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Notation

Let n ∈ N = {1, 2, . . .}. Then we refer to the set {1, 2, . . . , n} as [n].

We denote by N0 the set {0, 1, . . . , }.

For any set S, we denote by 2S the powerset of S.

Suppose we are given variables x1, . . . , xn. Then for any set S ⊆ [n], we denote by xS the product
∏

i∈S xi. We set
x∅ = 1.

Throughout this report, the (unsubscripted) variable x shall denote the n-dimensional vector
[
x1 x2 . . . xn

]T.
We shall often overload the symbol 0, ie:- in different contexts, the same symbol 0 could mean the scalar 0 in R, or
the vector 0 ∈ Rn. However, we assure the reader that the meaning of any particular 0will be clear from the context.

We shall often refer to {−1, 1}n, n ∈ N as the boolean hypercube (of dimension n).

We shall often treat a function f : A 7→ B as a vector in the space BA.

Unless mentioned otherwise, the topology on Rn×n shall always be assumed to be the topology induced by the
Frobenius norm, and the topology on R{−1,1}n 1 shall be assumed to be the topology induced by the ℓ2 metric.

Let µ ∈ Rn be any vector and let Σ ∈ Rn×n be a symmetric PSD matrix. Then we denote by N (µ,Σ) the Gaussian
distribution with mean µ and covariance Σ.

We shall sometimes denote the symmetric difference of two sets S, T as S ⊕ T (instead of the more usual notation
S△T ), ie:- S ⊕ T = S△T = (S \ T ) ∪ (T \ S).
For multiple sets S1, S2, . . . , Sn, we define

n⊕
i=1

Si := {s : s occurs in an odd number of sets among S1, . . . , Sn}

For example, {1, 3} ⊕ {2, 3, 4} ⊕ {1, 4} = {2}.

All logarithms should be assumed to be base e unless mentioned otherwise.

1Note that R{−1,1}n is the space of all functions from {−1, 1}n to R
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�0. Preliminaries

Linear Algebra

We recall some basic facts from linear algebra.

Positive Semi De�nite Matrices

Definition 0.1. Recall that real symmetric matrices have real eigenvalues. A real symmetric matrix A ∈ Rn×n is
called Positive Semi Definite (PSD) if all eigenvalues of A are non-negative. We write A ≽ 0 to denote that A is PSD.

Lemma 0.1. A real symmetric matrix A ∈ Rn×n is PSD if and only if ⟨v,Av⟩ = vTAv ≥ 0 for every v ∈ Rn \ {0}.

The above innocuous rephrasing of the PSD condition has the following very important consequence.

Corollary 0.2. Let A,B be real symmetric PSD matrices of the same order, and let α, β ≥ 0 be real numbers. Then
αA+ βB is a PSD matrix.

Lemma 0.3. Every real symmetric PSD matrix A ∈ Rn×n is equal to BTB for some B ∈ Rn×n.

Lemma 0.4. Let v1, . . . , vm ∈ Rn be vectors. Then
∑m

i=1 viv
T
i is a PSD matrix.

Lemma 0.5. Let M be a PSD matrix such that all diagonal entries of M are ≤ 1. Then all entries of M lie in [−1, 1].

Proof. By taking a v whose only non-zero entries are in the ith and jth indices, examining the identity vTMv ≥ 0

yields that the 2 × 2 matrix
[
Mii Mij

Mji Mjj

]
is PSD. Consequently, MiiMjj −MijMji ≥ 0. But MiiMjj −MijMji =

MiiMjj −M2
ij ≤ 1−M2

ij =⇒ M2
ij ≤ 1, as desired. ■

Lemma 0.6. 1. Let X be a PSD matrix, and let Y be any matrix. Then Y XY is PSD.

2. There exist PSD matrices X,Y such that XY is not PSD.

Proof. For any v, vTY XY v = wTXw ≥ 0, where w = Y v. Consequently, Y XY is PSD. For the second part, let

X :=

[
1 2
2 4

]
, Y :=

[
1 −2
−2 4

]
. X,Y are PSD, but XY =

[
−3 6
−6 12

]
, which is not PSD. ■
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Frobenius Norm

Definition 0.2 (Matrix Norms). For any matrix X ∈ Rn×n, we define the Frobenius norm of X to be

∥X∥2F :=

n∑
i=1

n∑
j=1

|Xij |2 = tr(XXT)

Note that the Frobenius norm is just the ℓ2 norm on Rn2 .

Definition 0.3. For any two matrices A,B ∈ Rn×n, we define the inner product of those two matrices as

⟨A,B⟩ := tr(ABT)

It is easy to see that this inner product is associated with the Frobenius norm.

Remark. Matrix inner products are very convenient for expressing linear relations between the entries of a matrix.
For example, suppose I have a 3× 3 matrix A, which is given as

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


Then I can encode the equation 0.5a11 − 0.2a21 + a22 − a23 + 0.9a33 = 5 as ⟨C,A⟩ = 5, where

C =

 0.5 0 0
−0.2 1 −1
0 0 0.9



Lemma 0.7 (Trace-Eigenvalue Identity). For a symmetricX ∈ Rn×n, tr(X) =
∑n

i=1 λi, where λ1, . . . , λn ∈ R are the
eigenvalues of X . Furthermore,

∑n
i=1 λ

2
i = ∥X∥2F .

Corollary 0.8. Let X be a PSD matrix. Then ∥X∥F ≤ tr(X)2.

Proof. Since X is PSD, all of its eigenvalues (λ1, . . . , λn) are non-negative. Consequently, since tr(X) =
∑n

i=1 λi,
maxi∈[n] λi ≤ tr(X). Thus

∥X∥2F =

n∑
i=1

λ2
i ≤

(
max
i∈[n]

λi

)
·

n∑
i=1

λi ≤ tr(X)2

as desired. ■

Lemma 0.9. If X,Y are PSD matrices, then ⟨X,Y ⟩ ≥ 0.

Proof. SinceY is PSD, there exists a realmatrixZ such thatZ2 = Y . Then ⟨X,Y ⟩ = tr(XY T) = tr(XY ) = tr(XZZ) =
tr(ZXZ). Now, by Lemma 0.6, ZXZ is PSD, and thus has non-negative trace, as desired. ■
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Operator Norms

Definition 0.4. Let ∥·∥p denote the ℓp-norm on Rn. Then we define the ℓp-norm of a matrix X ∈ Rn×n to be

∥X∥p := sup
v∈Rn\{0}

∥Xv∥p
∥v∥p

It can be shown that the above supremum exists (ie:- the supremum is some finite quantity). Also, by its very
definition, we have ∥Xv∥p ≤ ∥X∥p · ∥v∥p for every v ∈ Rn.

Lemma 0.10. For any matrix X ∈ Rn×n, we have

∥X∥2 ≤ ∥X∥F ≤
√
n∥X∥2

We can generalize the notion of operator norms to “interpolate” between two different norms on Rn.

Definition 0.5 (GeneralizedOperatorNorms). Consider twonorms ∥·∥ and ∥·∥ onRn. Then the generalized operator
norm of a matrix A, w.r.t the aforementioned norms is defined as

∥A∥ := sup
v∈Rn\{0}

∥Av∥
∥v∥

When ∥·∥ is the ℓp norm, and ∥·∥ is the ℓq norm, ∥A∥ is also denoted as ∥A∥q→p.

Hadamard Products, Schur Product Theorem

Definition 0.6 (Hadamard Product). Let A,B ∈ Rm×n be two matrices. Their Hadamard product A ◦B ∈ Rm×n is
defined as

(A ◦B)ij = AijBij

Theorem 0.11 (Schur Product Theorem). Let A,B be PSD matrices of order n. Then A ◦B is also PSD.

Proof. Since A,B are PSD, we have that

A =

n∑
i=1

λiuiu
T
i , B =

n∑
i=1

µiviv
T
i

where λi, µi, i ∈ [n] are the eigenvalues of A,B respectively.
Then

A ◦B linearity of Hadamard product
=

∑
i,j

λiµj(uiu
T
i ) ◦ (vjvTj ) =

∑
i,j

λiµj(ui ◦ vj)(ui ◦ vj)T

where the last expression is PSD by Lemma 0.4. ■
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Definition 0.7. Consider any f : R 7→ R. For any A ∈ Rn×n, we define f(A) := (f(aij))i,j∈[n] ∈ Rn×n.

Theorem 0.12. LetM be a PSDmatrix all of whose diagonal entries are 1, and suppose f : [−1, 1] 7→ R is an analytic
function all of whose Taylor series coefficients are positive. Then f(M) is PSD.

Proof. Let f(x) =
∑

k≥0 ckx
k be the Taylor series of f on [−1, 1]. Denote by M (k) := M ◦ · · · ◦M︸ ︷︷ ︸

k times

for all k ∈ N0. By

Theorem 0.11, M (k) is PSD for all k ∈ N0. Consequently, if we define Sℓ :=
∑

k≤ℓ ckM
(k), then Sℓ is PSD for all

ℓ ≥ 0. Furthermore, since all diagonal entries ofM are 1, all entries ofM lie in [−1, 1] by Lemma 0.5. Consequently,
limℓ→∞ Sℓ = f(M), since f is analytic on [−1, 1]. Now, by Theorem 0.17, the set of PSD matrices is closed. Since Sℓ

is PSD for all ℓ ∈ N0, the limit point of Sℓ’s, ie:- f(M), must be PSD too, as desired. ■

Fourier Analysis

We will see some elementary Fourier analysis on the boolean hypercube.

Theorem 0.13 (Fourier Analysis on the boolean hypercube). Let n be a natural number. Consider any function
f : {−1, 1}n 7→ R. Then there exists a unique function f̂ : 2[n] 7→ R such that

f(x) =
∑
S⊆[n]

f̂(S)xS

for every x = (x1, . . . , xn) ∈ {−1, 1}n.
The function f̂ is also known as the Fourier transform of f .

Proof. We prove this statement by induction on n. For n = 1, note that any function f : {−1, 1} 7→ R can be written
as f(x) =

(
f(1)+f(−1)

2

)
+
(

f(1)−f(−1)
2

)
· x, and further note that this representation is the unique representation of

the form f̂(∅) + f̂({1}) · x.
Thus the base case of our induction hypothesis is verified. Now, suppose the statement is true for some n = k−1, k ≥
2. Then note that any function f : {−1, 1}k 7→ R can be written as

f(x1, x2, . . . , xk) =

(
f(1, x2, . . . , xk) + f(−1, x2, . . . , xk)

2

)
+

(
f(1, x2, . . . , xk)− f(−1, x2, . . . , xk)

2

)
· x1

But g(x2, . . . , xk) := f(1,x2,...,xk)+f(−1,x2,...,xk)
2 and h(x2, . . . , xk) := f(1,x2,...,xk)−f(−1,x2,...,xk)

2 are functions on the
(k − 1)-dimensional boolean hypercube and thus by the induction hypothesis possess a unique Fourier transform.
Then combining the Fourier transforms for those two functions yields a Fourier transform for f , and it is not too
difficult to see that Fourier transform is unique too. ■

Definition 0.8 (Multilinear Polynomials). A multivariate polynomial is called multilinear if it is linear (affine) in
each of its variables. For example, 3x− 4xy + 5z − 2 is a multilinear polynomial in x, y, z, but x2 + 4xy is not.
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Corollary 0.14. Any function on the boolean hypercube is equivalent to a multilinear polynomial of degree at most
n.

Lemma 0.15. Every polynomial of degree d over the boolean hypercube is equivalent to a multilinear polynomial of
degree at most d. Furthermore, by the uniqueness of the Fourier transform, this multilinear polynomial is also the
Fourier transform of our polynomial.

Proof. Note that over the boolean hypercube, every polynomial is equivalent to a multilinear polynomial of lower
degree: One can see this even without invoking the Fourier expansion of the polynomial. Indeed, note that if xi ∈
{−1, 1}, then x2

i = 1. Consequently, every term
∏n

i=1 x
ki
i in the polynomial can be replaced by the multilinear term∏n

i=1 x
ki mod 2
i , and thus we get an equivalent multilinear polynomial with a degree at most the original polynomial,

as desired. ■

Corollary 0.16. Multilinear polynomials are their own Fourier decompositions.

Topology

The reader is advised to recall the basic notions of topology such as open and closed sets, metric topologies, and
compactness, before reading this section.
Now, note that both the Frobenius norm and the ℓp norms induce a topology on Rn×n. Furthermore, with the help
of Lemma 0.10, it can be shown that the topologies induced by the Frobenius norm and the ℓ2 norm are the same.
Thus from now on we can freely use the Frobenius norm or the ℓ2 norm, according to our convenience, without
worrying about the underlying topology getting changed.
We shall always equip R{−1,1}n with the topology induced by the ℓ2-metric. Just to clarify, through an example,
what the ℓ2-metric on R{−1,1}n entails, consider the functions f1, f2 below, mapping {−1, 1}2 to R:

f1(−1,−1) = 0.2, f1(−1, 1) = −0.5, f1(1,−1) = 0, f1(1, 1) = 2

f2(−1,−1) = −0.8, f2(−1, 1) = 0.5, f2(1,−1) = 1, f2(1, 1) = 0

Then ∥f1 − f2∥2 =
√

(0.2− (−0.8))2 + (−0.5− 0.5)2 + (0− 1)2 + (2− 0)2 =
√
7.

