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1 Basic Algebra

Exercise 1.1. Show that p(X) := X% — nX + 2 is irreducible over Q for n # —1,3,5.

Proof. Since p is a primitive polynomial, by Gauss’s lemma it is enough to prove that p is irreducible on Z[X] to show it
is irreducible on Q[ X].

If p is irreducible, it must either factor into a quadratic and a linear polynomial, or three linear polynomials. In either
case, it must have a rational root.

By the rational root theorem, if a/b is a root of p, then a | 2, and b | 1. Consequently, 1, +2 can be the only rational roots
of p. Substituting these 4 values into p yield n = -1, 3,5, and thus if n # -1, 3, 5, then p is irreducible over Q. m]

Exercise 1.2. Let G be a p-group, i.e. |G| = p" for some prime p. Then G admits a normal series decomposition, i.e.
G=G, <Gy 9---aGp=1
where G4 is a normal subgroup of G;, and |G;| = p”‘i.

Proof. We build inductively. Thus, suppose Gy is a normal subgroup of G of order p¥, k < n. It is clear that G exists.
Now, G/Gy is a p-group, and thus by standard class theory arguments, Z(G/Gy) # 1. Thus, by Cauchy’s theorem, there
exists v € Z(G/Gy) such that ord(v) = p. Consider the subgroup H := (v) € Z(G/Gy). Since H is a subgroup of Z(G/Gy),
H is a normal subgroup of G/Gk. Now, by the third isomorphism theorem, if K is a group and N is a normal subgroup
of K, then the normal subgroups of K and K/N correspond through the projection epimorphism 7 : K — K/N (i.e. all
the normal subgroups of K/N may be obtained by projecting the normal subgroups of K).

Thus, the pullback of H € G/Gy into G is a normal subgroup of G. But the pullback of H into G has size = |H| - |Gi| =
p - p* = p**1, as desired. m

2 Field Extensions

Exercise 2.1. Calculate the minimal polynomial of /=2 over Q(V2).

Proof. Note that the minimal polynomial of V-2 over Q is X* +2. Consequently, it'’s minimal polynomial over Q(¥2) must
be a divisor of X* + 2. Now, consider the factorization of X* + 2 over Q(¥2):

X442 = (X2 = 24X + V2)(X2 + 284X + V2)

V=2 satisfies the first polynomial. Since V-2 ¢ Q(\Aﬁ), the minimal polynomial is of degree > 2, and consequently,
X2 - 23/4X + /2 is the desired polynomial. O



Exercise 2.2. Show that Q(V2 + V3) = Q(V2, V3). Find the minimal polynomial of V2 + V3 over Q.

Proof. Itlsenoughtoshowthat\/_ 2,V3 € Q(V2+V3). Indeed, (V2+V3)? = 5+2\/_€ Q(V2+v3), and thus V6 € Q(V2+v3),
and consequently, 5 - 2v6 € Q(V2+3). However, 5-2V6 = (V3-V2)? = and consequently\/_ V2 € Q(V2+V3),

which yields that V2, V3 € Q(V2 + V3), as desired.
If we substitute X = V2 + V3, then X2 = 5 + 26, and thus (X2 - 5)2 =24 = X*-10X2+1 = 0. Now,

—10X2+1=(X - (V2+ V3)(X = (=V2 + V3))(X = (V2 = V3))(X = (-V2 = V3))

Clearly, no linear polynomial in Q[X] divides X* — 10X? + 1, so if at all X* — 10X? + 1 factorizes over Q, it must split into
2 quadratic polynomials. However, by checking all 6 combinations of two numbers a, § € {+V2 + V3}, we see that either

a+p¢Qorapf¢Q.
Consequently, X* — 10X? + 1 is irreducible over Q, and thus is the minimal polynomial of V2 + V3. o

Aliter. Note that [Q(V3,V2) : Q] = [Q(V3, V2) : Q(V2)] - [Q(V2) : Q] = 2[Q(V3, V2) : Q(V2)]. Since V3 satisfies X2 — 3,
we have [Q(V3, V2) : Q(V2)] < 2. Since V3 ¢ Q(V2) = Q[V2], [Q(V3,V2) : Q(V2)] # 1. Thus [Q(V3,V2) : Q(V2)] = 2, as

desired. 0

et

Exercise 2.3. Prove that X" — 2 is irreducible over Q for n > 2. Conclude that [Q(R2) : Q] = n. Deduce that Q/Q, R/Q aren't
finite extensions.

Proof. The irreducibility follows from Eisenstein’s criterion. ]
Exercise 2.4. Let F be a finite field. Prove that |F| = p" for some prime p.

Proof. Consider the ring homomorphism ¢ : Z — F, ie. ¢(1) = 1. Now, ker(¢) € Z can’t be (0), because otherwise ¢
would be injective, which isn’t possible, since Z is infinite, and F is finite. Thus ker(¢) = (p) (since the only non-trivial
ideals of Z are (p) for primes p).

Then, by the first isomorphism theorem, we have an injection Z/pZ — F. Now, we claim that F is a Z/pZ-vector space:
Indeed, (F, +,0) is an abelian group (since F is a field). Furthermore, for any m € Z/pZ, x € F, define m - x := mx. Then
it is easy to verify the axioms of a vector space (see this). m|

Exercise 2.5. Suppose a is such that degp(«a) is odd. Prove that F(a) = F(a?).

Proof. Note that F(«) = F[a]. Furthermore, if degy(a) = 1, then 1, a, ..., a""! form a basis of F(«) (as a F-vector space).
Since n isodd, {2k) mod n : 0 <k <n -1} ={k:0 < k < n — 1}, and thus we're done. O

Exercise 2.6. Let F be a field of characteristic # 2. Let a,b € F, where b is not a perfect square in F. Prove that Va + Vb can be
expressed as \/m + \n, with m,n € F, if and only if a*> — b is a square in F.

Proof. If Va + Vb = \/m +/n, then a + Vb = m + n + 2y/mn. Now, \mn ¢ F, since otherwise we would have Vb € F. Now,
the degree of a +Vb over F is 2 (it can’t be 1, and a + Vb satisfies X2 —2a X + (a2 —b) € F[X]). Similarly, m +n +2+/mn also has
degree 2 over F. Since a + Vb = m + n + 2y/mn, they must have the same minimal polynomial. Now, the other root of the
minimal polynomial of n + 1 + 2+/mn is m +n — 2+/mn, which must necessarily equal a — Vb. Thus a + Vb = m +n +2+/mn
(the signs correspond), and thus Vb = 2+/mn. Consequently we have b = 4mn,a = m + n.

Conversely, if a? — b is a square, then by setting m = (a + Va2 — b)/2,n = (a — Va2 — b)/2, and doing some algebra we see

Va + Vb = v + i, O


https://en.wikipedia.org/wiki/Vector_space

Exercise 2.7. Let E/k, F [k be finite field extensions, with both E, F being contained in some larger field. Show that:
1. [EF : k] < [E : k][F : k].
2. If[E : k], [F : k] are relatively prime, then [EF : k] = [E : k][F : k].
3. Does [EF : k] divide the product [E : k][F : k]?

