
Matrix Sparsification and Applications

Arpon Basu Ştefan Tudose
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1 The Main Theorem: Matrix Coloring

For any symmetric matrix A ∈ Rn×n with eigenvalue decomposition A = ∑n
i=1 λivivTi , and any function f : R → R,

define f (A) := ∑n
i=1 f (λi)vivTi . In particular, |A| = ∑n

i=1 |λi|vivTi is a PSD matrix.

Theorem 1.1 (Deterministic Matrix Partial Coloring). Let A1, . . . , Am ∈ Rn×n be symmetric matrices such that ∑i⩽m |Ai| ⪯
Id. Let C ⊆ Rm be a set of good partial “colorings”, i.e.

C :=

{
x ∈ Rm :

∥∥∥∥∥∑
i⩽m

xi Ai

∥∥∥∥∥
2

⩽ 16
√

n
m

}
.

Further supposeH ⊆ Rm is a subspace of Rm with dimension ⩾ 0.8m. Then there exists a deterministic polynomial time algorithm
that returns a coloring x ∈ [−1, 1]m such that x ∈ C ∩H and |{i ∈ [m] : xi = ±1}| ⩾ Ω(m).

Remark. A few remarks are due:

1. In a first reading of the theorem, it is convenient to assume that H = Rm. The reason we introduce the theorem with H
is that often we would like our coloring to satisfy some additional properties, and we can use H to encode those properties.
The key realization in the proof of the above theorem is that when a good partial coloring exists, actually an entire subspace
(of dimension Ω(m)) of good partial colorings exists, and thus as long as codim(H) is small, we can impose the condition
encoded byH “for free” on our coloring.

2. Note that in the setting of the matrix Spencer conjecture, we require ∥Ai∥2 ⩽ 1 for all i ∈ [m], in which case ∥∑i⩽m |Ai|∥2
can be as large as m. Rescaling the matrices in the above theorem by m to make it commensurate with the setting of the matrix
Spencer conjecture, we obtain a partial coloring with ∥∑i⩽m xi Ai∥2 ⩽ O(m ·

√
n/m), while the matrix Spencer conjecture

asks for a discrepancy of O(
√

m ·
√

log(n/m)) (and matrix Chernoff provides O(
√

m log m) very easily).

3. This theorem was first proven in [RR19] using methods from convex geometry. The proof we shall present below is due to
[LWZ24], who removed all convex-geometric techniques, and gave a proof using the so-called deterministic discrepancy
walk, introduced in the context of vector coloring by Pesenti and Vladu [PV23]. The discrepancy walk (and the potential
function therein) should be seen as a direct generalization of the barrier function method in Batson, Spielman, and Srivastava
[BSS09].

We shall see a proof of the above theorem in Section 3. But before that, let’s explore some applications of the above
theorem.

2 Matrix Sparsification

Theorem 2.1 (Deterministic Matrix Sparsification). Given PSD matrices A1, . . . , Am ∈ Rn×n such that ∑i⩽m Ai ⪯ Id and a
subspace H ⊆ Rm of dimension m−O(n), there exists a deterministic polynomial time algorithm to construct s ∈ Rm

⩾0 such that
| supp(s)| ⩽ O(n/ε2) such that s− 1m ∈ H and ∥∑i⩽m si Ai −∑i⩽m Ai∥2 ⩽ ε.

As in [RR19], we can convert a partial coloring theorem into a matrix sparsification statement. We shall just sketch a
proof here: Basically, we run an iterative algorithm, where at each step we invoke Theorem 1.1 to obtain a partial color-
ing xt ∈ Rm. We also maintain our sparsifier st ∈ Rm as st(i) := st−1(i)(1 + xt(i)). Thus whenever xt(i) is set to −1, we
zero out that particular coordinate in st. 1 In the next round, we invoke Theorem 1.1 to find a coloring xt+1 of {st(i)Ai}.