Convex Analysis

Definition 0.9. Consider a set C ⊆ V , where V is a real vector space. Then

1. C is called convex if for any c1, c2 ∈ C and λ ∈ [0, 1], we have λc1 + (1− λ)c2 ∈ C.

2. C is called a cone if for any c ∈ C, λ > 0, we have λc ∈ C.

Theorem 0.17. LetA ⊆ Rn×n be the set of real symmetric PSD matrices. Also, equip Rn×n with the usual topology,
ie:- the topology induced by the Frobenius norm. Then A is a closed convex cone.
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Proof. The fact that A is a convex cone follows directly from Corollary 0.2. Now, note that

A = S ∩
⋂

v∈Rn\{0}

f−1
v ([0,∞))

where for every v ∈ Rn \ {0} we define the function fv : Rn×n 7→ R, fv(X) := vTXv, and S ⊆ Rn×n is the set of
symmetric matrices.
Now, observe that

1. S is closed: Indeed, consider the function g : Rn×n 7→ Rn×n, g(X) := X − XT. Then S = g−1({O}). Now,
since g is continuous, and since {O} is a closed set, S, being the pre-image of a closed set under a continuous
function must be closed too.

2. f−1
v ([0,∞)) is closed for every v ∈ Rn \ {0}: Once again, since fv is continuous, and since [0,∞) is closed,
f−1
v ([0,∞)) must be closed too.

Thus A is a closed set since an intersection of closed sets is also closed. ■

Remark. The above proof was taken from here.
Closed convex sets are a central object of study in convex analysis, so we shall now develop some machinery to deal
with them.

Lemma 0.18 (Separating Hyperplane Lemma). Let V be a finite-dimensional vector space over reals.
Let C ⊆ V be a nonempty closed convex set. Consider any y ∈ V \C. Then there exists a ∈ V \ {0}, b ∈ R such that
⟨a, y⟩ < b < ⟨a, x⟩ for every x ∈ C.

Proof. Proof can be found in section 2.5 of [BV04]. ■

Corollary 0.19. Let V be a finite-dimensional vector space over reals.
Let C ⊆ V be a nonempty closed convex cone. Consider any y ∈ V \ C. Then there exists a ∈ V \ {0} such that
⟨a, y⟩ < 0 ≤ ⟨a, x⟩ for every x ∈ C.

Proof. Apply Lemma 0.18 to C to get a, b such that ⟨a, y⟩ < b < ⟨a, x⟩ for every x ∈ C. Now, since C is a cone, εx ∈ C
and consequently, b < ⟨a, εx⟩ = ε⟨a, x⟩ for every ε > 0, x ∈ C.
Now, if:

1. b > 0: Then we can choose a small enough ε > 0 to make ε⟨a, x⟩ smaller than b, leading to a contradiction.

2. b < 0: Suppose there is some x ∈ C such that ⟨a, x⟩ < 0. Then we can choose a large enough ε > 0 to make
ε⟨x, a⟩ smaller than b, leading to a contradiction.

Thus we either have b = 0, or we have ⟨x, a⟩ ≥ 0 > b for every x ∈ C. In either case, our result holds. ■

We now move on to the algorithmic aspects of convex analysis.

Definition 0.10 (ε-thickening). Let K ⊆ RN be a closed convex bounded set. Also, let ε > 0 be a parameter.
We then define the ε-thickening of K to be:

Kε := {x+ τ : x ∈ K, ∥τ∥2 < ε}

https://math.stackexchange.com/questions/2904491/set-of-symmetric-positive-semidefinite-matrices-is-closed
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Definition 0.11 (Weak Separation Oracle). Let K ⊆ RN be a closed convex bounded set. Also, let ε > 0 be a
parameter.
A weak separation oracle for K takes as input some x ∈ QN ⊆ RN and:

1. Correctly asserts that x ∈ Kε, or

2. Returns an “almost separating hyperplane”, ie:- gives us some a ∈ Rn \ {0} such that ⟨a, x⟩ > ⟨a, z⟩ − ε∥a∥2
for every z ∈ K.

Remark. One can guess why the term “weak” has been used: This is because the oracle doesn’t tell us if some input
x belongs to our convex body or not. It either tells us that x is inside K, with some ε margin, or it separates x from
points sufficiently deep inside K.
We now state a seminal result by [GLS88].

Theorem 0.20. LetK ⊆ RN be a closed convex bounded set. Also, let ε > 0 be a parameter.
Furthermore, let p ∈ RN be such that B(p, r) ⊆ K ⊆ B(p,R), where B(p, t) denotes the open ball centered at p, of
radius t, and R > r > 0 are real numbers. R

r is also known as the aspect ratio of K.
Also suppose that we have access to a weak separation oracle for K, with parameter ε.
Then given any v ∈ QN , such that v can be described in poly(N) bits, one can compute x ∈ K such that ⟨v, x⟩ >
⟨v, z⟩ − ε for every z ∈ K. Furthermore, x can be computed in poly

(
log R

r + log 1
ε +N

)
time.

Remark. Note that the theorem says that x can be computed in poly
(
log R

r + log 1
ε +N

)
time: This implies that all

entries of x are actually rational numbers with poly
(
log R

r + log 1
ε +N

)
-bit complexity.

Thus WLOG when we invoke this theorem to solve any SDP later on, we can assume that its output complies with
Convention 1.

Tensor Notation

Definition 0.12 (Tensor Product). Consider a vector v ∈ Rk. Then the tensor product of v with itself, t times, is
denoted as v⊗t ∈ Rkt , where the elements of v⊗t are indexed by the elements of [k]t, and for any (k1, . . . , kt) ∈ [k]t,
we define

(v⊗t)(k1,...,kt) =

t∏
i=1

vki

At this point, wemake a very important observation: Consider the tensor product (1, x)⊗d :=
([

1 x1 . . . xn

]T)⊗d

.
Then the entries of (1, x)⊗d contain all multilinear monomials on x1, . . . , xn of degree at most d. Indeed, consider
the example([

1 x1 x2

]T)⊗2

=
[
1 · 1 1 · x1 1 · x2 x1 · 1 x1 · x1 x1 · x2 x2 · 1 x2 · x1 x2 · x2

]T
=
[
1 x1 x2 x1 x2

1 x1x2 x2 x2x1 x2
2

]T
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It is clear that this vector contains all monomials of degree at most 2 on the variables x1, x2. Also, note how many
monomials such as x1x2 are repeated multiple times: This redundancy is the price we pay for the economy of ex-
pression that the tensor notation provides us. It is important to note though, that this redundancy doesn’t (asymp-
totically) increase the space required to store all monomials of degree d. Indeed, there are Ω(nd/d!) monomials of
degree at most d, and the size of (1, x)⊗d is (n+ 1)d = O(nd).
In general, note that (1, x)⊗d resides in R(n+1)d .

Some Aspects of the Gaussian Distribution

We shall see various aspects of the Gaussian distribution which we shall use repeatedly in our proofs throughout
the material.

Lemma 0.21 (Sheppard’s Lemma). Consider the Gaussian distribution G = N (0,Σ) on R2, where Σ =

[
1 ρ
ρ 1

]
and

ρ ∈ [−1, 1].
Suppose we sample g =

[
g1 g2

]T from G. Then

Pr(sign(g1) ̸= sign(g2)) =
arccos(ρ)

π

Proof. We’ll come up with an alternate sampling procedure that yields the same distribution as G, yet is easier to
analyze.
Consider two vectors v, w ∈ R2 such that ∥v∥2 = ∥w∥2 = 1, and ⟨v, w⟩ = ρ, ie:- v and w are two unit vectors with an
angle of arccos(ρ) between them. WLOGwe can assume that w can be obtained by rotating v clockwise by arccos(ρ)
radians.
Sample h ∈ R2 from N (0, I2), ie:- the standard 2-dimensional Gaussian.
Define ĝ1 := ⟨h, v⟩, and ĝ2 := ⟨h,w⟩. Now, note that

ĝ :=

[
ĝ1
ĝ2

]
= Bh

where B =

[
vT

wT

]
∈ R2×2.

Consequently, ĝ ∼ N (B · 0, B · I2 ·BT) = N (0, BBT) = G, since BBT =

[
vTv vTw
wTv wTw

]
=
[
∥v∥22 ⟨v, w⟩
⟨w, v⟩ ∥w∥22

]
= Σ.

Thus the distribution of ĝ is same as the distribution of g, and

Pr(sign(g1) ̸= sign(g2)) = Pr(sign(ĝ1) ̸= sign(ĝ2)) = Pr(sign(⟨h, v⟩) ̸= sign(⟨h,w⟩))

Consider the 4 possible values of ĥ := h
∥h∥2

for which ⟨ĥ, v⟩ = 0 or ⟨ĥ, w⟩ = 0. These 4 values of ĥ split the unit circle
into 4 arcs, two of angle arccos(ρ), and two of angle π− arccos(ρ). Finally, note that the signs of ⟨h, v⟩ and ⟨h,w⟩ can
be different only if ĥ lies in the arcs of size arccos(ρ). Thus

Pr(sign(⟨h, v⟩) ̸= sign(⟨h,w⟩)) = 2 arccos(ρ)

2π

where equality follows from the fact that ĥ is distributed uniformly on the unit circle. ■

Tail Bounds

We state some handy tail bounds here which help us deal with Gaussians.
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Lemma 0.22. If Z1, . . . , Zt are jointly Gaussian random variables, then

Var

(
max
k∈[t]

Zk

)
≤ O(1)max

k∈[t]
Var (Zk) (0.1)

Information Theory

Let X be a random variable which takes values in Ω. Then we define the entropy of X to be:

H(X) := −
∑
ω∈Ω

Pr(X = ω) lnPr(X = ω)

Given two random variables X,Y , with X taking values in Ω, and Y taking values in Ω′, we define the mutual
information of X and Y to be:

I(X;Y ) :=
∑

(ω,ω′)∈Ω×Ω′

Pr(X = ω, Y = ω′) · ln Pr(X = ω, Y = ω′)

Pr(X = ω) · Pr(Y = ω′)

Lemma 0.23. The following facts are true about mutual information:

1. I(X;Y ) = I(Y ;X).

2. I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

3. I(X;Y ) ≥ 0. I(X;Y ) = 0 if and only if X,Y are independent.

4. Cov(X,Y ) ≤ σXσY ·
√

2I(X;Y ), where Cov(X,Y ) = E[XY ]− E[X]E[Y ] is the covariance of X,Y , and σX =√
E[X2]− E[X]2, σY =

√
E[Y 2]− E[Y ]2 are the standard deviations of X and Y .
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�1. Introduction and Basic De�nitions

In this chapter, we shall be concerned with certificates of non-negativity of polynomials. The relevance of this inves-
tigation to the field of algorithms will become clearer in later chapters, where we shall also explain how these ideas
fit into the larger framework of theoretical computer science. For now, the reader is asked to view these things from
a purely abstract mathematical perspective.

1.1. Sum of Squares (SoS) Certi�cates

Definition 1.1. Let d be an even natural number. A degree d SoS certificate of non-negativity of a function f :
{−1, 1}n 7→ R is a list of polynomials g1, . . . , gr on the boolean hypercube such that deg(gi) ≤ d

2 for every i ∈ [r], and

f(x) =

r∑
i=1

gi(x)
2

for every x ∈ {−1, 1}n.

Remark. Themotivation behind this definition is as follows: Supposewewant to prove that a function is non-negative
on its domain. Then an easy way to do so is to express the function as a sum of squares. The above definition seeks
to formalize exactly that.
The degree of the polynomials forming the certificate is emphasized because low-degree polynomials take less space
to write down. For example, a n-degree polynomial in n variables may take O(nn) space to write down, which, as
we shall see later, is terrible for its algorithmic utility.
Consequently, we parametrize the sum of squares certificate through its degree. We shall expend some effort in
determining when low-degree certificates of non-negativity exist, and when they do, how one should find them.
We now prove that for the boolean hypercube, SoS certificates of non-negativity can always be found 2.

Lemma 1.1. Every non-negative function f : {−1, 1}n 7→ R≥0 has a degree 2n SoS certificate.

Proof. Consider the function g(x) :=
√

f(x). By Corollary 0.14, g(x) is (equivalent to) a polynomial of degree at
most n, and thus the lemma follows. ■

Over the boolean hypercube, we can achieve even more: Not only do SoS certificates always exist, but sufficiently
low-degree certificates can also be found, if our polynomial itself is low-degree, and we are allowed to add large
constants to our input polynomial.

Lemma 1.2. Consider any polynomial f : {−1, 1}n 7→ R of degree at most d, where d is an even natural number.
Then there exists a constant L > 0 such that L+ f has a degree d SoS certificate.