Proof. The proofs are as follows:

1. Let {e1,...,e,} be a basis of E as a k-vector space, and let {fi, ..., fn} be a basis of F as a k-vector space. Since
{ei}iemn), {fj}jerm) are algebraic, k(e;, f;) is a finite (and hence algebraic) extension of k, consequently, since e;f; €
k(ei, fj), eif; is algebraic over k too. Thus, k({e;f;}ic[u] je[m]) is @ finite (and hence algebraic) extension of k. Now,
note that every element of EF can be written as ), ¢,¢,/2; €/ ¢, where the ¢’s belong to E, and the ¢’s belong
to F. But &,¢r, €{¢; can be written as a linear combination of {e;f;}, and thus EF C k({eif;}icn je(m))- But
note that k({eifi}icu) jetm)) = kl{eifi}icn),jerm], and dimg(k[{eif;}ic(n) jepm)]) < mn = dimg(E) dimg(F), and thus
dimy(EF) < dimg(E) dimg(F).

2. Note that [EF : k] = [EF : E][E : k], and thus [E : k] | [EF : k]. Similarly, [F : k] | [EF : k]. Since [E : k], [F : k] are
co-prime, [E : k][F : k] | [EF : k]. However, [EF : k] < [E : k][F : k], and thus we're done.

3. No. Let k = Q,E = Q(¥2), F = Q(¥2w), where both E and F are embedded naturally in C. Then EF = Q(V2, ).
Now, the minimal polynomial of  over Q is X? + X + 1. Thus [EF : Q] = [EF : Q(V2)]-[Q(¥2) : Q] = 3[EF : Q(V2)].
Once again, [EF : Q(V2)] < 2, and it can’t be 1 since w ¢ Q(V2). Thus [EF : k] = 6, while [E: k] - [F : k] =9, and 6
doesn’t divide 9.

O

Exercise 2.8. Let «, B be algebraic over F, such that the degrees of , B are relatively co-prime. Let g(X) be the minimal polynomial
of B over F. Then g(X) remains irreducible even in F(a)[X].

Proof. Let G = F(a,p). Then [F(a) : F] | [G : F] = degg(a) | [G : F]. Similarly, deg.(f) | [G : F]. Since
the degrees are relatively co-prime, deg,(«a) - deg.(f) | [G : F]. Since [G : F] = [F(a,p) : F(a)] - degp(a), we have
degp(a)(ﬁ) = [F(a,p) : F(a)] > degp(B) > degF(a)(ﬁ). Thus deg.(B) = degF(a)(ﬁ), and consequently, g(X) is irreducible
over F(a)[X] too. O

Exercise 2.9. Show that there are no (non-identity) ring homomorphisms from R to itself. Conclude that R is not a finite extension
of any proper subfield.

Proof. Let f : R = R be a ring homomorphism. By standard Cauchy equation analysis, f|g = id.

Now, if x > 0, then f(x) = f(v/x)* > 0, thus, for any a < b, we have f(a) < f(b), since f(b —a) = f(b) — f(a). Now,
let x € R be any real number. Let {g,},cn be a sequence of rationals converging to x from below, and let {r,},en be a
sequence of rationals converging to x from above. We know that f(x —g,) > 0 = f(x) > q,. Similarly, f(x) < r,. Thus
gn < f(x) < ry, and applying the squeeze theorem yields f(x) = x. o

Exercise 2.10. Produce a field k and an embedding k — k such that the extension k/k is infinite.

Proof. Let F be an arbitrary field, and let k = F(x1, x,...). Consider the embedding k < k induced by x; — x;41 for all
i € N. This extension is infinite, and in fact transcendental. O

Exercise 2.11. Produce fields ki, ko, k3, ks such that ki = ky, ks = ka, yet the extensions ki/ks and k[ ks aren’t isomorphic.



Proof. Take k1 = ky = k3 = k(x), and ks = k(x?). k3 is isomorphic to k4, as is demonstrated by the embedding induced
by x x2. However, ki /k3 is an extension of degree 1, while ky/ks (Where the embedding is the natural inclusion) is an
extension of degree 2. o

Exercise 2.12. Explain the following apparent paradox: k(x) = k(x?), yet 1 — x*t? is irreducible in k(x?)[t], while 1 — x*t? =

(1 = xt)(1 + xt) is not irreducible in k(x)[t].

Proof. k(x) and k(x?) are isomorphic, but the natural embedding k(x2) < k(x) is not an isomorphism; consequently,
there is no paradox. Indeed, if one takes the image of the polynomial under the map induced by x — x2, then one gets
1 - x*? = (1 — x®t)(1 + x?t), which is obviously not irreducible (and factorizes in the same way 1 — x2#? factorizes in

k()[H]). O

Exercise 2.13. Given any n € N, produce a field extension of degree n.

Proof. The field extension k(x'/")/k(x), where the embedding is the natural inclusion, has degree 1. Note that k(x!/") :

k(x)[t]/(t" = x). o
Exercise 2.14. Let k be an infinite field. If E/k is an algebraic extension, then the cardinality of E equals the cardinality of k.
Conclude that R is not algebraic over Q.

Proof. By the embedding theorem, any algebraic E embeds in k, so it suffices to show |k| = |k| (because we have

|k| < |E| < |%|). To do that, we shall construct a surjection ¢ : (k[X] — k) XN — k. For any p € k[X] -k, letag,..., an
(the ordering is arbitrary) be the roots of p in k. Define ¢(p, 1) = @y mod n- This is surjective, because k is algebraic

over k, and thus for every a € k, there is some p € k[X] — k such that p(«) = 0. Thus |(k[X] — k) X N| > |k| > |k|. But
[(k[X] - k) xN| = |k[X] — k| = |k|, as desired. O

Remark. A few remarks are in order:
1. Cardinal arithmetic: If A, B are infinite sets, then |A X B| = max{|A|, |B|}.
2. k| = |k| for infinite fields k.
Exercise 2.15. If [E : F] = p (p is a prime), then E = F(a) for any a € E \ F.
Proof. [F(a) : F] must divide p. It can’t be 1, since a ¢ F. Thus [F(«a) : F] = p, implying E = F(a). O
Exercise 2.16. Let E/F be an extension. This extension is algebraic if and only if every subring of E containing F is a field.

Proof. Suppose E/F is algebraic. Let K 2 F be a subring, and let a € K\ F. Let ¢(X) = X" + a,.1 X" ' +--- + a1 X + ag be
the minimal polynomial of « over F. Since g(X) is irreducible, ag # 0. But note that

al=(—ap) M@ +ap_1a" "+ +a1) € Fla] € K

Thus, if a € K, then a™! € K, and thus, K is a field.
Conversely, suppose E/F is not algebraic. Then we have some t € E which is transcendental over F. Then note that F[t]
is a ring containing F, but F[¢] is not a field since ¢! ¢ F[¢]. O

Exercise 2.17. Let k be a field, and let a = p(X)/q(X) be an element of E := k(X), where p(X), 9(X) € k[X] -k, p(X), q9(X) are
co-prime. Show that E [k(«) is a finite extension, with [E : k(a)] = max(deg(p), deg(q)).



Proof. Consider the polynomial f(T) := p(T) — aq(T) € k(a)[T]. Note that f(X) = 0, and thus X € E is algebraic over k(«),
with degree at most deg(f) = max(deg(p), deg(q)). Since E is generated by X over k (and hence k()), [E : k(a)] < deg(f).
Consequently, if we can show that f is irreducible in k(a)[T], then f would be the minimal polynomial of X, and we
would have [E : k(a)] = deg(f) = max(deg(p), deg(q)).

Now, by Gauss’s lemma, to show that f is irreducible in k(a)[T], it is enough to show that it is irreducible in k[a][T] =
k[T][a]. But note that « is a prime element in k[T][a], and consequently, by Eisenstein’s criterion applied on f with the
prime a, we get that it is irreducible. m]

Exercise 2.18. Let E = F(x), where x is transcendental over F. Let K be a subfield of E containing F such that K # F. Then x is
algebraic over K.