1if there are more 1s than −1s among the frozen coordinates of x, we flip the sign of x
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We terminate this iteration when | supp(st)| ⩽ O(n/ε2). Since supp(st) decreases by a constant factor in every round,
the above iteration terminates within O(log(ε2m/n)) steps, leaving us with s ∈ Rm

⩾0 with | supp(s)| ⩽ O(n/ε2).
We can use matrix sparsification to recover the graph sparsification result of [BSS09] by taking Ae := L†/2

G LeL†/2
G , where

e ∈ E(G), Le is the edge Laplacian, and LG is the graph Laplacian. Furthermore, we can get a degree-preserving spar-
sifier by exploiting the subspace H in Theorem 2.1: Indeed, note that ∑u:u∼v st(uv) = ∑u:u∼v(1 + xt(uv)) · st−1(uv) =
∑u:u∼v st−1(uv) + ∑u:u∼v xt(uv)st−1(uv). Thus, at the tth iteration, we can set H := {x ∈ Rm : ∑u:u∼v xt(uv)st−1(uv) =
0} to preserve the degree.
Although we won’t talk much about it, matrix sparsification can also be used to prove stronger versions of graph sparsi-
fication: For example, unit circle sparsification, and singular value sparsification (see [APP+23] for the definition and
applications). We briefly talk about unit circle sparsification below:

Definition 2.1 (Unit Circle Sparsification). Let G be a graph, let LG := DG − AG be the (signed) Laplacian of G, and let
UG := DG + AG be the unsigned Laplacian of G. Then a graph G′ is called a ε-unit-circle sparsifier of G if:

1. (1− ε)LG ⪯ LG′ ⪯ (1 + ε)LG, i.e. G′ is a spectral sparsifier in the usual sense,

2. (1− ε)UG ⪯ UG′ ⪯ (1 + ε)UG, i.e. G′ preserves the unsigned Laplacians too,

3. DG = DG′ , i.e. G′ preserves the degrees of G.

Remark. The definition of unit circle sparsifiers in [LWZ24, Definition 2.10] has something to do with complex numbers, and
technically the conditions stated above imply their version of unit circle sparsification (see [LWZ24, Lemma 4.2]), but we found the
above conditions to be more well-motivated.

Then we have an extension of [BSS09] for unit circle sparsification (which follows from the general matrix sparsification
Theorem 2.1):

Theorem 2.2. Given an undirected graph G with n vertices, there exists a unit circle sparsifier with O(n/ε2) edges. Furthermore,
it can be found in poly(n, 1/ε) time.

Remark. This theorem follows easily from Theorem 2.1 by taking Ae :=

[
L†/2

G LeL†/2
G 0

0 U†/2
G UeU†/2

G

]
, where Ue, UG are the

unsigned Laplacians of e ∈ E(G) and the graph G respectively. This notion of sparsification was introduced by [AKM+22] who
used it to study low-space Laplacian solvers for undirected and Eulerian directed graphs.

3 Proof of Theorem 1.1

Consider the following general framework for a “deterministic discrepancy walk” with a potential function Φ(·):
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Deterministic Discrepancy Walk

1. Set x0 = 0 ∈ Rm, H1 = [m], t = 1, α := 1/(2η). H∗ should be thought of as the set of “active coordinates”.

2. While mt := |Ht| ⩾ 3m/4 is large,

(a) Choose a unit vector yt ∈ x⊥t−1 such that Φ(xt−1 + yt)−Φ(xt−1) is “small”.

(b) Let δt ⩽ α be the largest step size such that xt ← xt−1 + δtyt lies in [−1, 1]m.

(c) Update xt ← xt−1 + δtyt, t← t + 1, Ht ← {i ∈ [n] : xt(i) ̸= ±1}.

3. Return xT , where T is the number of iterations after which the above loop was broken.

The way this walk is analyzed is as follows: Suppose we want to find a ±1-valued coloring which minimizes some
quantity. Then Φ(·) is supposed to represent some smooth proxy for the quantity we wish to minimize, such that finding
the “update vector” yt is not too difficult. Note that because our walk seeks to “push” the xts towards the boundary by
choosing δt to be as large as possible so that xt touches the boundary, at every step of the walk, hopefully we round a
few more coordinates to ±1, thus decreasing the number of active coordinates. Finally, the discrepancy of the solution
returned by the algorithm is ≈ Φ(xT), which is small since all the increments Φ(xt−1 + δtyt)−Φ(xt−1) are small.
We shall also run a discrepancy walk to prove Theorem 1.1. Following [AZLO15, LRR17, BLV22, PV23], set

Φ(x) := max
M∈∆n

⟨A(x), M⟩+ 2
η

tr(M1/2),

where A(x) := ∑i⩽m xi Ai, ∆n := {M ⪰ 0 : tr(M) = 1} is the set of all density matrices, and η :=
√

m/4. We also note a
very easy proposition:

Proposition 3.1. If M ∈ ∆n, then tr(M1/2) ⩽
√

n, with equality being achieved when all eigenvalues of M are equal.