Proof. By Lemma 0.15, the Fourier decomposition of f contains terms of degree at most d.
Now, consider the Fourier decomposition of f :

f =
∑
S⊆[n]
|S|≤d

f̂(S)xS

2however, for general domains, this statement is not true: For example, the polynomial f(x) = x6
3 + x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 over R3 is

non-negative everywhere, yet it is not expressible as a sum of squares of polynomials
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Now suppose we show that for every term f̂(S)xS in the above summation, there is some constant LS such that
LS + f̂(S)xS has a degree d SoS certificate.
Then by setting L =

∑
S⊆[n]
|S|≤d

LS , we would have that

f + L =
∑
S⊆[n]
|S|≤d

(f̂(S)xS + LS)

We could then simply combine the certificates of each term in the above summation to get a certificate for f + L.
We now claim that |α| + αxS has a degree d SoS certificate for any α ∈ R and any S ⊆ [n] such that |S| ≤ d. In
particular, we can simply choose LS = |f̂(S)| in the above argument.
We thus focus on proving the aforementioned claim. Now, note that |α|+ αxS = |α| · (1 + sign(α)xS). Finally, since
|S| ≤ d, one can find sets T1, T2 ⊆ [n] such that T1 ∪ T2 = S, T1 ∩ T2 = ∅, |T1|, |T2| ≤ d

2 . Then note that

1

2
(xT1 ± xT2)

2 =
1

2
(x2

T1
+ x2

T2
± 2xT1xT2)

Since x ∈ {−1, 1}n, x2
T1

= x2
T2

= 1. Also, xT1
xT2

= xS . Thus

1

2
(x2

T1
+ x2

T2
± 2xT1

xT2
) =

1

2
(2± 2xT1

xT2
) = 1± xS

|α| · (1 + sign(α)xS) =
|α|
2
(xT1

+ sign(α)xT2
)2 =


√
|α|
2
(xT1

+ sign(α)xT2
)︸ ︷︷ ︸

degree at most d
2


2

as desired. ■

Theorem 1.3. A function f on the boolean hypercube has a degree d SoS certificate if and only if there exists a PSD
matrix A ∈ R(n+1)

d
2 ×(n+1)

d
2 such that f(x) = ⟨(1, x)⊗ d

2 , A(1, x)⊗
d
2 ⟩ for every x in the hypercube.

Proof. Suppose f(x) = ⟨(1, x)⊗ d
2 , A(1, x)⊗

d
2 ⟩ for everyx in the hypercube for somePSDmatrixA. Then byLemma0.3,

there exists some matrix B such that A = BTB. Then

f(x) = ⟨(1, x)⊗ d
2 , A(1, x)⊗

d
2 ⟩ = ⟨(1, x)⊗ d

2 , BTB(1, x)⊗
d
2 ⟩ = ⟨B(1, x)⊗

d
2 , B(1, x)⊗

d
2 ⟩ = ∥B(1, x)⊗

d
2 ∥22

Now note that every entry of B(1, x)⊗
d
2 is a multilinear polynomial of degree at most d

2 . Since f(x) is the sum of the
squares of the entries ofB(1, x)⊗

d
2 , we get that the (n+1)

d
2 entries ofB(1, x)⊗

d
2 form a degree d SoS certificate for f .

Conversely, suppose f has a degree d certificate, ie:- f =
∑r

i=1 g
2
i , where deg(gi) ≤ d

2 . By Corollary 0.14, WLOG
we can assume that gi’s are multilinear polynomials. Consequently, gi(x) = ⟨vi, (1, x)⊗

d
2 ⟩, where the vector vi just

“chooses” the entries in (1, x)⊗
d
2 that it needs. Thus

f =

r∑
i=1

g2i =

r∑
i=1

⟨vi, (1 + x)⊗
d
2 ⟩2 =

r∑
i=1

⟨vivTi (1, x)⊗
d
2 , (1, x)⊗

d
2 ⟩ =

〈
r∑

i=1

viv
T
i (1, x)

⊗ d
2 , (1, x)⊗

d
2

〉

Now, by Lemma 0.4, we have that A :=
∑r

i=1 viv
T
i is a PSD matrix. Then

f(x) = ⟨A(1, x)⊗
d
2 , (1, x)⊗

d
2 ⟩ = ⟨(1, x)⊗ d

2 , A(1, x)⊗
d
2 ⟩

as desired. ■
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Corollary 1.4. Suppose f has a degree d SoS certificate. Then f has a degree d SoS certificate with at most (n+ 1)
d
2

polynomials.

We conclude this section by stating a very important lemma concerning the geometry of polynomials with degree d
SoS certificates.

Lemma 1.5. Let SoSd ⊆ R{−1,1}n

≥0 ⊆ R{−1,1}n be the set of functions having a degree d SoS certificate. Then SoSd is a
closed convex cone, where R{−1,1}n is equipped with the topology induced by the ℓ2-metric.

Remark. The proof of this lemma is similar to the proof of Theorem 0.17.

1.2. Pseudo-Distributions

We shall now define the separate notion of pseudo-distributions. This might feel like a non-sequitur, but it is not:
It turns out that pseudo-distributions are “dual” to SoS certificates, in some sense. As usual, we shall have to plod
through some definitions before getting to the fun part.

Definition 1.2 (Formal Expectation). For any µ ∈ R{−1,1}n , not necessarily a probability distribution, we define the
formal expectation of f ∈ R{−1,1}n w.r.t. µ to be

Ẽµ[f ] := ⟨µ, f⟩ =
∑

x∈{−1,1}n

µ(x)f(x)

Remark. Note that Ẽ is linear, just like E is.

Definition 1.3 (Pseudo-Distributions). A function µ : {−1, 1}n 7→ R is called a degree d pseudo-distribution (p.d.)
over {−1, 1}n if:

1. Ẽµ[1] = 1, ie:-
∑

x∈{−1,1}n µ(x) = 1.

2. For all polynomials f of degree ≤ d
2 , we have Ẽµ[f

2] ≥ 0.

Pseudo-distributions are an attempt to extend the properties of actual distributions (which are non-negative vectors
with entries summing to 1) to vectors in general, ie:- vectors potentially having some negative entries too. Obviously,
that can’t be done in entirety: We thus limit the scope of our rules and enforce similarity with distributions in that
limited domain. Thus, for example, for an actual distribution ν, we would have had Eν [f

2] ≥ 0 for any function f :
For pseudo-distributions of degree d, we restrict ourselves to polynomials of degree at most d

2 .
While this restriction might seem a bit unnatural and artificial at this point, we shall soon see that these restrictions
arise very naturally, especially when we explore pseudo-distributions in relation to SoS certificates.
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Lemma 1.6. µ is a degree d pseudo-distribution if and only if Ẽµ[(1, x)
⊗ d

2 ((1, x)⊗
d
2 )T] is a PSD matrix with ones on

its diagonals.
Furthermore, for any S ⊆ [n] such that |S| ≤ d, |Ẽµ[xS ]| ≤ 1.

Remark. Note that the pseudo-expectation of a matrix/vector is taken entrywise.

Proof. Let µ be a degree d pseudo-distribution. Let M = Ẽµ[(1, x)
⊗ d

2 ((1, x)⊗
d
2 )T]. Now, if f is a degree ≤ d

2 poly-
nomial where f =

∑
S⊆[n] f̂(S)xS , then note that Ẽµ[f

2] = vTMv, where v is a vector composed of the Fourier
coefficients f̂(S).
Since Ẽµ[f

2] ≥ 0 for all functions of degree at most d
2 , we get that vTMv ≥ 0 for all vectors v ∈ R(n+1)

d
2 . Conse-

quently,M is PSD, as desired.
Now, note that the diagonal entries ofM are of the form x2

T for some set T ⊆ [n], |T | ≤ d
2 . But x

2
T = 1 for any T , and

since Ẽµ[1] = 1, we get that all the diagonal entries of M are 1, as desired.
Conversely, if M := Ẽµ[(1, x)

⊗ d
2 ((1, x)⊗

d
2 )T] is a PSD matrix with ones on its diagonals, then Ẽµ[1] = 1 (which is

obtained by examining the top-left entry of M). Furthermore, by varying v in R(n+1)
d
2 , we see that Ẽµ[f

2] ≥ 0 for
any polynomial f of degree ≤ d

2 , and thus µ is a degree d pseudo-distribution.
Finally, since all diagonal entries of M are 1, by Lemma 0.5, all entries of M lie in [−1, 1]. In particular, for any set S
with |S| ≤ d, partition S = T1 ⊔ T2 with |T1|, |T2| ≤ d/2. Then |Ẽµ[xT1

xT2
]| = |Ẽµ[xS ]| ≤ 1, as desired. ■

Remark. Let µ be a degree d pseudo-distribution, and let M = Ẽµ[(1, x)
⊗ d

2 ((1, x)⊗
d
2 )T]. Then M is a PSD matrix all

of whose entries lie in [−1, 1]. Furthermore, let λ1, . . . , λ
(n+1)

d
2
≥ 0 be the eigenvalues of M . Then

det(M) =
∏

i∈
[
(n+1)

d
2

]λi

AM-GM Inequality
≤


∑

i∈
[
(n+1)

d
2

] λi

(n+ 1)
d
2


(n+1)

d
2

=

(
tr(M)

(n+ 1)
d
2

)(n+1)
d
2

= 1

Thus the determinant of M is bounded above by 1.

Lemma 1.7. Let µ be a pseudo-distribution of degree 2n on the n-dimensional boolean hypercube. Then µ is actually
a probability distribution.

Proof. Consider the indicator function fy = 1y for any y ∈ {−1, 1}n. By Corollary 0.14, fy is equivalent to a poly-
nomial of degree at most 2n, and consequently Ẽµ[f

2
y ] ≥ 0. But Ẽµ[f

2
y ] = µ(y), and consequently, µ is non-negative.

Since the entries of µ sum to 1 by definition, µ is actually a distribution. ■

Weshall nowprove some results that anticipate the duality betweenpseudo-distributions and SoS certificates. Before
that, we prove a lemma.

Lemma 1.8. Suppose we have S, T ⊆ [n], S ̸= T . Then∑
x∈{−1,1}n

xS · xT = 0
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Proof. Firstly, note that xS · xT = xS∆T , where S∆T := (S \ T ) ∪ (T \ S) is the symmetric difference of S and T .
This is because if i ∈ S ∩ T , then xi occurs (exactly) twice in xS · xT , and x2

i = 1 since xi ∈ {−1, 1}. Thus all indices
common to S and T get annihilated and only the indices in the symmetric difference remain.
Now, since S ̸= T , R := S∆T ̸= ∅. Now, its easy to see that as x varies over {−1, 1}n, xR becomes 1 and −1 equal
number of times. Consequently,

∑
x∈{−1,1}n xS · xT =

∑
x∈{−1,1}n xR = 0, as desired. ■

Lemma 1.9. Let µ be any degree d pseudo-distribution. Then there exists a multilinear polynomial µ′ of degree at
most d such that

Ẽµ[f ] = Ẽµ′ [f ]

for every polynomial f of degree at most d.

Proof. Consider the Fourier decomposition of µ,

µ =
∑
S⊆[n]

µ̂(S)xS =
∑
S⊆[n]
|S|≤d

µ̂(S)xS

︸ ︷︷ ︸
:=µ′

+
∑
S⊆[n]
|S|>d

µ̂(S)xS

︸ ︷︷ ︸
:=µ′′

ande define the degree d part of it as µ′, and the remaining as µ′′. Now, let f be a polynomial of degree at most d.
Then by Lemma 0.15, the Fourier expansion of f contains terms of degree at most d.
Now,

Ẽµ[f ] =
∑

x∈{−1,1}n

µ(x)f(x) =
∑

x∈{−1,1}n

(µ′(x) + µ′′(x))f(x) = Ẽµ′ [f ] + Ẽµ′′ [f ]

Note that if we can show that Ẽµ′′ [f ] = 0, then we’re done.
Now,

Ẽµ′′ [f ] =
∑

x∈{−1,1}n

µ′′(x)f(x) =
∑

x∈{−1,1}n


∑

S⊆[n]
|S|>d

µ̂(S)xS

 ·
 ∑

T⊆[n]
|T |≤d

f̂(T )xT




=
∑

x∈{−1,1}n


∑

S,T⊆[n]
|S|>d
|T |≤d

µ̂(S)xS f̂(T )xT

 =
∑

S,T⊆[n]
|S|>d
|T |≤d

µ̂(S)f̂(T )
∑

x∈{−1,1}n

xS · xT

Now, since |S| > d ≥ |T |, S ̸= T . But then by Lemma 1.8,
∑

x∈{−1,1}n xS · xT = 0, ie:- each of the summands in the
above summation is zero. Consequently, Ẽµ′′ [f ] = 0, as desired. ■

1.3. Duality between SoS certi�cates and pseudo-distributions

As promised earlier, we are now ready to establish the duality between SoS certificates and pseudo-distributions.

Theorem 1.10. For any f ∈ R{−1,1}n and any even natural number d, f has a degree d SoS certificate if and only if
for every degree d pseudo-distribution µ ∈ R{−1,1}n , Ẽµ[f ] ≥ 0.
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Proof. If f has a degree d SoS certificate, then f =
∑r

i=1 g
2
i , with deg(gi) ≤ d

2 for every i ∈ [r]. Now, for any p.d. µ,
Ẽµ[f ] =

∑r
i=1 Ẽµ[g

2
i ]. But Ẽµ[g

2
i ] ≥ 0, i ∈ [r] by the very definition of degree d pseudo-distributions.

