||(FN=1(x), )| ... |[{(fF1(x),r) on
it's own and feed it to A as an input, which would then return to
B the value of (z, r) with non-negligible probability, allowing B to
violate the Goldreich-Levin theorem.

*Such a x must necessarily exist since the composition of two permutations

is also a permutation, and consequently every element in our co-domain has a
(unique) pre—image CO> «Fr «Zr <
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