Proof. Let the eigenvalues of M be λ1, . . . , λn. Then 1 = tr(M) = ∑i λi, and tr(M1/2) = ∑i λ1/2
i . The claim now follows

from Cauchy-Schwarz inequality.

Note that maxM∈∆n⟨A(x), M⟩ = λmax(A(x)), which equals ∥A(x)∥2 (which is the quantity Theorem 1.1 seeks to min-
imize) if A(x) is PSD. To remedy this slight discrepancy (no pun intended) between the maximum eigenvalue and the

spectral norm, note that ∥A∥2 = λmax

([
A 0
0 −A

])
, and thus by blowing up the dimension of our matrices by a factor

of 2 if necessary, we can WLOG replace all spectral norms with maximum eigenvalues.
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Intuition for Φ(·)

Note that as explained above, ⟨A(x), M⟩ extracts the maximum eigenvalue of A(x), which we want. However,
why is the regularizing term tr(M1/2) necessary? Note that the tr(M1/2) term promotes that the eigenvalues of M
are “spread” by Proposition 3.1. In other words, tr(M1/2) forces M to be somewhat isotropic. This is important
because note that by choosing a suitable y, one can abruptly change the direction along which ⟨A(x + y), M⟩
achieves its maximum eigenvalue. In such a situation, an isotropic M prevents Φ(·) from changing too much.
However, tr(M1/2) isn’t the only regularizing term which works: Indeed, just as our choice of tr(M1/2) yields
a matrix sparsification statement (see Theorem 2.1) implying the Batson-Spielman-Srivastava bound [BSS09],
an “entropic” regularizing term of −⟨M, ln M⟩ coupled with the above discrepancy walk yields the Spielman-
Srivastava bound [SS09, AZLO15], i.e. the above discrepancy walk can be seen as a derandomization of matrix
Chernoff in this context.

Furthermore, by Proposition 3.1, for any M ∈ ∆n, tr(M1/2) ⩽
√

n. Consequently,

λmax(A(xT)) ⩽ Φ(xT) = Φ(0) +
T

∑
t=1

(Φ(xt−1 + δtyt)−Φ(xt−1)) ⩽
2
√

n
η

+
T

∑
t=1

(Φ(xt−1 + δtyt)−Φ(xt−1)) . (1)

We now quantify the exact difference Φ(x + y)−Φ(y) to be used in our analysis later on:

Lemma 3.2. For any symmetric matrices A1, . . . , Am and vector x ∈ Rm, there is a unique M ∈ ∆n which maximizes ⟨A(x), M⟩+
2
η tr(M1/2). Furthermore, there exists a unique u ∈ R such that (u · Id−ηA(x))−2 is the maximizer. Moreover, for any y ∈ Rm,

and for M = arg max
M∈∆n

⟨A(x), M⟩+ 2
η

tr(M1/2), if we have ∥M1/2 A(y)∥2 ⩽ 1
2η , then:

Φ(x + y)−Φ(x) ⩽ ⟨A(x), M⟩+ 2η tr(M1/2 A(y)M1/2 A(y)M1/2).

See Appendix A for a proof of the above statement.
With an intent to apply Lemma 3.2 to (1), we note that

∥M1/2 A(δtyt)∥2 ⩽ ∥M1/2∥2 · ∥A(δtyt)∥2 ⩽

∥∥∥∥∥ m

∑
i=1

δtyt(i)Ai

∥∥∥∥∥
2

⩽ δt · ∥yt∥∞ ·
∥∥∥∥∥ m

∑
i=1
|Ai|

∥∥∥∥∥
2

⩽ δt ⩽ α.