Proof. Direct corollary of Exercise 2.17. o
Exercise 2.19. Prove that every element is a sum of two squares in F,.

Proof. Note that #{x? : x € Fy} = (p +1)/2. Indeed, the group (F}, -, 1) has (p — 1)/2 squares, since it is cyclic (and hence
exactly the even powers of the generator are squares), and 0 is also a square. Thus, given any x € F,, consider the set
{x —y?: y € F,}. This set also has size (p + 1)/2. Consequently, by the pigeonhole principle, the sets {x — y? : y € F,}
and {z%:z € Fp} intersect, i.e. x — yé = 2(2) for some vy, z9 € F,. But that means x = yé + zg, as desired. m]

Exercise 2.20. A field is called formally real if -1 is not a sum of squares in it. Let k be a formally real field. Let K/k be an odd
extension. Prove that K is formally real.

Proof. Note that char(k) = 0, because positive characteristics contain F,, and —1 is a sum of squares in F,. Thus K/k is a
finite separable extension, and hence simple. Thus, let K = k(a). We induct on deg, (a). The base case is trivial.
Assume for the sake of contradiction that —1 is a sum of squares in K. Then

-1= Z pia)> = 1+ Zpi(a)z =0
i i
where p;’s are polynomials such that deg(p;) < deg, («). Define

p(X) =1+ Z pi(X)2

Denote the minimal polynomial of a over k as f(X). Since a is a root of p, f(X) | p(X). Denote q(X) := p(X)/f(X). Now,
note that deg(p) < 2(deg,(a) — 1), and thus deg(q) < deg,(a) — 2. We also claim that the degree of p is even: Indeed,
let the highest degree of any of the p;’s be m, and suppose p;,, ..., pi, have degree m. Then the coefficient of X?" is
ciz1 +--0 4 cfr , where c;, is the coefficient of X" in p;,. However, since k is formally real, cfl +--- 4 ci # 0 since ¢;, # 0.

Thus, deg(q) is an odd number which is at most deg (a) — 2. Consequently, factorizing g over k, we get that g must have
an irreducible divisor of odd degree. Let 8 be a root of that divisor. Then k(g) is formally real by the induction hypothesis,
and f is a root of p. But then p expresses —1 as a sum of squares in k(f), which is a contradiction. o

Remark: If ¢7 + - -+ + cZ = 0 for some ¢y, ..., ¢, € F\ {0}, then (c1/c,)* + -+ + (c,-1/c,)* = —1.



3 Splitting Fields and Normal Extensions

Exercise 3.1. Find the splitting fields of the following polynomials over Q: X* —2,X* +2,X* + X2 +1,X% -4, X% + X3 + 1.
Proof. The splitting fields are as follows:

1. X*-2: Q(V2,i). [Q(¥2,1) : Q] = 8: Indeed, adjoining V2 to Q makes the degree 4. i doesn’t belong to it, because i
is non-real. Thus adjoining i doubles the degree.

2. X*+2: Q(V2,1).

3. X%+ X2 +1: Q(iV3), [Q(iV3) : Q] = 2.

4. X°—4:Q(V2,iV3), [Q(V2,iV3) : Q] = 6.

5. X0+ X3 +1: Q(C), where C = e*™°. [Q(0) : Q] = 9.

Exercise 3.2. Let a = 5'/4, Prove that:
1. Q(ia?) is normal over Q.
2. Q((1 + i)a) is normal over Q(ia?).
3. Q((1 + i)a) is not normal over Q.

Proof. The proofs are as follows:
1. Q(ia?) = Q(iV5) is the splitting field of X? + 5 over Q.

2. Note that g := (1 +i)a = V2 - V=5. Thus g? = 2iV5 = 2ia?, and thus Q(B) is the splitting field of X2 — 2ia? over
Q(ia?).

3. X* +20has (1 + i)a as its root; however, (1 — i)a is also a root of X* + 20, yet (1 — i)a € Q((1 + i)a). Since X* + 20 is
irreducible over Q, Q((1 + i)a) is not normal over Q. To see how (1 — i)a ¢ Q((1 + i)a), note that if (1 — i)a were in
Q((1 + 7)a), then we would have i, &« € Q((1 + i)ar), implying that Q(i, «) € Q((1 + i)a). However, [Q(7, a) : Q] = 8,
while [Q((1 + i)a) : Q] = 4.

Exercise 3.3. Let f € k[X] be a polynomial of degree d. Let L be the splitting field of f over k. Then [L : k] divides d!.

Proof. We proceed by induction. d = 1 is easy to verify. So assume the statement is true for all d < n. Thus, assume
deg(f) = n. Now, we make cases:

1. Suppose f is irreducible over k. Let @ € L be a root of f. Then f(X) = (X — a)g(X), with deg(g) =n - 1.

Exercise 3.4. Find the splitting field of XP" — 1 over F,.



Proof. Note that (X — 1)P" = XP" + (=1)P" over Fp. If p is odd, (=1)?" = -1, in which case the splitting field is F, itself. If
p =2, (-1)"" =1, but we also have —1 = 1, so once again the splitting field is F, = F,. Thus the splitting field of X*" — 1
over F, is F,, for all primes p, and all n > 1. m|

Exercise 3.5. Prove that for any prime p and any n > 1, we have a finite field of order p". Furthermore, all finite fields of order p"
are IF,-isomorphic to each other.

Proof. We shall prove that the splitting field of X? " — X over [y is a finite field of order p".

Firstly, note that the splitting field of X" — X over F, must be finite since the splitting field can be obtained by adjoining
the finitely many roots of X" — X (in Fp) to IF,. Furthermore, by taking formal derivatives, we can see that all roots of
XP" — X are distinct.

Now, also note that the roots of X?" — X form a field: Indeed, if @, are roots, then (a + g)*" = a”" + " = a + B.
Furthermore, (af)’" = (a?")(BP") = ap, and if a # 0, then (a™')"" = (a”")~! = a7 L. Finally, for any a, (—a)" = (-1)"" a. If
p is odd, then we obtain that —« is also a root of the polynomial X” "X If p =2, then —a = a. Thus, for any a (which is
aroot of X" — X), —a is also a root of Xt - X.

Thus the roots of X?" — X form a field, and furthermore, this field contains F,. Thus, this field is the splitting field of

XP" — X over F,. Itis clear that this field contains exactly p" elements. Furthermore, all splitting fields are F,-isomorphic
to each other. ]

Exercise 3.6. Prove that every finite extension of a finite field is normal.

Proof. Let K/F be a field extension, with |K| = q. Then all elements of K satisfy the equation X7 = X, and thus K is the
splitting field of F w.r.t the polynomial X7 — X € F[X]. O

Exercise 3.7. Prove that every algebraic extension of a finite field is normal.

Proof. Let K/F be a field extension, where F is finite. Suppose f € F[X] has a root a € K. Since « is algebraic over F,
F(a)/F is a finite extension and hence is a normal extension by the above exercise. Since f has a root in F(«), and since
F(a)/F is normal, f splits completely over F(a), and hence K. Thus K/F is normal. o

Exercise 3.8. Let K/k be a normal extension, and let f(X) € k[X] be irreducible over k, such that f(X) = g(X)h(X) over K,
where g(X), h(X) € K[X] are irreducible over K. Prove that there exists an k-automorphism o of K such that h = o(g). State a
counterexample to this assertion when K/k is not normal.