Conversely, suppose f doesn’t have a degree d SoS certificate. Now, by Lemma 1.5, SoSd is a closed convex cone,
and, f lies outside that closed convex set. Then by Corollary 0.19, there exists some µ such that ⟨µ, f⟩ < 0 ≤ ⟨µ, g⟩
for every g ∈ SoSd.
Thus, if we can show that µ is a pseudo-distribution, then we’re done. To that extent, note that by Lemma 1.2, there
exists some L > 0 such that L+ f ∈ SoSd =⇒ ⟨µ,L+ f⟩ ≥ 0. But

⟨µ,L+ f⟩ ≥ 0 =⇒ ⟨µ,L⟩ ≥ −⟨µ, f⟩ > 0 =⇒ ⟨µ,L⟩ > 0 =⇒ ⟨µ, 1⟩ > 0 =⇒ Ẽµ[1] > 0

Thus WLOG we can rescale µ by 1

Ẽµ[1]
and suppose that Ẽµ[1] = 1.

Finally, also note that Ẽµ[g
2] ≥ 0 for every g such that deg(g) ≤ d

2 : Indeed, if deg(g) ≤
d
2 , then g2 ∈ SoSd since g2 has

g as its degree d SoS certificate.
Thus µ is a pseudo-distribution such that ⟨µ, f⟩ = Ẽµ[f ] < 0, which proves our result. ■

Remark. Note that there are two reasons why some f ∈ R{−1,1}n may not have a degree d certificate: Either f is
negative for some x ∈ {−1, 1}n, or f is non-negative everywhere yet doesn’t have a small degree certificate for its
non-negativity. In the former case, it is easy to find a pseudo-distribution that makes the expectation of f negative:
We can simply take µ = 1x, and then Ẽµ[f ] = f(x) < 0. In fact, note that 1x is a proper probability distribution.
However, if f is a non-negative function, then no proper distribution can make the expectation of f negative: it is
here that the true power of pseudo-distributions is utilized, where we make some entries of µ negative to make the
expectation of f negative. Note that we can’t do the trivial thing and make every entry of µ negative, since we still
have to satisfy

∑
y∈{−1,1}n µ(y) = 1 by the definition of pseudo-distributions.
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�2. Algorithmic Issues

We finally begin discussing the algorithmic issues regarding SoS certificates.
Right at the outset, one can observe a problem with adapting the SoS machinery to an algorithmic framework: Note
that throughout the last chapter, we worked with R as the co-domain of our function. However, we obviously can’t
represent reals with infinite precision in any Turing machine. Thus, we are forced to restrict our domain to rationals.
However, this gives rise to new issues: For example, [Sch13] showed that the polynomial

f(x) = f(x1, x2, x3) = x4
1 + x1x

3
2 + x4

2 − 3x2
1x2x3 − 4x1x

2
2x3 + 2x2

1x
2
3 + x1x

3
3 + x2x

3
3 + x4

3 ∈ Q[x]

was expressible as a sum of squares of real-coefficient polynomials, but not rational-coefficient polynomials.
Thus there exist SoS polynomials f : Rn 7→ R with no rational coefficient certificates. For the boolean hypercube,
the situation is unknown, ie:- it is not known if there exists some SoS polynomial f : {−1, 1}n 7→ Q with no rational
coefficient certificates.
However, we shall soon see a technique to (almost) bypass this issue. Before that though, we set down some ground
rules for dealing with the SoS framework algorithmically.

2.1. Algorithmic Ground Rules

Thus, we set down some conventions for SoS algorithms as follows:

Convention 1. Let f =
∑r

i=1 g
2
i be a SoS formula, where f : {−1, 1}n 7→ R and gi : {−1, 1}n 7→ R, i ∈ [r] are

polynomials.
Whenever we are talking of SoS certificates in an algorithmic context, we shall assume that the number of polyno-
mials in the certificate, denoted by ‘r’, is at most (n + 1)

d
2 (this assumption is justified in light of Corollary 1.4).

Furthermore, we shall assume that we have been given our input polynomial f in its multilinear form. Also, every
coefficient of f will be assumed to be rational.
A rational number will be represented as a pair of co-prime integers, each of poly(nd) bits. Consequently, the mag-
nitude of our rational number will be bounded from above by 2poly(n

d), and bounded from below by 2− poly(nd).
Finally, we also assume that f has poly(nd) non-zero coefficients.
All the assumptions stated above for f also hold for each gi, i ∈ [r]: Thus we assume that gi’s are rational multilinear
polynomials, with at most poly(nd) non-zero coefficients, and each coefficient is expressible in poly(nd) bits.

As pointed out above, even SoS polynomials may not have a certificate satisfying our algorithmic conventions above.
However, the techniques of this chapter will establish that for every degree d SoS polynomial, one can make a very
small perturbation of that polynomial to get another degree d SoS polynomial possessing a certificate satisfying all
of the conventions laid down above.
This more or less fixes the problem of fitting the SoS framework in a discrete Turing machine setting, with the minor
drawback that most SoS algorithmswill usually achieve their desired goal upto some ‘ε’ slack, where ε is a memorial
to the small perturbation we made to satisfy our algorithmic conventions.
Also, note another pedagogical advantage to the whole perturbation business: We can now freely prove all our
results in the real domain, and finally, when we want to use that theorem to design some algorithm, we can simply
perturb the results of our theorem slightly and get away with it.

2.2. SoS certi�cates are e�ciently veri�able

Theorem 2.1. Let f be a polynomial satisfying Convention 1, and let (g1, . . . , gr) be a purported degree d SoS cer-
tificate for f , also satisfying Convention 1. Then the validity of this certificate can be verified in poly(nd) time.
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Proof. Since the size of gi is poly(nd), g2i can be calculated in poly(nd) time. Similarly, since r = poly(nd),
∑r

i=1 g
2
i can

also be calculated in poly(nd) time. Furthermore,
∑r

i=1 g
2
i has poly(nd)non-zero coefficients, all ofwhich are rational.

Now,
∑r

i=1 g
2
i maynot be amultilinear polynomial: However, performing themultilinear reduction (see Lemma0.15)

of
∑r

i=1 g
2
i takes poly(nd) time, so WLOG we assume that

∑r
i=1 g

2
i is a multilinear polynomial.

By Theorem 0.13, since the Fourier decomposition of any function is unique, and since multilinear polynomials are
their own Fourier decomposition,

∑r
i=1 g

2
i equals f if and only if all coefficients of the two polynomials are the same

(keep in mind that f has been given to us as a multilinear polynomial). Since both
∑r

i=1 g
2
i and f have poly(nd)

non-zero coefficients, one can compare their coefficients in poly(nd) time, and hence verify the correctness of the
certificate.
It is clear that the entire verification process described above can be carried out in poly(nd) time, as desired. ■

2.3. Re-examining Theorem 1.3

Definition 2.1. Suppose we have some set E, and suppose we have two tuples S, T ∈ En. Let S ⊎ T be the multiset
union of S and T . For example, if E = {e1, e2, e3}, and n = 4, and S = (e3, e1, e2, e1), T = (e2, e2, e1, e3), then
S ⊎ T = {e1, e1, e1, e2, e2, e2, e3, e3}.
Then define the multilinear reduction of S and T to be:

ν(S, T ) := {e ∈ E : e occurs an odd number of times in S ⊎ T}

For the S and T given above, we would have ν(S, T ) = {e1, e2}.

Lemma 2.2. Consider any f ∈ SoSd, and let f(x) = ⟨(1, x)⊗ d
2 , A(1, x)⊗

d
2 ⟩ for some PSD matrix A. Then for any

U ⊆ [n] such that |U | ≤ d, we have
f̂(U) =

∑
S,T⊆{0,1,...,n}d

ν(S,T )\{0}=U

AS,T

Proof. Recall that (1, x)⊗ d
2 was indexed by elements of {0, 1, . . . , n}d: For example, the tuple (2, 0, 1, 0) ∈ {0, 1, 2}4

would correspond to x2 · 1 · x1 · 1. Consequently, A is indexed by pairs of tuples, say S and T , in {0, 1, . . . , n}d.
Now,

((1, x)⊗
d
2 )TA(1, x)⊗

d
2 =

∑
S,T⊆{0,1,...,n}d

xSAS,TxT

As usual, we perform a multilinear reduction on xS · xT : For example, say S = (2, 1, 0, 1) and T = (0, 2, 0, 2), ie:-
xS = x2 · x1 · 1 · x1 = x2x

2
1 and xT = 1 · x2 · 1 · x2 = x2

2. Then note that x1 occurs twice in xS · xT , while x2 occurs
thrice. Consequently, x1 would get annihilated, while one copy of x2 would remain. In fact, the only elements in
{x1, . . . , xn}which will survive in xS · xT are the ones whose indices are in ν(S, T ).
For the example here, ν

(
(2, 1, 0, 1), (0, 2, 0, 2)

)
= {0, 2}. Since the zeroth index corresponds to 1, we don’t care about

it, and thus xS · xT would only contribute towards f̂({2}).
Thus, performing the multilinear reduction of

∑
S,T⊆{0,1,...,n}d xSAS,TxT , and equating it to

∑
U⊆[n] f̂(U)xU , yields

the desired identity. ■

Remark. Note that the only reason we have imposed the |U | ≤ d condition in the lemma is, since f is equivalent to
a degree d polynomial, all the Fourier coefficients of f corresponding to sets of size greater than d is 0, so we don’t
bother about them.
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Corollary 2.3.
f̂(∅) =

∑
S⊆{0,1,...,n}d

AS,S = tr(A)

Theorem 2.4. Let f =
∑r

i=1 g
2
i be a degree d SoS formula satisfying Convention 1. Then f(x) =

((1, x)⊗
d
2 )TA(1, x)⊗

d
2 , where A is a PSD matrix, all of whose entries are rational and expressible in poly(nd) bits.

Thus, A is an alternative poly(nd) space representation of our SoS certificate.

Proof. By Corollary 0.8 and Corollary 2.3,
∥A∥F ≤ tr(A) = f̂(∅)

By Convention 1, f̂(∅) = poly(nd), and thus ∥A∥F is poly(nd).
Now, viewingA from the point of view of the proof of Theorem 1.3, we also see that the entries ofAmust be rational.
Thus combining the two points of view yields that all entries of A are rational numbers expressible in poly(nd) bits,
as desired. ■

2.4. Finding SoS certi�cates

Suppose we are given some f and asked to find a degree d SoS certificate for it. By Theorem 1.3, we may as well find
a PSD matrix A such that f(x) = ⟨(1, x)⊗ d

2 , A(1, x)⊗
d
2 ⟩.

Now, byLemma2.2, the entries ofA satisfy some linear relations. For example, ifn = 2, d = 2, thenA ∈ R(2+1)
2
2 ×(2+1)

2
2 =

R3×3 satisfies the following relations:

A =

a0,0 a0,1 a0,2
a1,0 a1,1 a1,2
a2,0 a2,1 a2,2


a0,0 + a1,1 + a2,2 = f̂(∅)

a0,1 + a1,0 = f̂({1})

a0,2 + a2,0 = f̂({2})

a1,2 + a2,1 = f̂({1, 2})

Thus, for every U ⊆ [n], |U | ≤ d, we write down a linear relation involving the entries of A, and express it in terms
of matrix inner products (see the remark after Definition 0.3). Thus, the set of candidate PSD matrices is

A′ := {A ∈ R(n+1)
d
2 ×(n+1)

d
2 : A ≽ 0, ⟨CU , A⟩ = bU}

where the ⟨CU , A⟩ = bU condition encodes the equation f̂(U) =
∑

S,T⊆{0,1,...,n}d

ν(S,T )\{0}=U

AS,T .