Here the first inequality follows by the sub-multiplicativity of ∥ · ∥2, the second inequality follows since M ∈ ∆n =⇒
∥M1/2∥2 = λmax(M1/2) = λmax(M)1/2 ⩽ 1, and ∥yt∥∞ ⩽ 1 since yt is a unit vector. Finally, from the hypothesis of
Theorem 1.1, since ∑m

i=1 |Ai| ⪯ Id, α := 1/(2η), (2) holds:

λmax(A(xT)) ⩽ Φ(xT) ⩽
2
√

n
η

+
T

∑
t=1

δt⟨A(yt), Mt⟩+ 2ηδ2
t tr(M1/2

t A(yt)M1/2
t A(yt)M1/2

t ). (2)

where Mt := (ut Idn−ηA(xt−1))
−2, where ut ∈ R is chosen according to Lemma 3.2 so that Mt = arg max

M∈∆n
⟨A(x), M⟩+

2
η

tr(M1/2).

Now, note that

tr(M1/2
t A(yt)M1/2

t A(yt)M1/2
t ) = ∑

i,j
yt(i)yt(j) tr(M1/2

t Ai M
1/2
t Aj M

1/2
t ) = ∑

i,j∈Ht

yt(i)yt(j) tr(M1/2
t Ai M

1/2
t Aj M

1/2
t )
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= (yt|Ht)
TNt(yt|Ht)

where yt|Ht is the restriction of yt to the coordinates in Ht, and the matrix Nt is defined as (Nt)ij := tr(M1/2
t Ai M

1/2
t Aj M

1/2
t ).

Note that in the second equality we use the fact that supp(y) ⊆ Ht. Furthermore, (Nt)ij = tr(M1/2
t Ai M

1/2
t Aj M

1/2
t ) =

⟨M1/2
t Ai M

1/4
t , M1/4

t Aj M
1/2
t ⟩, and thus Nt is a Gram matrix, and hence PSD. Let Nt = ∑mt

i=1 λiuiuT
i be the eigenvalue

decomposition of Nt with 0 ⩽ λ1 ⩽ · · · ⩽ λmt . At this point, we explain how to make the “choice” of yt in Item 2a, we
make a few definitions:

1. U0 := {yi = 0 : i ̸∈ supp(Ht)}: Forcing y ∈ U0 ensures supp(y) ⊆ Ht,

2. U1 := {y ∈ Rm : y ∈ x⊥t−1}: This is self-explanatory. Note that forcing yt to be orthogonal to xt−1 implies that
xt = xt−1 + δtyt satisfies ∥xt∥2 = ∥xt−1∥2 + δ2

t . By arguing that δt can’t be too small too often, this allows use to
bound the number of steps in our walk. Note that codim(U1) ⩽ 1.

3. U2 := {y ∈ Rm : ⟨A(y), Mt⟩ = 0}: This is to ensure that the linear term in (2) vanishes, which simplifies the
analysis. Note that codim(U2) ⩽ 1.

4. U3 := {y ∈ Rm : y|Ht ∈ span{u1, . . . , umt/3}}: This is to ensure that y comes from a “low” eigenspace of Nt, which
would imply that the tr(M1/2

t A(yt)M1/2
t A(yt)M1/2

t ) term is small.

Write U := U0 ∩U1 ∩U2 ∩U3. We choose y from U , and note that dim(U ) ⩾ mt − 2− 2mt/3 = mt/3− 2 ⩾ m/4− 2,
where the last inequality follows from the fact that mt ⩾ 3m/4. Thus, we always have plenty of choices for y. Now we
need to argue that y ∈ U3 implies that the quadratic term in (2) is actually small.

Lemma 3.3. Given symmetric matrices A1, . . . , Am ∈ Rn×n satisfying ∑i⩽m |Ai| ⪯ Id, any unit vector y ∈ U0 ∩U3 satisfies
tr(M1/2

t A(y)M1/2
t A(y)M1/2

t ) ⩽ 9
√

n/m2
t .

Proof. Note that tr(M1/2
t A(y)M1/2

t A(y)M1/2
t ) = (y|Ht)

TNt(y|Ht) ⩽ λmt/3 by the definition of U3. To bound λmt/3, we
use the Cauchy interlacing theorem: Recall that the Cauchy interlacing theorem says that if Y ∈ Rm×m is a principal
sub-matrix of a symmetric matrix X ∈ Rn×n, and if the eigenvalues of X, Y are β1 ⩽ · · · ⩽ βn and γ1 ⩽ · · · ⩽ γm

respectively, then βi ⩽ γi for 1 ⩽ i ⩽ m. More precisely, write S := {i ∈ Ht : ⟨M1/2
t , |Ai|⟩ ⩾ 3 tr(M1/2

t )/mt}, and let N′t
be the principal sub-matrix induced by Ht \ S. Now, note that

