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1 Some Definitions

We recap some basic definitions of cryptography before stating and proving
the Goldreich-Levin theorem.

Definition 1 (One-Way Function). A family of functions f, : {0,1}" —
{0, l}k(") are called one-way functions if they are computable in polynomial
time and for every non-uniform PPT adversary A,

Pr  (fu(A(fn(2))) = fn(x)) = negligible(n)

z<—{0,1}7
where negligible(n) is a function which decays super-polynomially with n.

Definition 2 (Hard-Core Predicate). A predicate h : {0,1}* — {0,1} is
called a hard-core predicate for a one-way function f : {0,1}™ — {0, 1}+™)
if h is computable in polynomial time and for every non-uniform PPT ad-
versary A

xeﬁ)ﬂ}ﬂ(.ﬁl(l", f(x)) =h(z)) = % + negligible(n)

We extensively referred to [1], [2], and [3] for our report.



2 Theorem Statement

The Goldreich-Levin theorem goes as follows:

Theorem 2.1 (Goldreich-Levin Theorem). Let f be a one-way function
with domain {0,1}". Note that for any r € {0,1}", g(x,r) := (f(z),r) is a
one-way function too. Then h(xz,r) := (x,r) is a hard-core predicate for g,
where (x,r) denotes the dot product of x and r (in Fa).

3 The Proof

We proceed via contradiction: Consider a PPT adversary which can guess
the hardcore bit with non-negligible probability over % We shall construct
a PPT adversary which can invert f with non-negligible probability.
However establishing the theorem requires some lemmata, which we shall
now prove.

Lemma 3.1. Let A be any PPT adversary, let § > 0. Define

Gas = {x . Pr (A(f(z),r) = (z,r)) > M}

r«{0,1}" 2

If Prx,w—{(],l}" (.A(f(ﬂ?),T) = <J"7T>) > %—'_ g, then Prx(—{O,l}” (J,‘ € GA,5) > g

Proof. Note that

x,w—l?al}" A @),r) = {a.m) = x7r<—}j[g,1}n A(f(z),r) = (z, )|z € GA,a)IFEfl}
P = P
+I’T<_{1671}R(A(f(a:),r) (z,r)|x & Gays) m<—{01:1}n($ Z Gas)
146
<1l1- P -1
st dhaeGas) =3

Since Pr,. . 0.1y (A(f(2),r) = (x,7)) > 5+, we get our desired result. [

Lemma 3.2. Let X1, Xo,..., X, be pairwise independent Bernoulli ran-
dom variables with parameter p. Define X :=> """ X;. Then

1

Proof. Denote by p the value of E[X].
Note that
Var(X) = E[(X — p)?] = E[X? - 2uX + /%]

m/
=E[X% - E[X]+* =E |> X7 +2 Y X X;| - 2uE[X] + pi®
i=1

1<i<j<m/

(@€ Gap)



m/
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i=1 1<i<g<m/

Since X;, X are pairwise independent for i # j, E[X;X;] = E[X;]E[X,] = p*.

Moreover, E[X?] = p. Consequently

Var(X)=> p+2 > p*—p*=m'p(1-p)
i=1

1<i<j<m/

where the last equality follows since p = m/p.
The desired result then follows by invoking Chebyshev’s inequality and not-
ing that p(1 —p) < 1 for every p € [0, 1]. O

Now, let § = non-negligible(n) > 0 be the advantage of our adversary A
in calculating the hardcore bit, ie:- Pry .. (o 13n (A(f(x),7) = (z,7)) > 5 +0.
Set m := [3#],k := 1+ [logy(m)]. Uniformly choose k random vectors
ty,ta, ..., tg from {0,1}*. Now, let S C {1,2,...,k} =: [k] be any non-
empty set. Then we define rg as rg := ), gt;. This way we can generate
2k — 1 = m’ > m random vectors. Note that all the vectors rg are them-
selves distributed uniformly in {0, 1}" since a linear combination of uniform
random vectors from {0, 1}" is itself a uniform random vector .

Note that for any two sets S # Sa, rg,, s, are independent. Consequently,
all our m’/ random vectors are pairwise independent.

Now assume we already know the correct values of (z,t;) for every i €
[k]. Then we know the values (x,rg) for every S C [k], since (z,rg) =
(0, esti) = Yies (.t

Let e; be the i unit vector of {0,1}". For any S C [k], since 75 are uni-
formly random, we get that rg @ e; is uniformly random too. Moreover, note
that (z,rg ®e;) — (x,rs) = (x,€;) = ;.

Consequently, for every S C [k], calculate the value of A(f(z),rs @ e;) —
(x,rg), where A is the adversary calculating the hardcore bit, obtain m’
votes for the value of z;, and take the majority vote of these values .