Now, we ultimately want to apply Theorem 0.20 to A′: However, note that A′ has an exmpty interior, i.e. A′ doesn’t
contain any balls inside it, because if any matrix in A′ is perturbed slightly, some linear equality will be violated.
Thus, in order to apply Theorem 0.20, we must consider the following “thickening” of A′:

A := {A ∈ R(n+1)
d
2 ×(n+1)

d
2 : A ≽ 0, ⟨CU , A⟩ ∈ [bU − ε, bU + ε]}
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Fortunately, A is a closed convex bounded set containing a ball inside it 3, and the aspect ratio of A is poly
(
nd + 1

ε

)
4. Thus Theorem 0.20 becomes applicable 5, and we can find an A satisfying the aforementioned SDP.
Equivalently, in poly

(
nd + 1

ε

)
timewe have found out coefficients f̂ ′(U) such that f̂ ′(U) =

∑
S,T⊆{0,1,...,n}d

ν(S,T )\{0}=U

AS,T+δU ,

where |δU | ≤ ε.
We have thus effectively found out a polynomial f ′ such that f ′ has a degree d SoS certificate (which we also found
out as a result of solving the PSD program), and |f̂(U)− f̂ ′(U)| ≤ ε for all U such that |U | ≤ d.
Thus if we define

L :=
∑

U⊆{0,1,...,n}
|U |≤d

|f̂(U)− f̂ ′(U)|

then
L ≤ ε

(
n+ 1

d

)
≤ ε(n+ 1)d

Now, recall from the proof of Lemma 1.2 the fact that |α|+ αxS has a degree d SoS certificate for any α ∈ R and any
S ⊆ [n] such that |S| ≤ d.
ThusL+f−f ′ has a degree d SoS certificate. Since f ′ has a degree d SoS certificate too, we get that (L+f−f ′)+f ′ =
L+f has a degree d SoS certificate. Furthermore, the certificate for L+f is efficiently evaluable: Indeed, we already
have the certificate for f ′ at hand, and the certificates for |f̂(U)− f̂ ′(U)|+ f̂(U)xU − f̂ ′(U)xU can be constructed in
O(1) time for each U , using the process described in the proof of Lemma 1.2. Thus in poly(nd) time we can construct
a degree d SoS certificate for L+ f , where L ≤ εpoly(nd).
Conversely, suppose our function f does not have a degree d SoS certificate. In that case, we would be interested in
finding a degree d pseudo-distribution µ such that Ẽµ[f ] < 0: Once again, we can’t solve for our solution exactly,
but what we can do is as follows: Let our set of variables be vU := Ẽµ[xU ] for all U ⊆ {0, 1, . . . , n}, |U | ≤ d. From
the definition of a degree d pseudo-distribution, we know that Ẽµ[1] = 1 (which translates to the equation v∅ = 1),
and Ẽµ[(1, x)

⊗ d
2 ((1, x)⊗

d
2 )T] ≽ 0, which translates to the fact that a matrix composed of the variables vU is positive

semi-definite.
Thus, we once again have a SDP over the variables {vU : U ⊆ {0, 1, . . . , n}, |U | ≤ d}, which we solve upto some slack
ε (ie:- our SDP returns some µ such that Ẽµ[f ] ≤ ε) in poly

(
nd, 1

ε

)
time.

Thus, summarizing the paragraph above, we see that we have managed to achieve what we promised in Section 2.1,
which we now state as a theorem.

Theorem 2.5. Let f : {−1, 1}n 7→ R be a function complying with Convention 1, i.e. f is given to us as a multilinear
polynomial such that each of the coefficients of f can be written down in poly(nd) bits. Given a d and a ε > 0, in
poly

(
nd, 1

ε

)
time, we can:

1. Either find a degree d SoS certificate for f + L, where L = εpoly(nd),

2. Or we can find a degree d pseudo-distribution µ such that Ẽµ[f ] ≤ ε.

2.5. Another Useful Application of SDP solvers

Before we conclude this chapter, a very interesting consequence of Theorem 0.20 ought to bementioned (once again,
without proof).

3the ball is of radius Ω
(

ε
L

)
, where L =

√∑
U∥CU∥2F

4Note that the norm of any matrix A ∈ A is poly(nd) by Theorem 2.4, and thus A lies within a ball of radius poly(nd)
5the application of the theorem is not very straightforward, the details are involved, and unnecessary for the larger discussion, so we skip it
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Theorem 2.6. Consider any f : {−1, 1}n 7→ R. Let opt be the largest possible pseudo-expectation Ẽµ[f ] of degree d,
ie:-

opt := max
µ is a degree d pseudo-distribution

Ẽµ[f ]

Then for any ε > 0, in poly
(
nd, 1

ε

)
time we can calculate a degree d pseudo-distribution µ such that Ẽµ[f ] ≥ opt−ε.

Note that by taking the negative of our function, we can also minimize the pseudo-expectation of a function, ie:-
if opt′ := minµ is a degree d pseudo-distribution Ẽµ[f ], then for any ε > 0, in poly

(
nd, 1

ε

)
time we can calculate a degree d

pseudo-distribution µ such that Ẽµ[f ] ≤ opt′ +ε.

Remark. Note that when we say that some algorithm gives to us a degree d pseudo-distribution µ, we always assume
(in light of Lemma 1.9) that we have been given µ in form of a multilinear polynomial of degree d.
Having our pseudo-distribution in the multilinear polynomial format has another advantage: It makes the moment
matrix Ẽµ[(1, x)

⊗ d
2 ((1, x)⊗

d
2 )T] computable in poly(nd) time. In fact, as we shall see later, we are usually more inter-

ested in the moment matrix of µ than in µ itself.
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�3. The Max-Cut Problem

So far, we have seen the SoS framework in an abstract sense. We shall slowly see how it relates to theoretical computer
science as a whole.
Our first application of the SoS framework will be in getting an approximation algorithm for the so-called Max-Cut
problem.

Problem (Max-Cut Problem). Let G = G(V,E) be a simple undirected graph. For any S ⊆ V , we define ES :=
{{s, t} ∈ E : s ∈ S, t ̸∈ S} to be the cut induced by the subset S.
The max-cut problem asks us the largest value of |ES | over all possible S ⊆ V .

Now, the Max-Cut problem is known to be NP-hard. Thus, we start looking for approximation algorithms for the
same.
A very simple approximation algorithm goes as follows (refer to [Max23] for more details): Choose the set S ran-
domly, by choosing each vertex v ∈ V to be belonging in S with probability 1

2 . In expectation, |ES | = |E|
2 . Since

the size of the maximum cut is at most |E|, the approximation factor of this algorithm is 1
2 . This algorithm can be

derandomized to yield a deterministic algorithm too.
For multiple decades, 1

2 stood to be the best approximation factor one could achieve. Then, in 1993, Goemans and
Williamson [GW93] improved the approximation factor to 0.87856, and then in 2004, Khot, Kindler, Mossel, and
O’Donnell [KKMO04] showed that this was the best approximation factor achievable in polynomial time, condi-
tional on some well-known hardness conjectures such as the Unique Games Conjecture.
In this chapter, we shall explore Goemans and Williamson’s algorithm, from a “SoS” point of view.
Before that, we develop some probabilistic machinery we’ll need later on.

3.1. The Gaussian Sampling Lemma

Lemma 3.1 (Gaussian Sampling Lemma). For any degree 2 pseudo-distribution µ : {−1, 1}n 7→ R, there exists an
actual distribution ν : Rn 7→ R such that:

1. Ẽµ[x] = Eν [x], ie:- the first moments of µ and ν are the same.

2. Ẽµ[xx
T] = Eν [xx

T], ie:- the second moments of µ and ν are the same.

Keep inmind that x =
[
x1 x2 . . . xn

]T, and as usual, the expectations of vectors andmatrices are taken element-
wise. Furthermore, when we take expectation w.r.t µ, x varies over {−1, 1}n, while when we take expectation w.r.t
ν, x varies over Rn.

Proof. First of all, note thatM := Ẽµ[xx
T] ≽ 0: Indeed, consider any v ∈ Rn. Then

vTMv = vTẼµ[xx
T]v = Ẽµ[v

TxxTv] = Ẽµ

[
⟨x, v⟩2

]
Now, ⟨x, v⟩ is a linear polynomial in x1, . . . , xn, and consequently, ⟨x, v⟩2 is a degree 2 SoS polynomial. Since µ is a
degree 2 p.d., Ẽµ

[
⟨x, v⟩2

]
≥ 0. Consequently, for every v ∈ Rn, vTMv ≥ 0, implying that M is PSD, as desired.

Finally, note that we can simply choose ν = N (Ẽµ[x], Ẽµ[xx
T]), ie:- we can choose ν to be the Gaussian distribution

with the specified parameters, which by its definition will have the desired first and second moments. Note that
the covariance matrix of a Gaussian is PSD, which is why we needed to verify first that Ẽµ[xx

T] is indeed a PSD
matrix. ■

Remark. Both the first and second-moment conditions can bemerged and expressed as Ẽµ[(1, x)(1, x)
T]=Eν [(1, x)(1, x)

T].
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3.2. SoS formulation

Let our graph be G = G(V,E), which has n vertices. Construct the polynomial fG : {−1, 1}n 7→ R, where

fG(x) = fG(x1, . . . , xn) :=
1

4

∑
{i,j}∈E

(xi − xj)
2

It is clear that if we set xi = 1 for every i ∈ S, and xj = −1 for every j ̸∈ S, then fG(x) gives us the size of the cut
induced by S. Thus maximizing fG over the boolean hypercube gives us the maximum cut over G.

Lemma 3.2 (Gaussian Rounding). Let µ be degree 2 pseudo-distribution on {−1, 1}n with zero mean, ie:- Ẽµ[x] = 0.
Then there exists a probability distribution µ′, also on {−1, 1}n, such that

Eµ′ [fG(x)] ≥ αGW Ẽµ[fG(x)]

where αGW := minρ∈[−1,1]
2 arccos(ρ)
π(1−ρ) ≈ 0.878.

Proof. Consider the normal distribution G := N (Ẽµ[x], Ẽµ[xx
T]) = N (0, Ẽµ[xx

T]) as in Lemma 3.1, and construct
the distribution µ′ as follows:

1. Sample g ∼ G, where g =
[
g1 g2 . . . gn

]T ∈ Rn.

2. For every i ∈ [n], set x̂i := sign(gi).

Then x̂ :=
[
x̂1 x̂2 . . . x̂n

]T ∈ {−1, 1}n is a random vector in {−1, 1}n with probability distribution denoted by
µ′.
Now,

Eµ′ [fG(x)] =
1

4
Eµ′

 ∑
{i,j}∈E

(x̂i − x̂j)
2

 =
∑

{i,j}∈E

Pr(sign(gi) ̸= sign(gj))

where the last equality follows from the fact that (x̂i − x̂j)
2 is non-zero if and only if sign(gi) ̸= sign(gj).

Now, by Lemma 0.21, we have that

Pr(sign(gi) ̸= sign(gj))
Lemma 0.21

=
arccos(E[gigj ])

π
≥ αGW

1− E[gigj ]
2

Now, by Lemma 3.1, E[gigj ] = Ẽµ[xixj ], and thus

Eµ′ [fG(x)] =
∑

{i,j}∈E

Pr(sign(gi) ̸= sign(gj)) ≥ αGW

∑
{i,j}∈E

1− Ẽµ[xixj ]

2

Finally, note that

Ẽµ[fG(x)] =
1

4
Ẽµ

 ∑
{i,j}∈E

(xi − xj)
2

 =
1

4

∑
{i,j}∈E

Ẽµ

[
x2
i + x2

j − 2xixj

]
=

1

4

∑
{i,j}∈E

Ẽµ

[
2− 2xixj

]

=
1

2

∑
{i,j}∈E

Ẽµ

[
1− xixj

]
=

∑
{i,j}∈E

1− Ẽµ

[
xixj

]
2

Thus Eµ′ [fG(x)] ≥ αGW Ẽµ[fG(x)] holds, as desired. ■

Remark. A few remarks are in order:
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1. The reason why we took the mean of our pseudo-distribution to be 0 goes as follows: Note that

Ẽµ[fG(x)] =
1

2

∑
{i,j}∈E

(1− Ẽµ

[
xixj

]
)

Thus, nowhere in the expression for Ẽµ[fG(x)] is the first moment of µ coming into play: Only second-order
terms such as xixj are involved.
Thus if we replace µ(x) by µ(x)+µ(−x)

2 , then µ continues to remain a pseudo-distribution, andmoreover, Ẽµ[fG]
doesn’t change.
Thus WLOG we can take the mean of µ to be 0.

2. Note that the distribution µ′ is efficiently sampleable, ie:- samples from the distribution µ′ can be drawn in poly(n)
time: Indeed, it is well known that a normal distribution is efficiently sampleable, and consequently the sam-
pleability of µ′ follows.

We finally arrive at the moment of truth, where we establish that an algorithm with approximation factor αGW is
achievable.

Theorem 3.3. Let G = G(V,E) be any simple undirected graph. Denote by βG the value of the largest cut of G.
Then βG

αGW
− fG(x) has a degree 2 SoS certificate.

Proof. Assume for the sake of contradiction that βG

αGW
− fG(x) is not in SoS2. Then by Theorem 1.10, there exists a

p.d. µ such that

Ẽµ

[
βG

αGW
− fG(x)

]
< 0 =⇒ Ẽµ[fG(x)] >

βG

αGW

Now, byLemma3.2, there exists a probability distributionµ′ such thatEµ′ [fG(x)] ≥ αGW Ẽµ[fG(x)] =⇒ Eµ′ [fG(x)] >
βG. But then

βG = max
x∈{−1,1}n

fG(x) ≥ Eµ′ [fG(x)] > βG

leading to a contradiction. ■

3.3. Tying everything up

By this point, most of the work has been done. We just need to invoke the theorems developed in the correct order.
Define

optSoS2
:= max

µ is a degree 2 pseudo-distribution
Ẽµ[fG(x)]

By Theorem 2.6, we can find a pseudo-distribution µ of degree 2 (in poly(n, 1/ε) time) such that Ẽµ[f ] ≥ optSoS2
−ε.

By Lemma 3.2, we can then find a distribution µ′ such that Eµ′ [f ] ≥ αGW Ẽµ[f ] ≥ αGW (optSoS2
−ε).