∑
i∈Ht

⟨M1/2
t , |Ai|⟩ = tr(M1/2

t · ∑
i∈Ht

|Ai|) ⩽ tr(M1/2
t ) · ∥ ∑

i∈Ht

|Ai|∥ ⩽ tr(M1/2
t ),

and thus by Markov’s inequality |S| ⩽ mt/3. By Cauchy interlacing,

λmt/3 ⩽ λmt/3(N′t) ⩽ λ|Ht\S|/2(N′t) ⩽ 2 tr(N′t)/|Ht \ S| ⩽ 3 tr(N′t)/mt,

where the second last inequality also follows from Markov’s inequality. However,

tr(N′t) = ∑
i∈Ht\S

tr(M1/2
t Ai M

1/2
t Ai M

1/2
t ) = ∑

i∈Ht\S
tr(Mt Ai M

1/2
t Ai) ⩽ ∑

i∈Ht\S
tr(Mt Ai) · tr(M1/2

t Ai),

where the last inequality follows by noting that for symmetric matrices A, B, C with A, B ⪰ 0, we have tr(ACBC) ⩽
tr(A · |C|) tr(B · |C|). 2 But by the definition of S,

∑
i∈Ht\S

tr(Mt Ai) · tr(M1/2
t Ai) ⩽

3 tr(M1/2
t )

mt
· ∑

i∈Ht\S
tr(Mt|Ai|) ⩽

3
√

n
mt
· tr

Mt ∑
i∈Ht\S

|Ai|

 ⩽
3
√

n
mt
· tr(Mt) =

3
√

n
mt

.

2see [RR19, Lemma 10] for a proof
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Here we use Proposition 3.1 and the fact that ∑ |Ai| ⪯ Id. Consequently, λmt/3 ⩽ 3 tr(N′t)/mt ⩽ 9
√

n/m2
t , as desired.

We are finally ready to prove Theorem 1.1:

Proof. We apply the discrepancy walk to prove the theorem. Note that the choice of ys we had at any point was from
the subspace U . Since we also want our final coloring to belong to H, we work with the subspace U ∩ H. Note that
dim(U ∩H) ⩾ dim(U )− codim(H) ⩾ m/4− 2−m/5 > 0 for m ⩾ Ω(1). Now, rewriting (2) we obtain

λmax(A(xT)) ⩽ Φ(xT) ⩽
2
√

n
η

+
T

∑
t=1

δt⟨A(yt), Mt⟩+ 2ηδ2
t tr(M1/2

t A(yt)M1/2
t A(yt)M1/2

t ).

Since y ∈ U ⊆ U2, ⟨A(yt), Mt⟩ = 0. Thus, simplifying the above inequality yields

λmax(A(xT)) ⩽
2
√

n
η

+ 2η
T

∑
t=1

δ2
t tr(M1/2

t A(yt)M1/2
t A(yt)M1/2

t ).

By Lemma 3.3, the above inequality further simplifies to

λmax(A(xT)) ⩽
2
√

n
η

+ 18η
√

n
T

∑
t=1

δ2
t

m2
t
⩽

2
√

n
η

+
32η
√

n
m2

T

∑
t=1

δ2
t .

where the last inequality follows since the algorithm only runs when mt ⩾ 3m/4. On the other hand, note that since
xT ∈ [−1, 1]m, we have m ⩾ ∥xT∥2 = ∥xT−1∥2 + δ2

T ⩾ · · · ⩾ ∑T
t=1 δ2

t , where the second equality follows since
yt is perpendicular to xt−1, and thus the norms just accumulate according to Pythagoras’s theorem. Consequently,

λmax(A(xT)) ⩽
2
√

n
η + 32η

√
n

m ⩽ 16
√

n
m , where the last inequality follows since η :=

√
m/4.

Now, we only have to bound the run-time of the algorithm, which is poly(n, m) · T. Now, note that in Item 2c, either
we’re able to choose δt so that xt−1 + δtyt hits the boundary of [−1, 1]m (and consequently at least one coordinate gets
frozen), or we get capped at δt := α. But, in the latter case, ∥xt∥2 = ∥xt−1∥2 + α2. Since ∥xt∥2 ⩽ m, the latter situation
can only occur ⩽ m/α2 times. The former situation (where a coordinate gets frozen) can obviously only occur ⩽ m times.
Consequently, T ⩽ m + m/α2. Recall that α = 1/(2η) = 2/

√
m, and thus T ⩽ m2/4 + m = O(m2), as desired.