Proof. Let F be the splitting field of f over k. Let a be aroot of g in F, and let 3 be a root of / in F. Note that we can choose
B # a: Indeed, all roots of ¢ and h are distinct, since if g and & had any common root, they would have a non-trivial
gcd over F (and hence K), contradicting their irreducibility over K. Now, since a, § are both roots of the irreducible
polynomial f over k, there exists an k-embedding 7 : k(a) — k(B) sending a to f. Now, consider the following diagram:

o %
K@) ——— k(p)

Let ¢ be the inclusion k() — k, and consider the map k(a) 5 k. Sincekis algebraic over k(«), and since kis algebraically
closed, there exists a k(a)-embedding ¢ from k to k such that o|j(,) = ¢ o 7. Furthermore, 0(K) = K since K is normal



over k, and thus 0|k is a k-automorphism. Consequently, o(g) is also a polynomial in K[X], and furthermore, o(g) has
o(a) = B as a root. On the other hand, since ¢ is a k-automorphism and since f € k[X], o(f) = f. Thus, o(g) is an
irreducible (over K) factor of f having f as a root. Since & is the only irreducible factor of f having g as a root, o(g) = h,
as desired.

For a counterexample, consider K = Q(¥2) over Q, and let f(X) = X3-2€ Q[X]. Then f(X) = (X - V2)(X2+42- X +V4)
over K. Both (X — V2) and (X2 + V2 - X + V/4) are irreducible over K, but they are obviously not images of each other
through some automorphism. m|

4 Separable Extensions

Exercise 4.1. Let char(k) = p. Let f(X) € k[X] be an irreducible polynomial. Then f is not separable iff f(X) = g(X") for some
¢(X) € k[X]. Consequently, for any irreducible polynomial f(X) € k[X], f(X) = h(XP") for some separable irreducible polynomial
h(X) e k[X]and n = 0.

Proof. If f(X) is not separable, then f(X) has repeated roots, and thus there is some a € k such that fla) = f'(a) = 0.

Now, if f” # 0, then f, f" have a non-trivial gcd over k and hence k (recall that ged is a field invariant entity), which is not
possible since f is irreducible. Thus f” = 0. But f’ can be 0 only when the only non-zero coefficients of f are associated
with powers of X7, i.e. f(X) = g(X").

Conversely, if f(X) = g(X?), then f’ = 0, i.e. all roots of f are identical. Since f is irreducible over k, deg(f) > 1, and
consequently, f is not separable over k. ]

Remark. If f is an irreducible polynomial over K (where K is an arbitrary field) with f'(X) # 0, then all roots of f(X) (over K) are

distinct. Indeed, X — a divides f(X), f'(X), where a € K, then f(X), f/(X) would have a non-trivial gcd in K. But the ged of two
polynomials is the same regardless of the field, so the gcd of f, f’ would be non-trivial even over K. But f(X) is irreducible over K,
and can only have a non-trivial gcd with polynomials p for which f divides p. However, deg(f’) < deg(f), and thus f can’t divide

f
Exercise 4.2. Let char(K) = p > 0. Then:
1. Let L/K be a finite field extension, and let char(K) = p. Prove that L is a separable extension if [L : K] is relatively prime to p.

2. Prove that a has a p™ root in k iff XP" — a is not irreducible over k for any n € N.

3. Letack. ais separable over k iff k(a) = k(a?") forall n € N.

4. kis perfect iff every element of k has a p'™ root in k, i.e. k = kP, where kP := {xV : x € k} is the image of k under the Frobenius
map. Recall that a field k is said to be perfect if k [k is separable.

Proof. The proofs are as follows:

1. Write n := [L : K], and let « € L. Then degy(«) | n, and thus deg,(«a) is relatively prime to p. Consequently, if
f(X) = X9 + -+ is the minimal polynomial of & over K, then f’(X) = dX%1 + ... # 0. Since f"(X) # 0, f(X) and
f'(X) are co-prime, and consequently, all roots of f are distinct.

2. Leta, € k be such that aﬁn =a. Then X" —a = (X —a,)"", ie. XP" — 4 has exactly one root in k.

Now, if a = b? for some b € k, then X*" —a = (X”"_1 — b)?, and thus X?" — a is not irreducible over k for any n € N.
Conversely, suppose f(X) := X?" — a is not irreducible over k. Let g(X) be the minimal polynomial of &, over k,



and let f(X) = g(X)"h(X), where g(X) 1 h(X). Since g(X) is the minimal polynomial, m > 1. However, note that
the only root f has is a,, and consequently, the only root & has is a,. However, any polynomial over k[X] which
has @, as a root must be divisible by g(X), which is a contradiction, and thus f(X) = g(X)". Comparing degrees
leads to m = p"™*,deg(g) = p" for some u < n — 1. Note that u # n since f is not irreducible. Also note that

g(X) = (X —a,)l" = XP" - aZ”, and thus anu € k, since g(X) € k[X]. Setb := (aﬁ”)””fl*u =a’"" €k Clearly, b? = a,
as desired.

. Let f be the minimal polynomial of a over k.

Suppose « is not separable, i.e. f is not separable. Then by Exercise 4.1, f(X) = g(X?) for some irreducible
polynomial g(X) € k[X], and consequently, deg,(a”) = deg,(a)/p, which implies that deg,(a”) # deg,(a). But
then k(a?) # k(a), since [k(a?) : k] = deg,(a?) # deg,(a) = [k(a) : k].

Conversely, suppose «a is separable. Let r(X) € k(a?")[X] be the minimal polynomial of a over k(a?"). Now, note
that a satisfies X?" — a?" € k(a”")[X], and consequently, 7(X) | X" — a?". But note that X" — a”" has a single root
in k, and consequently, r also has a single root in k. Furthermore, since « is separable over k, it is also separable
over k(a?"). Consequently, the degree of r must be 1. But that implies that & € k(a?"), which implies k(a”") = k(a),
as desired.

. Suppose k is perfect. For any a € k, consider the polynomial f(X) := X? —a € k[X]. Note that f(X) has the

unique root a'/? € k, and thus if a'/? ¢ k, then the algebraic extension k(a'/?)/k wouldn’t be separable, leading to a
contradiction.

Conversely, suppose every element of k has a p' root. Let f(X) € k[X] be an irreducible polynomial that is not
separable. Then f(X) = g(X7?) for some polynomial g € k[X]. But

. AP
)= gx7) = Y axry = (3l x)
This contradicts the fact that f was irreducible over k.

O

Remark: By the p™ root condition, it is easy to see that if F is a characteristic p field, then the largest perfect subfield of

Fis (2 F7'.

Exercise 4.3. Let k be a field of characteristic p. Let a € k be separable, and let ay, . .., ay be the conjugates of a, i.e. ay,...,aq

p

are the roots of the minimal polynomial of o over k. Prove that afn S, dn are the conjugates of a?" .

Proof. Let f(X) = Z?:o ;X" € k[X] be the minimal polynomial of & over k (note that a; = 1). Then f(X) has a1, ..., a  as
its roots. Now, we claim that

d n .
X)) = af X!
i=0
fn, a(’z’n P aZn as its roots. Indeed,
D= 3 [ e
ose e



Thus,
p" ,
p

> e = 2 | ==
d

sy e \sérly =0

n

For odd p, (=1)*" = -1. For p =2, -1 = 1. In either case, we're done.
Consequently, degk(ap") < d. Atthe same time, since a is separable, k(a) = k(a?"), which means d = deg, (a) = degk(al"" ),

and consequently ¢(X) is the minimal polynomial of a?". But that means that the conjugates of a?" are a’; PR aZ , as

desired. O

Exercise 4.4. f is irreducible over k. h(X) = f(XP") has a root B which is separable over k. Show that h(X) = f1(X)P" for some
f(X) € k[X].