Let &g be the Bernoulli random variable denoting the probability distribu-
tion of A(f(z),rs @ e;) correctly calculating (z,rg @ e;). If x € G 4,5, then
the parameter of £g is at least 1%5, by the definition given in Lemma 3.1.
Consequently, the expected number of correct answers in the m’ votes for

the value of z; is at least w, and thus if the majority vote turns up the

wrong answer, that implies a deviation from the mean of more than mT/‘S. By
Lemma 3.2, the probability of this happening is at most m,152 < ﬁ < %
Consequently, the probability that any bit is calculated wrongly is at most
%, which implies, by the union bound, that the probability that x is deter-

mined wrongly is at most % ‘n = % Note that = is simply determined by

Lthis can be seen through induction
Zsince m’ = 2 — 1 is an odd number, a tie is not possible



a concatenation of the bits z; for i € [n].

Consequently, we managed to invert f(x) with probability > % - Pr(z €
Gas) > g. However since § is not negligible, neither is g, which implies
that with non-negligible probability we can invert f(z), violating the as-
sumption that it was a one-way function.

We still have to deal with one small catch: We assumed that we know (x, ;)
for every i € [n]. But obviously, that is not true a priori. We deal with this as
follows: We run the aforementioned algorithm for all 2¥ = m’ + 1 = poly(n)
possible values of ((z,%;))ic[x]- Every time, we end up with a possible value
of x, whose correctness we test for by checking if applying f(x) is the correct
answer. Since we know that for the correct values of ((z,;));c(x), We obtain
the correct value of x with probability at least %, we can consequently con-
clude that we will get the correct answer with probability at least % by the
end of all the 2" iterations.

The above step blows up our runtime by 2¥, but since 2* is polynomial in n,
our algorithm remains polynomial time, and thus our overall construction
of a PPT adversary continues to hold.

4 Connection with local list decoding of Hadamard
Codes

The construction used to generate 2¥ — 1 pairwise independent random vec-
tors is very similar to the concept of local list decoding for Hadamard codes:
For any z € {0,1}", the Hadamard encoding of z, denoted Had(z) is defined
as Had(z) i= ((2,9))yegoye € {0,112

In the context of the Goldreich-Levin theorem, the reason why the Hadamard
code is so important is because it is (g, d,e) = (2, i,O)—locally decodable:
What this means is that if y is a noisy/corrupted version of Had(z) such
that ||y — Had(z)[[; < 6 -n = %, then sampling just 2-bits of y allows us to
recover any bit of z with probability atleast % +e= %

The recovery technique of the above local decoding is exactly same as how
we obtained the i*" bit of  in the proof of the Goldreich-Levin theorem:
For a uniformly random r € {0,1}", sample the bit of y corresponding to
(x,r) =: yy. Then z; can be computed as y, B Yrge,, Where ¢; is the standard
ith basis vector, and moreover this calculation is correct with probability
> % + % —20 = %, as claimed.

Thus the proof of Goldreich-Levin theorem is quite commonly referred to in
literature as being equivalent to the list decoding of the Hadamard code.



5 Applications of the Goldreich-Levin Theorem

One of the most immediate and useful applications of this theorem is to
construct pseudo-random generators (PRGs): Indeed, let f : {0,1}" —
{0,1}™ be a one-way permutation. Then g(z,r) = f(x)||r||{x,r) is a pseudo-
random generator ®. Indeed, through this construction, the Goldreich-Levin
theorem lays the foundation for constructing a large class of PRGs.

This construction can be easily extended to a stretch of polynomial length.
Indeed,

Theorem 5.1. If f is a one-way permutation, then

gn (@, r) = rl[ (N @), )| @), )| 1S (), ) [, )
is a PRG for any N ~ poly(n), and f* denotes the k-fold composition of f.

Proof. We know that pseudorandomness is equivalent to a next-bit predic-
tion by Yao’s theorem.

Now assume for the sake of contradiction that ¢ is not a PRG: Then there
would exist ¢ € [N] and a PPT adversary A such that

PrCAG (Y (@), Y @) L @), 7)) = (i), 7)) = 5 e

We describe a PPT adversary B such that given (f(z),r), B tells us the value
of (z,r) with non-negligible probability, thus violating the Goldreich-Levin
theorem.

B chooses an i € [N] randomly. Consider x € {0,1}" such that f'(z) = 2
4. Note that for £ > 1, B can efficiently calculate fi+(z) = f=1(f(2)).
Consequently, B can, in polynomial time, generate the string r||(fV (z),r)||
Y (2), 7)) on it’s own and feed it to A as an input, which would then
return to B the value of (z,r) with non-negligible probability, allowing B to
violate the Goldreich-Levin theorem. O
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3this can be proved through the equivalence of the definitions of pseudo-randomness
and next-bit unpredictability

4Such a & must necessarily exist since the composition of two permutations is also a
permutation, and consequently every element in our co-domain has a (unique) pre-image
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