A Appendix

Remark. There is a small mistake in the proof of Lemma 3.2 in [LWZ24], in that they claim in [LWZ24, Lemma 3.1] that there
exists a unique u such that (uIn − ηA)−2 ∈ ∆n, but this is manifestly not the case. The fact that there exist (at least) two u such
that (uIn − ηA)−2 ∈ ∆n should not come as a surprise: if we change max to min in the statement of the lemma, the proof goes
through in the same way. However, small modifications to their proof makes it go through, which is what we present below.

Proof of Lemma 3.2. Let us begin with the following:

Lemma A.1. Given a symmetric n× n real-valued matrix A, then

arg max
M∈∆n

⟨A, M⟩+ 2
η

tr(M1/2) = (uIn − ηA)−2

for the unique real number u ∈ (ηλmax(A), ∞) for which (uIn − ηA)−2 ∈ ∆n.
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Proof. A maximizer M exists because ∆n is compact. Let B be a symmetric n× n matrix such that tr B = 0n. For ε small
enough, M + εB ∈ ∆n. The function

ε 7→ tr (A(M + εB)) +
2
η

tr
(
(M + εB)1/2

)
has a minimum at ε = 0, so the derivative at ε = 0 must be zero. We have

d
dε

tr
(
(M + εB)1/2

)
= tr

(
d
dε

(M + εB)1/2
)
= tr

(
d
dε

(
M1/2(I + εM−1B)1/2

))
=

1
2

tr
(

M1/2(I + εM−1B)−1/2M−1B
)

We used that

(I + εC)1/2 =
∞

∑
k=0

(
1/2

k

)
(εC)k =

∞

∑
k=0

(−1)k−1

22k−1k

(
2k− 2
k− 1

)
εkCk

to be able to say that the function is differentiable when ε is close to zero.

Therefore the derivative at ε = 0 equals

tr(AB) +
1
η

tr(M−1/2B)

so we have obtained that
tr
((

ηA + M−1/2
)

B
)
= 0

for any symmetric matrix B with tr B = 0n. Note that the matrices with zero trace are precisely the orthogonal comple-
ment (with respect to the Hilbert-Schmidt inner product) of the identity matrix. Since ηA + M−1/2 is orthogonal to all of
them, it must be the case that ηA + M−1/2 belongs in the subspace generated by the identity and thus

ηA + M−1/2 = u∗ In

for some real number u∗.

If λ1 ≤ λ2 ≤ . . . λn are the eigenvalues of A, note that the function

f (u) =
n

∑
i=1

1
(u− ηλi)2

is strictly decreasing on (ηλn, ∞), approaches +∞ as u → ηλn and it approaches 0 as u → ∞, so there exists a unique
u1 > ηλn such that f (u1) = 1. There do exist other values3 of u such that f (u) = 1 and all such values ensure that
(uIn − ηA)−2 ∈ ∆n.

We now claim that u∗ = u1. A simple computation shows that for M = (uIn − ηA)−2,

tr(AM) +
2
η

tr(M1/2) =
1
η

(
u +

n

∑
i=1

1
u− ηλi

)
= g(u)

so we need to show that
u1 = arg max

f (u)=1
g(u)

3The function f approaches +∞ as u→ ηλ1 and it approaches 0 as u→ −∞ so there exists some u3 < ηλ1 such that f (u3) = 1.
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Let u2 < ηλn < u1 be such that f (u2) = 1. We will show that g(u2) < g(u1). By Cauchy-Schwarz,(
n

∑
i=1

1
(u1 − ηλi)(u2 − ηλi)

)2

≤ f (u1) · f (u2) = 1

but equality cannot be attained. Therefore

η (g(u1)− g(u2)) =

(
u1 +

n

∑
i=1

1
u1 − ηλi

)
−
(

u2 +
n

∑
i=1

1
u2 − ηλi

)
= (u1 − u2) ·

(
1−

n

∑
i=1

1
(u1 − ηλi)(u2 − ηλi)