Now, suppose fG attains its maximum at x∗. Then the distribution 1x∗ is also a degree 2 pseudo-distribution, and
thus optSoS2

≥ βG, where recall that βG = fG(x
∗)was the largest cut of G.

Thus Eµ′ [f ] ≥ αGW (βG − ε) ≥ (αGW − ε)βG.
Thus our (αGW − ε)-approximation algorithm goes as follows:

1. Compute a pseudo-distribution µ of degree 2 (in poly(n, 1/ε) time) such that Ẽµ[f ] ≥ optSoS2
−ε.

2. Let µ′ be the distribution generated by the Gaussian rounding of µ. Sample a point from µ′. For example,
suppose the point chosen is (−1, 1, 1,−1,−1, 1). Then our cut-set S = {2, 3, 6} ⊆ [6]. Let β be the size of the
cut induced by S.
In expectation, β is atleast (αGW − ε) times the optimal max-cut.

Note that the above algorithm is a randomized algorithm.
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3.4. A Further Look into the Goemans-Williamson algorithm

It is in the very nature of research to ask if the current state of the art can be improved upon.
Now, as mentioned earlier, due to the [KKMO04] paper (which proved, assuming the Unique Games Conjecture,
that approximating Max-Cut by a factor of (αGW + ε) is NP-hard), there are very plausible reasons to believe that
αGW is the best we can get.
However, there is no unconditional proof that αGW indeed is the ceiling. For example, it is unknown if we can
outperform this bound using higher degree SoS’s, such as SoS4, or even SoSlogn.
Fortunately, though, it can be shown that one can’t use SoS2 to outperform the Goemans-Williamson algorithm, ie:-
if we are only allowed to solve instances of SoS2, then the Goemans-Williamson algorithm is the best we can get.
Let’s prove the above assertion. Before that, we first prove a lemma characterizing the performance of the GW
algorithm based on the size of the output.

Lemma 3.4. Let G be a graph such that βG = (1− δ)|E|. Let µ′ be the distribution that the GW algorithm gives us.
Then Eµ′ [fG(x)] ≥ (1−

√
δ)|E|.

Proof. Define

hG(x) := |E| − fG(x) =
1

2

∑
{i,j}∈E

(1 + xixj)

Let µ ∈ argmaxµ is a degree 2 pseudo-distribution Ẽµ[fG(x)]. Then Ẽµ[fG] ≥ βG =⇒ Ẽµ[hG] ≤ δ|E|. Let µ′ be the distribu-
tion generated from µ as described in Lemma 3.2. Then we must show that Eµ′ [hG] ≤

√
δ|E|.

Define g, x̂ as in the proof of Lemma 3.2. Then

Eµ′ [hG] = Eµ′

1
2

∑
{i,j}∈E

(1 + x̂ix̂j)


Given the definition of hG, it is not difficult to see that

Eµ′ [hG] =
∑

{i,j}∈E

1− 1− x̂ix̂j

2
=

∑
{i,j}∈E

1− Pr(sign(gi) ̸= sign(gj)) =
∑

{i,j}∈E

1− arccos(E[gigj ])
π

=
1

2

∑
{i,j}∈E

1 +
2

π
arcsin(E[gigj ])

Finally, note that

sup
ρ∈[−1,1]

(
1 + 2

π arcsin(ρ)
)2

1 + ρ
= 2 (3.1)

Thus

Eµ′ [hG]
2 =

1

4

 ∑
{i,j}∈E

1 +
2

π
arcsin(E[gigj ])

2
Cauchy-Schwartz

≤ |E|
4

∑
{i,j}∈E

(
1 +

2

π
arcsin(E[gigj ])

)2

Eq. (3.1)
≤ |E|

2

∑
{i,j}∈E

1 + E[gigj ] = |E| · E

 ∑
{i,j}∈E

1 + gigj
2

 = |E| · Ẽµ[hG] ≤ δ|E|2

Thus Eµ′ [hG]
2 ≤ δ|E|2, as desired. ■

Remark. Note that this lemma effectively says that for βG

|E| = 1 − δ, we get an approximation algorithm of factor
≥ 1−

√
δ

1−δ = 1
1+

√
δ
. For δ ≤ 0.019, 1

1+
√
δ
≥ αGW , and thus in fact, this result is a better analysis of the Goemans-

Williamson algorithm in the “low δ régime”.
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Now, we’ll show the optimality of the GW algorithm by demonstrating a degree 2 pseudo-distribution µ such that

Ẽµ

[(
1− Ω

(
1
n2

))
|ECn

| − fCn
(x)

]
≤ 0 6, whereCn is the cycle on n vertices, where n is odd. Note that βCn

= n−1 =(
1− 1

n

)
|ECn |.

Consequently, in the light of Lemma 3.4, atleast upto constant factors 7, no degree 2 SoS certificate outperforms the
Goemans-Williamson algorithm, for all graphs. Since we use the cycle graph to demonstrate this, we say that the cycle
graph demonstrates an integrality gap in SoS2.
Let LCn

be a symmetric matrix such that fCn
(x) = 1

4x
TLCn

x 8. Now, the eigenvalue of LG with maximum absolute
value (apart from 1) is equal to λ := 4 cos2

(
π
2n

)
, and it has algebraic multiplicity 2. Consequently, we can choose

two vectors v1, v2 from the eigenspace of λ such thatM := v1v
T
1 +v2v

T
2 has only ones on its diagonal. By Lemma 0.4,

M is PSD too, and consequently there exists some degree 2 pseudo-distribution µ such that Ẽµ[xx
T] = M . Then

note that

Ẽµ[fCn
(x)] =

1

4
Ẽµ[x

TLCn
x] =

1

4
Ẽµ

[
⟨LCn

, xxT⟩
]
=

1

4
⟨LCn

, Ẽµ[xx
T]⟩ = 1

4
⟨LCn

, v1v
T
1 + v2v

T
2 ⟩

Now,
⟨LCn

, v1v
T
1 ⟩ = tr(LT

Cn
v1v

T
1 ) = tr(LCn

v1v
T
1 ) = tr(λv1v

T
1 ) = λ tr(v1v

T
1 )

Thus

Ẽµ[fCn(x)] =
1

4
⟨LCn , v1v

T
1 + v2v

T
2 ⟩ =

λ

4
tr(M) = cos2

(
π

2n

)
︸ ︷︷ ︸
=1−Ω

(
1
n2

)
·n =

(
1− Ω

(
1

n2

))
· |ECn |

Consequently, Ẽµ

[(
1− Ω

(
1
n2

))
|ECn | − fCn(x)

]
= 0 ≤ 0, as desired.

6we will in fact construct a p.d. µ such that this quantity is exactly 0
7the cycle Cn can be viewed as the “discretization” of the 2-sphere, ie:- a circle. By considering the discretization of higher dimensional

spheres, tightness of the GW algorithm, even in constant factors, can be established.
8this matrix is also known as the Laplacian. We shall study it in detail in the next chapter
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�4. Quadratic Optimization over the Hypercube

Recall the ‘fG’ polynomial from the last chapter:

fG(x) :=
1

4

∑
ij∈E

(xi − xj)
2

This may be also written as 1
4x

TLGx, where LG is known as the Laplacian matrix of the graph G. Note that LG =
DG−AG, whereDG is the diagonal matrix containing the degrees of vertices inG, whileAG is the adjacency matrix
of G.
It is easy to see that LG is PSD for any G. Now, that prompts us to ask the question: Given any B ≽ 0, how well can
we approximate opt(B) := maxx∈{−1,1}n xTBx?
This question was answered by the famous “π

2 -theorem” of Nesterov, which we shall now prove.

Theorem 4.1 (Nesterov’s Theorem). Let B ∈ Rn×n be PSD. Then π
2 opt(B)− xTBx has a degree 2 SoS certificate.

Consequently, for any ε > 0, there exists a
(
2
π − ε

)
-approximation algorithm for calculatingmaxx∈{−1,1}n xTBx, and

this algorithm runs in poly
(
n, 1

ε

)
time.

Proof. We will mimic the proof of Lemma 3.2, just that our objective function will be different this time.
Thus, let µ be a zero-mean degree 2 pseudo-distribution on {−1, 1}n, let g ∼ N (0, Ẽµ[xx

T]), and let the distribution
of x̂ := sign(g) be µ′. As noted in Lemma 3.4, Eµ′ [x̂ix̂j ] =

2
π arcsin(E[gigj ]).

Thus
Eµ′ [x̂TBx̂] =

∑
i,j∈[n]

BijEµ′ [x̂ix̂j ] =
∑

i,j∈[n]

Bij
2

π
arcsin(E[gigj ]) =

2

π

〈
B, arcsin

(
E[ggT]

)〉
By Theorem 0.12 9, arcsin

(
E[ggT]

)
− E[ggT] is a PSD matrix.

Now, if X,Y are PSD matrices, then ⟨X,Y ⟩ ≥ 0 by Lemma 0.9. In particular,〈
B, arcsin

(
E[ggT]

)
− E[ggT]

〉
≥ 0

Thus

Eµ′ [x̂TBx̂] =
2

π

〈
B, arcsin

(
E[ggT]

)〉
≥ 2

π

〈
B,E[ggT]

〉
=

2

π
Ẽµ[x

TBx] =⇒ Eµ′ [x̂TBx̂] ≥ 2

π
Ẽµ[x

TBx]

We have thus proved an analog of Lemma 3.2 for general PSD matrices B. The rest of the discussion of the last
chapter follows verbatim to yield the desired conclusions. ■

4.1. Quadratic Optimization for General Matrices

Once we have conquered PSD matrices, why stop there? Why not consider allmatrices?
Indeed, that’s what we’ll do. Thus, let B be any matrix. Note that

xTBx = xT

(
B +BT

2

)
x

Thus WLOGwe can assumeB to be symmetric. Furthermore, note that ifB = D+N , whereD is a diagonal matrix
and all of N ’s diagonal entries are 0, then

xTBx = tr(B) + xTNx

9Applied on the function f(x) := arcsin(x) − x. Also, note that the diagonal entries of E[ggT] are equal to E[g2i ] = sin
(

π
2
Eµ′ [x̂2

i ]
)

=

sin
(

π
2
Eµ′ [1]

)
= sin

(
π
2

)
= 1, and thus Theorem 0.12 is indeed applicable
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Thus WLOG we can assume that all of B’s diagonal entries are 0.
Finally, before we state our approximation algorithm for general matrices, we shall need a lemma that converts our
discrete optimization problem to a continuous optimization problem.

Lemma 4.2. For any y ∈ [−1, 1]n, there exists some ŷ∗ ∈ {−1, 1}n such that ŷT∗Bŷ∗ ≥ yTBy.

Proof. Consider the random variable ŷ on {−1, 1}n, where Pr(ŷi = ±1) = 1±yi

2 , independently, for each i ∈ [n]. Then
E[ŷiŷj ] = E[ŷi]E[ŷj ] = yiyj for i ̸= j. Thus E[ŷTBŷ] = tr(B) +

∑
i̸=j BijE[ŷiŷj ] =

∑
i̸=j Bijyiyj = yTBy, where we

use the fact that tr(B) = 0 (since all of B’s diagonal entries were assumed to be 0).
Thus E[ŷTBŷ] = yTBy, which means there exists some ŷ∗ such that ŷT∗Bŷ∗ ≥ E[ŷTBŷ] = yTBy, as desired. ■

Corollary 4.3. opt(B) = maxx∈{−1,1}n xTBx ≥ 0.

Proof. Invoking Lemma 4.2 with y = 0 ∈ [−1, 1]n works. ■

Remark. Note that if opt(B) = 0, then −B is PSD.
Finally, we also state a useful tail bound for the Gaussian rounding of a pseudo-distribution.

Lemma 4.4. Let µ be a degree 2 pseudo-distribution, and let g =
[
g1 g2 . . . gn

]T ∼ N (0, Ẽµ[xx
T]). Then there

is a constant C = O(1) > 0 such that
Pr(gi ≥ C

√
log n) ≤ 1

n3

Consequently, Pr(∥g∥∞ ≥ C
√
log n) ≤ 1

n2 .

Proof. Recall from Lemma 1.6 that all the diagonal entries of Ẽµ[xx
T] are 1, ie:- gi’s are Gaussian RVs with unit

variance (and zero mean). A simple analysis of the CDF of a Gaussian RV X with variance σ2 tells us

Pr(|X − E[X]| ≥ t) ≤ 2e−
t2

2σ2

Thus, taking t = C
√
log n for some appropriate constantC yields the first result, and then a union bound over i ∈ [n]

yields the second result. ■

We can now state our approximation algorithm for evaluating maxx∈{−1,1}n xTBx.

Theorem 4.5. For sufficiently large n, and for c = O(log n), opt(B)
c − xTBx has a degree 2 SoS certificate.

We thus have a O(log n)-approximation algorithm for calculating opt(B).