Proof. Let B1, ..., Br be the conjugates of f. By the previous exercise, ﬁ’;” Lo, BY " are the conjugates of g*". Consequently,
! n
ire(”", k) = [ [(x=p")
i=1

Then n
P

nx)=fxr) =[x - = = irr(B, k)"
i=1

ﬁ(X - Bi)
i=1

Exercise 4.5. Consider the field extension k(X,Y)/k(X?,Y?), where char(k) = p. Prove that:
1. The degree of the extension is p?.

2. There are infinitely many intermediate fields between k(XP,YP) and k(X,Y). Consequently, by the Primitive Element Theorem,
k(X,Y) is not simple over k(X?,YP).

Proof. Note that k(X?,Y?) C k(X,Y?) C k(X,Y). The degree of both the extensions is p, and thus the total degree is p?.
Indeed, [k(X,Y) : k(X,YP)] = p: Indeed, Y isaroot of TP —YP € k(X, YP)[T]. By Gauss’s lemma, it is enough to show the
irreducibility of T? — Y? € k[X, Y?][T]. But note that Y? is a prime element in k[X, Y?], and consequently, by Eisenstein’s
criterion, T? — Y7 is irreducible. The proof of the fact [k(X, Y?) : k(X?, Y?)] = p follows similarly.

We claim that {F(X + zY) : z € F} are all distinct intermediate fields, where F := k(X?,Y?). Indeed, if F(X + z1Y) =
F(X +z2Y) (for z1 # zp), then X +z1Y € F(X +z2Y), which implies Y € F(X + z1Y), which implies X € F(X +z1Y), which
implies F(X + z1Y) = k(X,Y). However, that can’t be the case since [F(X +z1Y) : F] = p, while [k(X,Y) : F] = p%. To see
why [F(X+21Y) : F] = p,note that (X +z;Y)P = X? +sz” € F,and thus deg.(X +z1Y) | p, implying deg. (X +z1Y) =1, p.
But deg (X + z1Y) # 1, since that would imply X + z;Y € F, which can’t be the case: Indeed, if

hX,Y)  f(X,Y)

X+z1Y=X+Y" X7 = 2(X,Y)

= Xg(X, Y)(X,Y)+Yh(X,Y)g(X,Y) = f(X,V)I(X,Y)

Note that the degree of all terms on the RHS is divisible by p, while the LHS contains terms whose degrees are not
divisible by p, leading to a contradiction. m]

Exercise 4.6. Let k = F,(X,Y), and consider h(T) := TP + XT? +Y € k[T]. Let B be a root of h in k. Prove that:
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1. B is not separable over k.

2. [k(B): Kl = p.

3. Let E = k™®P N k(B). Then E = k.

4. One can not decompose the extension k(B)/k into a separable and a purely inseparable extension.

Proof. Note that h(T) is irreducible: Indeed, it suffices to show its irreducibility in F,[X, Y][T] = F,[X, T]|[Y], but h is a
linear polynomial in [F,[X, T][Y], and hence irreducible. Since  is irreducible and monic, it is the minimal polynomial
of B over k. Furthermore, h'(T) = 0. Thus, since k() = h’(8) = 0, B is not separable over k. Furthermore, [k(8) : k] = p>.
Now, note that g is a root of g(T) := TP + XT + Y € k[T], and furthermore, g’(T) # 0. Consequently, p? is separable.
Now, we claim that kP N k(B) = k(BF), i.e. the separable closure of k inside k(B) equals k(g”). Indeed, note that
(kP N k(B) : k] = 1,p,p?, since [k(B) : k] = p>. However, since f8 is not separable over k, k(B) is not separable over
k, and thus [k*P N k(B) : k] = 1,p. At the same time, B is separable over k, and B” ¢ k (since g is irreducible, and
hence the minimal polynomial of g7 over k). Consequently, [k*P N k(B) : k] = p, and thus [k(B) : k]s = p, implying that
[k(B) : k]i = p.

Since [k(B) : k]s = p > 1, E & k(B), and thus [E : k] = 1,p. Suppose [E : k] = p, and let r := irr(8,E). Then
deg(r) = [k(B) : E] = p. Now, since [E : k]; = [E : k] = p, eV € k for all e € E. Consequently, r(T)? € k[T]. Furthermore,
r(B)P =0, and deg(r?) = p2. Consequently, (T)? = h(T). Now, if

F(T) =TV + 1y TP 4+ T +7rg = W(T)=r(TP) =T" + r;’_lTP(P—U +oo VTP 4]

Thus rg =Y, rf = X, and thus X'/?,Y'? € E, implying that F,(X'/?,Y'/P) C E. But by Exercise 4.5, [F,(X'/?,Y/P) :
F,(X,Y)] = p?, which contradicts the fact that [E : k] = p. Thus [E: k] =1,ie. E = k.

Suppose k(B)/k could be decomposed into k(B8)/F, F/k, where k(8)/F was separable, and F/k was purely inseparable.
Since F/k is purely inseparable, F C ki"*P N k(B) = E = k, and thus F = k. But k(8)/F = k(B)/k is not separable. O

Exercise 4.7. Let k be a field and let K/k be an algebraic extension such that every non-constant polynomial in k has a root in K.
Then K is algebraically closed.

Proof. Fix an algebraic closure k, and WLOG assume K C k. We will show that K = k. It suffices to show that for every
B € k, we have g € K. Now, let 1, ..., B, be the conjugates of B, and let F := k(B1, . . ., B) be the splitting field of irr(, k)

in k. Since F/k is normal, we have F = F;F,, where F; := k™P N F, F, := k5P N F. Consequently, it suffices to show that
F1 € K, F, € K. We now proceed case by case:

1. F; ¢ Kis obvious: Indeed, if a € Fy, then irr(a, k) € k[X] has a as a unique root in E, which must belong to K by
the problem hypothesis.

2. F, ¢ K: Note that F,/k is a finite separable field extension, and thus is simple by the primitive element theorem.

Thus, let F; = k(y) for some y € k. Now, if y4,...,y, are the conjugates of y, then we claim that k(y;) = k(y):
Indeed, note that F; is normal, and hence y; € F = k(y) = k(y:) € k(y). However, since y; is a conjugate of y,
[k(yi) : k] = [k(y) : k], and thus k(y;) = k(y). Now, consider irr(y, k) € k[X]. By the problem hypothesis, some root
of this polynomial must lie in K, i.e. y; € K for some i, i.e. k(y;) € K & F, C K, as desired.

Exercise 4.8. Prove that for every a € F;, f(X) := XP — X + a is irreducible over F,, and hence separable.
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Proof. Let a € Fp be a root of f(X). Then note that a + b, where b € F), is also a root of f, since b? = b. Now suppose
f(X) = g(X)h(X) for some g € Fp[X], where deg(g) < p. Then the roots of g are of the form a + b1, a + bz, ..., @ + bgeg(g)-
These roots sum up to a - deg(g) + b for some b € F,, and since g(X) € Fy[X], a - deg(g) + b € F,, implying that a € ),
since deg(g) < p is non-zero. But for any x € F,, x” — x +a = a # 0, which leads to a contradiction. O

Exercise 4.9. Prove the following statements:
1. Fpa C Fpriffd | n.
2. Let q be a prime power, and let f(X) € Fo[X] be an irreducible polynomial of degree d. Then d | n iff f(X) | (X1 — X).

3. Let I be the set of all monic irreducible polynomials of degree d over F,. Then

x7—x =[]0

dn fely

4. Given any n € N and prime power q, there is a degree n irreducible polynomial over ;.
Proof. The proofs are as follows:

1. Let a generate F;d, and B generate F;j,,. The order of a is p? — 1, while the order of § is p” — 1. Now, write n = d¢ +k,

where 0 < k < d. Then p? — 1 divides p? — 1, and hence p" — p*.