)
> 0

Given A(x) =
n

∑
i=1

xi Ai, let us denote by ux the unique real number in the interval (ηλmax(A(x)), ∞) for which

Mx = (ux In − ηA(x))−2 ∈ ∆n

By the previous lemma we know that

Mx = arg max
M∈∆n

⟨A(x), M⟩+ 2
η

tr(M1/2)

We note that
Φ(x) = ⟨A(x), Mx⟩+

2
η

tr(M1/2
x ) =

1
η

(
ux + tr(ux In − ηA(x))−2

)
Let us see how to control the increment in the potential function Φ:

Lemma A.2. If y is chosen such that
∥∥∥M1/2

x ηA(y)
∥∥∥

2
< 1, then

Φ(x + y)−Φ(x) ≤ 1
η

(
tr(ux In − ηA(x + y))−1 − tr(ux In − ηA(x))−1

)
Proof. We use the formula for the potential function to write

Φ(x + y)−Φ(x) =
1
η

(
ux+y − ux + tr(ux+y In − ηA(x + y))−1 − tr(ux In − ηA(x))−1

)
Note that we have ux+y > ηλmax(A(x + y)) by the previous lemma and we have ηA(y) ≺ M−1/2

x = ux In − ηA(x) so
ux > ηλmax(A(x + y)) as well. Since the function h given by

u h7−→ tr(uIn − ηA(x + y))−1 =
n

∑
i=1

1
u− ηλi(A(x + y))

is convex on the interval (ηλmax(A(x + y)), ∞), we infer that

h(ux) ≥ h(ux+y) + h′(ux+y)(ux − ux+y)

Note that h′(ux+y) = −
n

∑
i=1

1
(ux+y − ηλi(A(x + y)))2 = − tr Mx+y = −1, so the above gives

tr(ux In − ηA(x + y))−1 ≥ tr(ux+y In − ηA(x + y))−1 + (ux+y − ux)

Plugging this in the formula for Φ(x + y)−Φ(x) gives the claim of the lemma.
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To further control the density increment, we will use the following

Lemma A.3. If A is positive definite and
∥∥A−1B

∥∥
2 ≤ 1/2 then∣∣∣tr((A− B)−1)− tr A−1 − tr(A−1BA−1)

∣∣∣ ≤ 2 tr(A−1BA−1BA−1)

Proof. We write

tr((A− B)−1) = tr
((

A(I − A−1B)
)−1

)
= tr(A−1(I − A−1B)−1) = tr

(
A−1

∞

∑
i=0

(A−1B)i

)

and therefore∣∣∣tr((A− B)−1)− tr A−1 − tr(A−1BA−1)
∣∣∣ = ∣∣∣∣∣tr

(
A−1

∞

∑
i=2

(A−1B)i

)∣∣∣∣∣ = ∣∣∣tr(A−1(A−1B)2(I − A−1B)−1
)∣∣∣

We now use the following simple inequality4: if C is positive definite, then | tr(CD)| ≤ tr(C) · ∥D∥2. Using this for
C = A−1(A−1B)2 and D = (I − BA−1)−1 we obtain∣∣∣tr((A− B)−1)− tr A−1 − tr(A−1BA−1)

∣∣∣ ≤ tr
(

A−1(A−1B)2
)
·
∥∥∥(I − A−1B)−1

∥∥∥
2
≤ 2 tr(A−1BA−1BA−1)

since
∥∥A−1B

∥∥
2 ≤ 1/2.

Using this lemma with A = ux In− ηA(x), B = ηA(y), we obtain that if y is chosen such that
∥∥(ux In − A(x))−1ηA(y)

∥∥
2 <

1/2, then

Φ(x + y)−Φ(x) ≤ 1
η

(
tr(ux In − ηA(x + y))−1 − tr(ux In − ηA(x))−1

)
≤ tr(M1/2

x A(y)M1/2
x ) + 2η tr(M1/2

x A(y)M1/2
x A(y)M1/2

x )

= tr(Mx A(y)) + 2η tr(M1/2
x A(y)M1/2

x A(y)M1/2
x )

which finishes the proof of Lemma 3.2.

4This follows immediately by writing C =
n

∑
j=1

µjwjwT
j for an orthonormal eigenbasis {wj}j∈[n] and applying the triangle inequality.
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