Proof. As usual, we show that for any degree 2 pseudo-distribution µ, there is some (efficiently sample-able) dis-
tribution µ′ on {−1, 1}n such that Eµ′ [x̂TBx̂] ≥ Ẽµ[x

TBx]
O(logn) . Now, by Lemma 4.2, it suffices if we choose µ′ to be a

distribution on [−1, 1]n instead of {−1, 1}n: Indeed, suppose we go through the whole algorithm as in the Max-
Cut/PSD case to get some y ∈ [−1, 1]n such that yTBy ≥ opt(B)

O(logn) . Then the proof technique of Lemma 4.2 gives us
a random variable ŷ such that ŷTBŷ, equals, in expectation, yTBy. Thus we can simply sample some point from ŷ
and return that as the output of our algorithm.
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Sample g ∼ N (0, Ẽµ[xx
T]). Then Ẽµ[x

TBx] = ⟨B, Ẽµ[xx
T]⟩ = ⟨B,E[ggT]⟩ = E[gTBg]. Since we are going to be

choosing µ such that Ẽµ[x
TBx] ≥ opt(B) − ε, and since opt(B) > 0 10, by choosing ε small enough we can assume

that Ẽµ[x
TBx] = E[gTBg] > 0. But then by Lemma 4.4,

Pr(∥g∥∞ ≤ C
√
log n)E

[
gTBg

∣∣∣∣∥g∥∞ ≤ C
√

log n

]
≥
(
1− 1

n2

)
E[gTBg]

Now, consider the rounding algorithm 11

x̂i :=


gi

C
√
logn

, |gi| ≤ C
√
log n

gi
|gi| , otherwise

Clearly, x̂ :=
[
x̂1 x̂2 . . . x̂n

]T ∈ [−1, 1]n. Let the probability distribution of x̂ be µ′.
Then

Eµ′ [x̂TBx̂] ≥ Pr(∥g∥∞ ≤ C
√

log n)E

[
x̂TBx̂

∣∣∣∣∥g∥∞ ≤ C
√

log n

]

≥ 1

C2 log n
Pr(∥g∥∞ ≤ C

√
log n)E

[
gTBg

∣∣∣∣∥g∥∞ ≤ C
√
log n

]
≥ 1

C2 log n

(
1− 1

n2

)
E
[
gTBg

]
=

1

O(log n)
Ẽµ[x

TBx]

■

Remark. In this theorem, we can replace “sufficiently large” n by n > 60, and c = O(log n) by c = 4 log n for the sake
of concreteness.
Note that since B is a general matrix, we could obtain only a O(log n)-approximation algorithm as opposed to a
constant-factor approximation algorithm. However, there is another class of matrices, which is also fairly general,
for which a constant factor approximation algorithm for finding opt(B) exists, which we shall describe now.

4.2. Quadratic Optimization for Matrices with bipartite support

As usual, let B be a symmetric matrix. We define the support of B to be

supp(B) := {{i, j} : Bij ̸= 0}

Clearly, supp(B) describes the edge set of some undirected graph on [n]. We are interested in finding an approxima-
tion algorithm for opt(B) for the case where supp(B) is a bipartite graph.
Now consider aB such that supp(B) is a bipartite graph, say with partitionsX,Y such thatX ∪Y = [n], X ∩Y = ∅.
WLOG assume x < y for all x ∈ X, y ∈ Y . Then note that B is a block matrix, ie:-

B =

[
0|X|×|X| B′

(B′)T 0|Y |×|Y |

]

For any vector z ∈ Rn, denote by zS the vector
[
zs1 zs2 . . . zs|S|

]T
∈ R|S|, where S = {s1, s2, . . . , s|S|}. Then

note that xTBx = 2xT
XB′xY .

Thus, upto some tweaking and fiddling, we can focus on a modified problem: Given an arbitrary matrixM (with no
restrictions such as symmetry/zeros on the diagonal, etc.), evaluate

max
x,y∈{−1,1}n

xTMy

Recall Definition 0.5. We shall now connect our optimization problem to generalized operator norms.
10If opt(B) = 0, then −B is PSD, and thus the statement of this theorem holds trivially, since the Cholesky decomposition of −B yields a

degree 2 SoS proof for −xTBx. One might also view this as a “pre-processing step”: We first check if −B is Cholesky decomposable: If yes,
we’re done. Otherwise we invoke the algorithm mentioned here.

11this is a special case of a class of roundings known as RPR2 roundings
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Theorem 4.6. Let B be an arbitrary matrix. Then

max
x,y∈{−1,1}n

xTMy = ∥M∥∞→1

Proof. Fix some y ∈ {−1, 1}n. Then

max
x∈{−1,1}n

xTMy = max
x∈{−1,1}n

⟨x,My⟩ = ∥My∥1

Indeed, ⟨x,My⟩ can be easily seen to be maximized when x = sign(My).
Now, note that

∥M∥∞→1 = max
y∈Rn,∥y∥∞=1

∥My∥1

Since y 7→My is a convex function, it is maximized on some vertex of the cube [−1, 1]n. Thus

max
y∈Rn,∥y∥∞=1

∥My∥1 = max
y∈{−1,1}n

∥My∥1

But
max

y∈{−1,1}n
∥My∥1 = max

y∈{−1,1}n
max

x∈{−1,1}n
xTMy = max

x,y∈{−1,1}n
xTMy

as desired. ■

We thus have to find an approximation algorithm for evaluating ∥M∥∞→1 for an arbitrary matrixM ∈ Rn×n. Before
stating the main theorem, we pass through a small proposition.

Lemma 4.7. Let M be an arbitrary matrix.
Let µ′ be a distribution on {−1, 1}n, and µ be a pseudo-distribution on {−1, 1}n such that Eµ′ [xyT] = γẼµ[xy

T]. Then
Eµ′ [xTMy] = γẼµ[x

TMy].

Proof. Note that

Eµ′ [xTMy] =
〈
M,Eµ′ [xyT]

〉
=
〈
M,γẼµ[xy

T]
〉
= γ

〈
M, Ẽµ[xy

T]
〉
= γẼµ[x

TMy]

■

Theorem 4.8. (KG∥M∥∞→1 − xTMy) has a degree 2 SoS certificate, whereKG is the so-called Grothendieck’s con-
stant. The reader may look up Grothendieck’s inequality ([Gro23]) for further details.

Remark. A few remarks are in order:

1. (KG∥M∥∞→1 − xTMy) is to be treated as a polynomial in x1, . . . , xn, y1, . . . , yn.

2. Letκ be a distribution/pseudo-distribution on {−1, 1}n. WhenwewriteEκ[f(x, y)] or Ẽκ[f(x, y)], we are taking
the (pseudo)expectation of f(x, y), where x and y are independent of each other.

3. The exact value of Grothendieck’s constant is unknown: We only have the bounds π
2 ≤ KG < 2 ln(1+

√
2)

π .
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Proof. We actually prove a weaker statement, ie:- 2 ln(1+
√
2)

π ∥M∥∞→1 − xTMy has a degree 2 SoS certificate.
Let µ be a degree 2 pseudo-distribution. We describe an (efficiently sampleable) distribution µ′ on {−1, 1}n such
that Eµ′ [xTMy] = 2c

π Ẽµ[x
TMy], where c = ln(1 +

√
2). When we would have proven this, we will be done. In the

light of Lemma 4.7, showing that Eµ′ [xyT] = 2c
π Ẽµ[xy

T] suffices.
Consider the matrix

Σ :=

sinh
(
cẼµ[xx

T]
)

sin
(
cẼµ[xy

T]
)

sin
(
cẼµ[yx

T]
)

sinh
(
cẼµ[yy

T]
)


We claim that Σ is PSD: Indeed, note that if
[
Σ11 Σ12

Σ21 Σ22

]
is PSD, then

[
Σ11 −Σ12

−Σ21 Σ22

]
is PSD too, since

[
v
w

]T [
Σ11 −Σ12

−Σ21 Σ22

] [
v
w

]
=

[
v
−w

]T [
Σ11 Σ12

Σ21 Σ22

] [
v
−w

]

Thus, for any k ∈ N0, both

[
Σ

(k)
11 Σ

(k)
12

Σ
(k)
21 Σ

(k)
22

]
and

[
Σ

(k)
11 −Σ(k)

12

−Σ(k)
21 Σ

(k)
22

]
are PSD, where recall that X(k) was the k-wise

Hadamard product of X with itself.
Now, note that sinh(x), sin(x) are analytic functions given by

sinh(x) =

∞∑
n=0

x2n+1

(2n+ 1)!

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

Thus,mimicking the proof of Theorem0.12, we can conclude that if
[
Σ11 Σ12

Σ21 Σ22

]
is PSD, then so is

[
sinh(Σ11) sin(Σ12)
sin(Σ21) sinh(Σ22)

]
.

Now, note that

[
Ẽµ[xx

T] Ẽµ[xy
T]

Ẽµ[yx
T] Ẽµ[yy

T]

]
= Ẽµ

[[
x
y

]
·
[
x
y

]T]
, which is PSD since µ is a degree 2 pseudo-distribution.

Thus Σ is PSD. Consider the normal distribution G := N (0,Σ), and let µ′ be the Gaussian Rounding of G, ie:- we
sample some x from G, and set x̂ = sign(x).
Now, consider Eµ′ [xyT]. Suppose x = sign(g), y = sign(h), where g, h ∼ G. Now, recall from the proofs of Lemma 3.2
or Lemma 3.4 that Eµ′ [xyT] = 2

π arcsin(EG [gh
T]). However, there is a small thing to be taken care of: The relation

“Eµ′ [xyT] = 2
π arcsin(EG [gh

T])” was a consequence of Lemma 0.21, which in turn required that all the diagonal el-
ements of the Gaussian’s covariance matrix be 1. Now, note that the covariance matrix of G is Σ, and all diagonal
entries of Σ equal sinh(c). Consequently, we must have c = sinh−1(1) = ln(1 +

√
2), as desired.

Since g, h are independent draws from G, EG [gh
T] is just the off-diagonal block of the covariance matrix of G.

Thus
EG [gh

T] = sin
(
cẼµ[xy

T]
)

Consequently,

Eµ′ [xyT] =
2

π
arcsin(EG [gh

T]) =
2

π
arcsin

(
sin
(
cẼµ[xy

T]
))

=
2c

π
Ẽµ[xy

T]

as desired. ■

Though we will not see it here, [AMMN06] showed that if the support of a matrix B is some general graph G, then
there is an O(log(χ(G)))-approximation algorithm for evaluating opt(B). They also showed that there can be no
o(log(ω(G)))-approximation algorithm for the same. Recall that χ(G) was the minimum number of colors needed
to color a graph, while ω(G) is the size of the largest clique in G.
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�5. Higher Degree Sum of Squares

So far we have seen quite a few examples of degree 2 SoS. We will now see some applications of degree 4 SoS.
Before that, we present a very useful lemma that pops up when we try to deal with the degree 4 Sum of Squares.

Lemma 5.1 (Squared Triangle Inequality). For any a, b, c ∈ {−1, 1},

(a− c)2 ≤ (a− b)2 + (b− c)2

Proof. Just note that

(a− b)2 + (b− c)2 − (a− c)2 ={−1,1}

(
(b− c)(a− b)√

2

)2

■

As our first example of degree 4 SoS, we see an algorithm for solving the Min-Cut problem 12.
Let fG(x) be our usual cut function, ie:-

fG(x) =
1

4

∑
ij∈E

(xi − xj)
2

Now, by Theorem 2.6, we can find (in polynomial time) a degree 4 pseudo-distribution µ such that Ẽµ[fG] ≤
optSoS4

+ε, where
optSoS4

:= min
κ is a degree 4 pseudo-distribution

Ẽκ[fG]

Clearly, optSoS4
is at most the size of the minimum cut. 13 We will now describe a distribution µ′ on {−1, 1}n such

that Eµ′ [fG] ≤ Ẽµ[fG], and thus if we sample a cut from µ′, then in expectation, we would be sampling the minimum
cut.
Now, for any i, j ∈ [n], define

D(i, j) :=
1

4
Ẽµ[(xi − xj)

2]

We argue that D : [n]2 7→ R is a metric on [n]: Since µ is a degree 4 pseudo-distribution, it is a degree 2 pseudo-
distribution too, and consequently Ẽµ[(xi−xj)

2] ≥ 0 for all i, j ∈ [n]. ThusD is non-negative. Clearly,D is symmetric.
Finally, note that

4(D(i, j) +D(j, k)−D(i, k)) = Ẽµ[(xi − xj)
2] + Ẽµ[(xj − xk)

2]− Ẽµ[(xk − xi)
2] = Ẽµ

[(
(xj − xk)(xi − xj)√

2

)2
]

But Ẽµ

[(
(xj−xk)(xi−xj)√

2

)2]
is non-negative since µ is a degree 4 pseudo-distribution.