Now, suppose d { 1, and (p? —1) | (p" — 1). Then (pd - 1) | (p* - 1), which is a contradiction since 0 < k < n. But
this also means that F« ¢ Fy», since if Fa C Fpn, then o would have been a power of $, and the order of f would be
divisible by the order of a.

Conversely, suppose d | n. Then (p?-1)] (p" - 1), and consequently, xXr'l -1 = (X”d’l)t — 1, where t :=
(p" - 1)/(pd —1). But XP'-1 — 1 divides (X?’d‘l)t — 1, and consequently, all roots of X?"~1 — 1 can be found in By,
which is the set of roots of X?"~1 — 1. But we also know that the roots of X?*~1 — 1 form a field isomorphic to de,

and thus we can take the roots of X?'~1 — 1 to form a copy of F,« within F.

2. Let E be the splitting field of f over F,. Note that f(X) | (X7" — X) is equivalent to E C Fg» '. Now, let a be some
root of f, and consider the field F,;(«). Since F,(«) is an algebraic extension of F, it is normal (we use Exercise 3.7 to
conclude this). Since « is the root of an irreducible polynomial f, F,;(a) contains all roots of f, and thus F,(a) 2 E.
At the same time, E 2 F,(a), since E contains all roots of f. Thus E = F,(a), and [E : F;] = dequ(a) =deg(f) =4d.
Now, if E C Fyn, then [E : Fy] | [Fy» : Fy] = n, and consequently, d | n.

Conversely, assume d | n. As above, [E : F;] = d, and thus E is F;-isomorphic to qu. Since d | n, qu C Fyn, and
consequently, E C F;n, as desired.

3. Note that forany d | n,and any f € I;, f(X) | X" - X. Furthermore, since all polynomials in the I’s are irreducible
over F, they are co-prime. Consequently, the product of all polynomials in I, for all d | #n must divide X7" - X.
Now, every element in Fgn is algebraic over Fq, and hence has a minimal polynomial over Fq. Furthermore, the
degree of the minimal polynomial must divide 7, since [Fy» : F;] = n. Thus, X 9" — X, which equals [] aeFyn X -a),
must divide [y, [1fer, f(X), as can be seen by splitting both polynomials over Fq. Consequently, X7 — X =
Y [ [ ey, f(X) for some y € Fq. But note that all polynomials in I. are monic, and hence y = 1.

LWLOG assume both E and Fyn to be subsets of IE,

12



4. Let £(d) := d - |I4]. Then g" = ¥4, £(d), which, by the Mobius inversion formula, implies that

()= ) uln/d)g® = " + ) uln/d)g"

din dln
d#n
But
n—1 qn -1
Do um/dl|< gt < Y gt = <"
din dn d=1 1
d#n d#n

Consequently, £(n) > 0 for any n € N, as desired. Furthermore, since {(n) = n - |I,|, {(n) > n.

Remark: The above proofs were first given by Gauss.

Exercise 4.10. Let char(k) = p > 0. A polynomial f(X) € k[X] is called a p-polynomial if it is of the form:
f(X)= amXpm + am—lXIyWl +o+mXP +apX

Let F be the splitting field of f, and let A be the set of roots of f in F. Prove that f is a p-polynomial if and only if (A, +r, Or) is an
abelian group and all roots have the same multiplicity p°.

Proof. Note that

m—e m—1-e

m m— e e\P e \P e e
FX) = 4 XP" + @y X7 4 4 0, XP = ay (XP) e (XP) b, XY = g(XP)

where g is also a p-polynomial. Furthermore, g'(X) = a, # 0, and thus g is separable, and consequently, all roots of f
have the same multiplicity p°. Furthermore, if r, s are roots of f, then for any x, y € Fy,

flxr+ys)= Z a;j(xr + ys)pi = Z ai(x”ir”i + ypispi) = Zai(xrpi + ys’”i) =xf(r)+yf(s) =

i=0 i=0 i=0

Consequently, the roots of f actually form a Fj,-vector space, which is obviously an abelian group.
Conversely, let A be a subgroup of the additive group of some field of characteristic p. Note that the order of every
element of A is p, and thus by the structure theorem for abelian groups, A = (Z/pZ)! = F; for some ¢, and thus A is a

[Fp-vector space. We now induct on ¢. For t = 1, the roots are 0, «, ..., (p — 1)a for some a. Note that X? — a?~1X has ka
as roots for 0 < k < p, and thus

p-1

[ [(X - ka) = XP —ar"'X

k=0
Clearly, X? — aP~1X is a p-polynomial. Now, suppose the statement is true up to t = £ —1, and we want to prove it for t = ¢.

Thus, let a1, as, ..., ay be the generators of A, and let h(X) be the p-polynomial with roots in the subspace generated by
a1,...,00-1. Now,

p-1 p-1 ¢ p-1 p-1 - -1 p-1 p-1
[T--TT{x-2 kim) [11T] ﬂ (X = keae) = ) kiai) = [ [ nx ~kae) = [ | (h(X) ~ keh(ar))
k1=0 k=0 i=1 k¢=0k1=0 i=1 ke=0 k¢=0
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Since

= h(X)P = h(a) " h(X)
h(X) is a p-polynomial, h(X)? — h(a,)P~*h(X) is also a p-polynomial. Finally, if all roots have multiplicity p¢, our

p-polynomial gets raised to power p¢. But raising a p-polynomial to power p® gives another p-polynomial, so we're

done.

O

5 Galois Theory

Exerc
1.
2.
3.
4.
5.

Proof.
1.

ise 5.1. Calculate the Galois groups of the following polynomials:
f(X):= X3 = X —t over C(t).
F(X) := X3 + 2X — t3 over C(t).
f(X):= X" —t over C(t).
f(X):=(X2=p1)--- (X% = pn) over Q, where p1, ..., py are distinct prime numbers.
f(X):= XV -2 over Q, where p > 3 is a prime.
The groups are as follows:

We first check the irreducibility of the polynomial over C(f)[X]. By Gauss lemma, it is equivalent to checking
irreducibility over C[t][X] = C[X,f]. But f is linear and monic over C[X, t], and hence irreducible. Now, the
discriminant of f is 4 — 27+>. We claim that 4 — 27t is not a square in C(t). Indeed, if p, g € C[t] (gcd(p, q) = 1) are
such that p?/q% = 4 — 27t2, then ¢? | p?, which can’t be, since gcd(p, q) = 1, and thus g is constant. WLOG g is 1,
and thus p? = 4 — 27t2. Thus p is a linear polynomial, which leads to a contradiction on comparing coefficients.
Thus the Galois group of f is S3.

Put X = ct to obtain #3(c® + ¢ — 1) = 0, and thus f(X) = (X — A1£)(X — A2t)(X — A3t), where A1, A2, A3 € C are the
roots of ¢3 + ¢ — 1 = 0. Thus f splits completely over C(t), and thus the Galois group is 0.

The splitting field of f is C(t1/"). Now, if o € Gal(C(t1/")/C(t)) =: G, then o(t1/") = /1%, where T, is the n'h root
of unity. Thus consider the map G — Z/nZ, ¢ — k. This map is easily verified to be a group homomorphism, and
it is injective since if k, = 0, then ¢ = id. But|G| = [C(t/") : C(t)] = n (since X" — t is irreducible over C(t)[X]), and
thus the map is surjective, and hence an isomorphism. Thus Gal(C(t'/")/C(t)) = Z/nZ.

Let K/F be a finite Galois extension, and let @ € K. Then trg/r(a) := X ecaik/r) 0(@). Note that tr is F-linear.
Now, suppose F is a characteristic 0 field, and let d € F \ F2 be such that Vd € K. Then trg /p(\/a) = 0: Indeed,
consider ¢ € Gal(K/F). Then o(Vd) = +Vd. Furthermore, o(Vd) = Vd if and only if 0 € Gal(K/F(Vd)). But

[K : F] = 2[K : F(Vd)], and thus exactly half of the automorphisms in Gal(K/F) map Vd to Vd, and the other half

map it to —Vd, and thus the trace is 0, as desired.
We now claim that [E(/pi+1) : E] = 2, where E := Q(4/p1, ..., vPi) = Q[\/p1, ..., pi]- To show this, it is enough to
show that \/pis1 ¢ E. AFTSOC it is. Now, a typical element of E looks like }; scli] 4s Vds, ds == 1] jes Pj- Note that

Vds ¢ Qif S # 0. Thus,

Vpis1 = Z as\ds = tre(prn/E(VPi+1) = Z as trE(\/m)/E(\/%) = 0=a9

Scli] Scli]
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Now,

pi+1 = Zasvdspi+1 = tre(r/E(Piv1) = Z as tre(yp)/E(Vdspiv1) = piv1 - | Gal(E(\/pi+1)/E)|l =0

S#0 Scli]

which leads to a contradiction.

Thus, the desired Galois group (say G) has order 2". Now, let 0 € G. Then o(v/p;) = ++/p; for all i, and thus 02 = id.
Thus G is a group where every element has order 2. Then by standard group theory, G is abelian. Thus, by structure
theorem, G is isomorphic to the product of cyclic groups. Now, if the size of any of those cyclic groups is > 2, then
G would have an element of order > 2. Thus, Gal(Q(\/p1, . .., \Pn)/Q) = (Z/2Z)".

5. The splitting field of f is E := Q(/2, Cp)- Now, consider the split short exact sequence:

1 — Gal(E/Q(Cp)) = Gal(E/Q) » Gal(Q(Cp)/Q) — 1

where the splitting Gal(Q(C,)/Q) — Gal(E/Q) is just an inclusion (where o € Gal(Q((,)/Q) is extended to E
by setting o(X2) = 2). Thus, Gal(E/Q) = Gal(E/Q(Cp)) = Gal(Q(C,)/Q) = Z, > Z;j. Now, note that Gal(f) is
non-abelian: Indeed, define o,7 € Gal(f) as 0(C,) = Cz,a({/ﬁ) = VE,T(C,,) = CP,T({/E) = {/EC;;, and note that

ot(X2) = %C% * *’/EC,, = 10(}2) = o1 # 10. We also claim that there is a unique non-abelian semi-
direct product Zj < Z, (upto isomorphism): Indeed, non-abelian semi-direct products correspond to non-trivial

homomorphisms Zjj — Aut(Z,) = Z;. Let G1 be the semi-direct product corresponding to pW Zy — Zy, and
G be the semi-direct product corresponding to ¢ : Zy — Zy. Suppose W = x > xa (where ged(a, p — 1) = 1),

where xa corresponds to the automorphism of Z, as y + xa-y. Similarly, let ¢? = x  xa’. Then the isomorphism
Y of Z;j sending « to a’ induces an isomorphism from G; to G,: Indeed,

P((a,b) G, (¢, d) = Y((ap (c), b)) = (@) ()" (), Y(b)p(d))
(@), ¥ (b)) -6, W(c), P(d) = W@y, ((e), P(b)p(d))

Thus, if we verify z,b((pél)(c)) = (pf;()b)(yl}(c)), we're done. But Ip((pél)(c)) = P(bca) = pO)Y(c)a’, (P‘(;()b)(lp(c)) =
Y(b)a’ - ¢(c), as desired.

Note that in particular, the non-abelian semi-direct product can be given by the identity ¢ : Zj — Z7. Thus
Gal(f) = Zy =y Z;, where ¢ : Z; — Aut(Zp) is the identity homomorphism.

O

Exercise 5.2. Let f(X) = X* +aX? + b € Q[X] be an irreducible quartic with roots +a, +f, where a, f € C \ {0}. Let E be the
splitting field of f. Prove that:

1. 4<[E:Q] <8

2. Gal(f) = Ds, Z/4Z,Z/2Z X Z|2Z.
3. Gal(f) =Z/4Z if a/B—B/a € Q.
4. Gal(f) =Z/2ZxZ[2Z if af € Q.
5. Gal(f) = Dsg otherwise.
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Proof. 1. Since f is irreducible, Q[X]/(f(X)) is a subfield of E, and thus [E : Q] > 4. Moreover, since f is irreducible,
Gal(f) < S4. Now, if 0 € Gal(f), then o(-a) = —o(a),d(-B) = —o(f). The only permutations in S, satisfying
these conditions are G := {id, (o, —a), (B, =), (a, —a) - (B, —B), (&, B) - (=et, =B), (a0, B, —ax, =B), (&, =B, —av, B), (at, =) -
(B,—a)}. Note that G = Ds (since G is a subgroup of S, of size 8, i.e. G is a 2-Sylow subgroup of &), and thus
Gal(f) < Ds, as desired.

2. Since Gal(f) < Dg, and | Gal(f)| > 4, | Gal(f)| = 4,8. The only groups of order 4 are Z/47Z,7Z /27 x Z/2Z, and the
only group of order 8 which is also a subgroup of Dg is of course Dy itself.

3. Since a/B - B/a € Q, a(a)/a(B) — o(B)/o(a) = a/B — B/a. The only permutations which do that are {id, (&, —a) -
B,-B), (a,B,—a,—B),(a, =B, —a,B)} =: G1. Since | Gal(f)| > 4, we must have Gal(f) = G;. Furthermore, note that
(a, B, —a, =) € Gy has order 4. Thus G; = Z/4Z.

4. Since af € Q, o(ap) = ap for all ¢ € Gal(f). The only permutations which do that are {id, (a, —a) - (8, —f), («, B) -
(=a,—B),(a,—B) - (B,—a)} =: Gy. Since | Gal(f)| > 4, we must have Gal(f) = G,. Furthermore, note that every
element in G, has order 2. Thus G, = Z/27Z X Z/27Z.

5. The only subgroups of G of size 4 are G1, Gy, {id, (a, —a) - (B, —B), (@, —a), (B, —B)} =: G3. Note that Gal(f) # G1, Go,
since they fix a/p — f/a and ap respectively. Gal(f) # Gz either, since no element of G3 takes a to 8, and Gal(f)
being the Galois group of an irreducible polynomial must act transitively on its roots. Consequently, Gal(f) = Ds.

o

Exercise 5.3. Let f € k[X] be an irreducible quartic such that | Gal(f)| = 8. Then Gal(f) = Ds.

Proof. Note that Gal(f) < S4. A subgroup of S, of size 8 must be a 2-Sylow subgroup of 4. Now, note that all Sylow
subgroups of the same cardinality are isomorphic to each other (since they are conjugate to each other), and the 2-Sylow
subgroups of S, are isomorphic to Dg, so we're done. m]

Exercise 5.4. Let p be a prime. Let f € Q[X] be an irreducible polynomial of degree p such that f has exactly two non-real roots.
Then the Galois group of f is S,.

Proof. Let E/Q be the splitting field of f. Note that Q[X]/(f(X)) is a subfield of E with degree p. Consequently,
p|[E:Q] = p||Galg(f)|. Thus, by Cauchy’s theorem, there exists an element of order p in Galg(f).

Also note that since f has exactly two non-real roots, they must be conjugates of each other. Then the automorphism
t = —t of C induces an order 2 automorphism of E over Q, i.e. an automorphism which maps one non-real root to the
other, and keeps all the real roots fixed. Thus, Galg(f) has an order 2 element. Furthermore, the order 2 element is
actually a transposition, since it must map one non-real root to its conjugate (it is here that we use the fact that there are
exactly two non-real roots: If there were more than two non-real roots, then the restriction of complex conjugation could
have been a composition of > 1 transpositions).

Finally, also note that Galg(f) < S,. Now, since Galg(f) contains a p-cycle and a 2-cycle, it must actually be equal to &,
as desired. o

Remark: Recall from group theory that (12...n), (ab) generate S, if and only if ged(|a — b|, n) = 1. In particular, if p is
prime, then a p-cycle and a 2-cycle generate S,,.

Exercise 5.5. Let E/k be a finite separable extension of degree p, where p is prime. Let E = k(0), and let the conjugates of 6 be
0 =01,...,0,. Suppose 02 € k(0). Then E/k is Galois.
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Proof. Let L = k(61,...,0;) be the normal closure of 0 over k. Note that p | [L : k], and thus Gal(L/k) has an element ¢ of
order p by Cauchy’s theorem. Note that ¢ is a p-cycle over 0, ..., 0;,i.e. ¢ is a cyclic permutationon 6, . .., Gyp. Choose
t such that ¢’(01) = 0,. Replace o by o'. Now, since 0, € E, and deg,(0,) = p. Thus E = k(62). Now, [¢(E) : k] = p, and
0, € 0(E), and thus ¢(E) = k(6,) = E. Similarly, 63 € ¢(E) (since 0, € E), implying 03 € E. Continuing, we get that E = L,
as desired. 0

Exercise 5.6. Let f(x) € Q[X] such that Galg(f) = S, where n = deg(f) > 3. Then:
1. f isirreducible.
2. Autg(Q(a)) = {id}.
3. a"¢Qifn >4

Proof. The proofs are as follows:

1. Let f(X) = fi(X)™ - f(X)" be the decomposition of f into irreducible polynomials, where deg(f;) = d;. Note that
the degree of the splitting field of f over Q is at most dq!d,!- - - d,!, which is strictly less than n! unless r = 1,n, = 1.

2. Let ¢ be a non-trivial Q-automorphism of Q(a). Then ¢ sends a to ay # a. Since a; € Q(a) = Q[«a], there exists
p(X) € Q[X] such that @y = p(a). Now, pick any element 7 in the Galois group of f such that 7(a) = a. Then
t(az) = t(p(a)) = p(t(a)) = ay. But there are elements of S, which fix a yet move a5, leading to a contradiction.

3. If a" = q € Q, then p(a) = 0, where p(X) := X" — g. Since p is a monic polynomial of degree #, p is the minimal
polynomial of @. Now, the splitting field of p is Q(ql/ " (). But [Q(ql/ ") : Q] = n (since p is irreducible), and
[Q(Cn) : Q] = ¢p(n), where ¢(:) is the Euler totient function. Thus [Q(¢qY", () : Q] < np(n) < n(n — 1) < n! for
n > 4, which is a contradiction.

O

Exercise 5.7. Let f(X) € k[X] where k € R. Suppose f is irreducible over k, and suppose f has a non-real root of absolute value 1.
Then if f(a) = 0, then f(1/a) = 0. Furthermore, f is of even degree.

Proof. Suppose f(w) = 1, with |w| = 1. Then f(w) = 0, since f has real coefficients. Suppose f(a) = 0. Then there exists
o € Gal(f) such that o(a) = w. Also write f := ~}(@). Then o(af) = o(a@)o(f) = @ - @ = |w|*> = 1. Thus af =1, ie.
B =1/a. Note that f doesn’t have 1 as a root, since it is irreducible over k. Thus, the number of roots of f must be even
(simply pair every root of f with its reciprocal). ]

Exercise 5.8. Let E/k be Galois, and let H be a subgroup of G := Gal(E/k) such that H maps F to itself. Show that H is the
normalizer of Gal(E/F) in Gal(E/k).

Proof. Note that H = {0 € Gal(E/k) : o(F) € F} = {0 € Gal(E/k) : o(F) = F}. Suppose ¢ € H. For any © € Gal(E/F),
note that o(7(67!(x))) = x for any x € F. Thus ot0™! € Gal(E/F) = H C Ng(Gal(E/F)). Conversely, suppose
o € Ng(Gal(E/F)). Let x € F,7 € Gal(E/F) be arbitrary. Since ¢ € Ng(Gal(E/F)), 0-'10 = v’ € Gal(E/F), and thus
tox = 0t'x. But v’ € Gal(E/F) = 17’x = x, and thus 7 fixes o(x) for all x € F, i.e. Gal(E/F) fixes o(x). Thus o(x) € F by
the Galois correspondence, i.e. 6(F) C F = o(F) =F, as desired. O

Exercise 5.9. Let E/k be finite Galois with G := Gal(E/k). Let a be an element such that {o(a) : 0 € Gal(E/k)} is a k-basis of E.
Let H be a subgroup of G, and let F = EH. Let {Ht} be the right cosets of G over H. Define S(Ht) = Y, ey 0(a). Then {S(HT)}
is a k-basis for F.

17



Proof. Suppose {S(Ht;) : 1 < i < r} is linearly dependent. Then

r

Zr:aiS(HTi)=0 = Z Z aio(a)=0 = a; =0
i=1

i=1 oeHrt;
Furthermore, [F : k] = r, thus the aforementioned set is a basis. O

Exercise 5.10. Let f € Q[X] be an irreducible polynomial of degree > 3. Let S be the set of roots of f in C. Then S can’t contain a
non-trivial arithmetic progression.

Proof. Since f is irreducible, it has distinct roots. Suppose a = (a’ + a”)/2, where a,a’,a” € S. Since Gal(f) acts
transitively on S, for all € S, we have ¢ € Gal(f) such that o(a) = B, and thus g = (o(a’) + o(a”))/2. Thus, every element
of S is an average of two other elements of S. This is not possible: Indeed, let € S have the largest real part. Then the
line x = R(n) has at least two other elements of S. Among those elements, take the element with the largest imaginary
part. That can’t be the average of any two other elements, leading to a contradiction. m|

Exercise 5.11. Prove that there doesn't exist a Galois field extension K[k such that Gal(K/k) = R.

Proof. AFTSOC not. Choose a € K\ k, and let L be the normal closure of k(a) over k. Since L/k is a finite normal extension,
Gal(K/L) is a normal subgroup of Gal(K/k) of finite index. Thus, if we can show that R has no proper subgroups of finite
index, then we’d be done.

Indeed, suppose H < Rsuch that|R/H| = n < co. Choose x ¢ H. Since the quotient group R/H has order n, nx € H. Now,
consider the set {x/n* : k € N}. It is infinite, and since H has only finitely many cosets, we must have x/ nft—x/nk2 e H
for some ki, k» € N such that k» > ki. But then we have x(n*27%1 — 1) € H. At the same time, nx € H = n*2>fx ¢ H.
But then nf2~%1x — x(n*2=%1 — 1) = x € H, which leads to a contradiction. O

Remark: The above proof works verbatim to show that Gal(K/k) # G, where G is a divisible group. Recall that an abelian
group G is called divisible if for every x € G, x # 0, and every n € N, there exists y € G such that ny = x.
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