Thus D satisfies the triangle inequality too, as desired.
Finally, also note thatD(i, j) ≤ 1 for all i, j: Indeed, 1−D(i, j) = 1

4 Ẽµ[4− (xi − xj)
2] = 1

4 Ẽµ[(xi + xj)
2] ≥ 0, since µ

is a degree 2 pseudo-distribution.
Now, consider the “line” map ℓ : [n] 7→ [0, 1], ℓ(i) := D(i, 1). Uniformly sample a t from [0, 1], and output the cut
{i ∈ [n] : ℓ(i) ≤ t}.
The probability that some edge {i, j} ∈ E is cut is given by

Pr(ℓ(i) ≤ t ≤ ℓ(j) ∨ ℓ(j) ≤ t ≤ ℓ(i)) = |ℓ(i)− ℓ(j)| = |D(i, 1)−D(j, 1)| ≤ D(i, j)

Thus the expected size of a cut, by our sampling procedure 14, is at most
∑

ij∈E D(i, j) = Ẽµ[fG], as desired.
With this warm-up, we are now ready to attack the big problems of the day.

12note that the Min-Cut problem has a polynomial time algorithm, namely the Ford-Fulkerson algorithm, but looking at Min-Cut is instructive
in this context, so we do it

13we consider pseudodistributions over {−1, 1}n \ {(−1, . . . ,−1), (1, . . . , 1)} to exclude the trivial empty cuts
14note how we implicitly described a distribution µ′ by directly describing its sampling procedure instead
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5.1. Approximating Conductance

We will see some applications of degree 4 SoS in approximating the conductance of a graph.
In keeping with our tradition, we will continue to investigate cuts of graphs. We already know that Min-Cut is
solvable in polynomial time, and while Max-Cut is NP-hard, a good constant factor approximation for Max-Cut is
achievable in polynomial time.
Today we will investigate something called the normalized cut of a graph, which we define below.

Definition 5.1. Consider a d-regular graphG = G(V,E)with n vertices, and consider some non-empty S ⊊ V . Then
the normalized cut corresponding to S, also known as the conductance of S, is defined as

ΦG(S) :=
E(S, V \ S)
d
n |S| · |V \ S|

=
|{{i, j} ∈ E : i ∈ S, j ̸∈ S}|

d
n |S| · |V \ S|

Remark. It should be quite apparent why ΦG(S) is called the “normalized” cut of S: Note that the denominator in
the expression for ΦG(S) contains the expected size of the cut induced by S, had G been a random graph.
Thus the normalized cut seeks to measure, with respect to some “standard”, how big/small the cut induced by S is.

Definition 5.2 (Conductance of Graph). Given a d-regular graph G = G(V,E), the conductance of G is defined to
be

ΦG := min
∅̸=S⊊V

ΦG(S)

Remark. The conductance of a graph is a very important object, especially in the study of randomwalks over graphs.
A low conductance means that the graph has a “bottleneck”: If we begin a random walk on the graph, then it takes
quite some time to get to the other side of the bottleneck.
The problem of finding the conductance of a graph is also known as the sparsest cut problem.
Quite surprisingly, unlike Max-Cut, which has a constant factor approximation algorithm, [CKK+05] showed that
(assuming the Unique Games Conjecture) finding any constant factor approximation algorithm for the sparsest cut
problem is NP-hard.
We now formally state the sparsest cut problem.

Problem. Given any graph G, calculate

min
x∈{−1,1}n

fG(x)
d
nfKn

(x)

It is easy to see the equivalence of this formulation with the definition given above.
Now, note that optimizing rational functions such as fG(x)

d
n fKn (x)

is hard: We shall thus focus on getting as large α as we
can such that fG(x)− α d

nfKn
(x) has a Sum of Squares certificate.

Some progress in this direction was already made by [AM85], who proved Cheeger’s inequality for graphs.

Theorem 5.2 (Cheeger’s Inequality). There is a degree 2 SoS certificate for

fG(x)−
Φ2

G

2
· d
n
fKn

(x)
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A more algorithmic version of the above inequality goes as follows:

Theorem 5.3. Consider any pseudo-distribution µ of degree ≥ 2 such that Ẽµ[fG(x) − C d
nfKn

(x)] ≤ 0 for some
constant C. Then one can find a set S with ΦG(S) = O(

√
C).

Note that when Φ(G) = O(1), ie:- when Φ(G) is a constant, Theorem 5.2 gives us a constant factor approximation
algorithm. This is nice, because graphs with constant-sized conductances are known as expander graphs, and they
are very important objects throughout graph theory and computer science. Alternatively stated, expander graphs
are accompanied by a degree 2 SoS proof that they are expander graphs.
However, when Φ(G) = o(1), then the approximation algorithm given by Theorem 5.2 is rather weak: For example,
if Φ(G) = Θ(1/

√
n), then Theorem 5.2 is a

√
n-approximation algorithm, which is not good!

This situation is remedied by the Arora-Rao-Vazirani (ARV) algorithm, which is a O(
√
log n)-approximation algo-

rithm for the sparsest cut problem. We will first prove a Global structure theorem en route to this algorithm.

5.2. Global Structure Theorem

Throughout this section, letµdenote a degree 4 pseudo-distribution. Sincewe’ll be dealingwith the (pseudo)expectations
of quadratic functions such as (xi − xj)

2 throughout, WLOG we can assume that Ẽµ[x] = 0.
As in the Min-Cut algorithm, we define D(i, j) := 1

4 Ẽµ[(xi − xj)
2].

Definition 5.3. A,B ⊆ V are said to be ∆-separated sets if for every i ∈ A, j ∈ B, D(i, j) ≥ ∆, and |A| · |B| = Ω(n2).

Theorem 5.4 (Weak Global Structure Theorem). Let G be a d-regular graph such that
∑

i,j D(i, j) = Ω(n2). Then
one can find, in poly(n) time, sets A and B which are Ω(1/ log n)-separated.

Proof. Recall that Ẽµ[x] = 0, and denote by G the normal distribution N (0, Ẽµ[xx
T]), and sample g from G. Define

A(0) := {i ∈ [n] : gi ≤ −1}, B(0) := {j ∈ [n] : gj ≥ 1}

Now, for any i, j,
[
gi
gj

]
∼ N

0,

[
1 Ẽµ[xixj ]

Ẽµ[xixj ] 1

] 15. Using some elementary calculus, it is easy to see that

there is some constant C such that Pr(gi ≤ −1, gj ≥ 1) ≥ C
4 (2− 2Ẽµ[xixj ]) = CD(i, j).

Thus
E[|A(0)| · |B(0)|] =

∑
i,j

Pr(gi ≤ −1, gj ≥ 1) ≥ C
∑
i,j

D(i, j) = Ω(n2)

Now, suppose for some i ∈ A(0), j ∈ B(0) we have D(i, j) ≤ ∆, ie:- Ẽµ[(xi − xj)
2] ≤ 4∆. Now, Ẽµ[(xi − xj)

2] =
E[(gi − gj)

2]. Note that gi − gj is a Gaussian RV too, whose variance is at most 4∆. Yet the value of gi − gj , in this
particular instance is ≤ −2, since gi ≤ −1, gj ≥ 1. The probability of this happening is Θ

(
e−

O(1)
∆

)
. Consequently,

the probability that for any i ∈ A, j ∈ B, D(i, j) ≤ ∆ is ≤ n2Θ
(
e−

O(1)
∆

)
.

Thus the probability that A(0), B(0) are∆-separated is ≥ 1− n2Θ
(
e−

O(1)
∆

)
= 1−O(1) when ∆ = O

(
1

logn

)
.

Consequently with some positive probability A(0), B(0) are well-separated, and by carrying out this sampling pro-
cedure poly(n)many times, we will find, with very high probability, a particular pair of well-separated sets. ■

15recall Lemma 1.6
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We shall now progress towards proving the strong Global Structure Theorem, which says that if the hypotheses of
Theorem 5.4 hold, then, in fact, we have a pair of Ω(1/

√
log n)-separated sets.

The way we go about showing it is as follows: We first construct A(0), B(0) as in the proof of Theorem 5.4. We then
construct a directed bipartite graph ‘H’, betweenA(0), B(0), where two vertices are connected if the distance between
them is ≤ ∆ 16. We then construct a maximal matching M in H such that when M is deleted from H , we don’t lose
too many vertices, yet all the vertices close to each other are gone, and we get our desired well-separated set.
It is now time to fill in the details.

5.2.1. The Details

Construct A(0), B(0) as in the proof of Theorem 5.4.
Let H be a graph on [n], where E(H) := {{i, j} : D(i, j) ≤ ∆}. Consider the subgraph of H induced by A(0) ∪B(0),
and orient each edge in that subgraph to be going from A(0) to B(0). Further, order those edges lexicographically.
Generate a maximal matching M on that subgraph by choosing the (lexicographically) smallest edge, adding it to
M , removing the endpoints of the said edge, and so on. Note that the construction ofM is completely deterministic
once we have fixed the subgraph, ie:- H ∩ (A(0) × B(0)). Furthermore, note that when we delete the vertices in M
from H ∩ (A(0) ×B(0)), all the remaining edges have length ≥ ∆, because otherwise we could have extended M .
We have to now prove that M is not too large, and thus deleting the edges and vertices of M doesn’t cause |A(0) \
V (M)| · |B(0) \ V (M)| to become o(n2).
Let Hk(i) be the set of vertices that are at most k steps away from i in H . Define γ

(k)
i := maxj∈Hk(i)(gj − gi), and

define ϕk :=
∑

i∈[n] E[γ
(k)
i ]. Then

Lemma 5.5. For any k ∈ N,

ϕk+1 − ϕk ≥ 2E[|M |]−O(n) max
i∈[n]

j∈Hk+1(i)

√
E[(gi − gj)2]

Proof. Note that if (i, j) ∈ E(H), then Hk(j) ⊆ Hk+1(i). Consequently, γ(k+1)
i ≥ γ

(k)
j + (gj − gi) ≥ γ

(k)
j + 2, where

recall that gj ≥ 1,−1 ≥ gi since j ∈ B(0), i ∈ A(0).
Now, for all i ∈ [n], define the variables Li, Ri, where

Li :=


1, i has an outgoing edge in M

0, i has an incoming edge in M
1
2 , otherwise

Ri := 1− Li

Finally, note that since Hk(·) ⊆ Hk+1(·), γ(k+1)
· ≥ γ

(k)
· . Consequently, if (i, j) ̸∈ E(M), then write the inequality

γ
(k+1)
i + γ

(k+1)
j ≥ γ

(k)
i + γ

(k)
j

and if (i, j) ∈ E(M), then write the inequality γ
(k+1)
i ≥ γ

(k)
j +2. Summing over all these inequalities for all possible

i, j ∈ [n] yields

(n− 1)

∑
i∈[n]

Liγ
(k+1)
i

 ≥ (n− 1)

∑
i∈[n]

Riγ
(k)
i + 2|M |

 =⇒
∑
i∈[n]

Liγ
(k+1)
i ≥

∑
i∈[n]

Riγ
(k)
i + 2|M |

=⇒
∑
i∈[n]

E
[
Liγ

(k+1)
i

]
≥
∑
i∈[n]

E
[
Riγ

(k)
i

]
+ 2E[|M |]

16we shall later fix ∆ to be O(
√
logn), but for now let it remain indeterminate
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Now, note that for some g ∼ N (0, Ẽµ[xx
T]), gi ≥ 1 and gi ≤ −1 are equiprobable events. Consequently, for any

i ∈ [n], i lies in either A(0) or B(0) with equal probability, and consequently, E[Li] = E[Ri] =
1
2 for all i ∈ [n].

Now, we must extricate Li, Ri from within the expectation operator somehow: We prove that that doesn’t cost us
too much. Indeed,∣∣∣∣E [Liγ

(k+1)
i

]
− E [Li] · E

[
γ
(k+1)
i

]∣∣∣∣ =
∣∣∣∣∣∣E
[
(Li − E[Li])

(
γ
(k+1)
i − E

[
γ
(k+1)
i

])]∣∣∣∣∣∣ = Corr
(
Li, γ

(k+1)
i

)

≤
√
Var(Li)︸ ︷︷ ︸
=O(1)

√
Var

(
γ
(k+1)
i

) Lemma 0.22
≤ O(1)

√
max

j∈Hk+1(i)
E[(gj − gi)2]

The invocation of Lemma 0.22 is justified by the fact that γ(k+1)
i is the maximum of the Gaussian RVs (gj − gi) for

j ∈ Hk+1(i).
Thus

ϕk+1 =
∑
i∈[n]

E[γ(k+1)
i ] = 2

∑
i∈[n]

E[Li]E[γ(k+1)
i ] ≥ 2

∑
i∈[n]

E[Liγ
(k+1)
i ]−O(1)

∑
i∈[n]

√
max

j∈Hk+1(i)
E[(gj − gi)2]

≥ 2
∑
i∈[n]

E[Riγ
(k)
i ] + 2E[|M |]−O(1)

∑
i∈[n]

√
max

j∈Hk+1(i)
E[(gj − gi)2]

≥ 2
∑
i∈[n]

E[Ri]E[γ(k)
i ] + 2E[|M |]−O(1)

∑
i∈[n]

√
max

j∈Hk+1(i)
E[(gj − gi)2]

= ϕk + 2E[|M |]−O(n)
√

max
i∈[n]

j∈Hk+1(i)

E[(gj − gi)2] = ϕk + 2E[|M |]−O(n) max
i∈[n]

j∈Hk+1(i)

√
E[(gj − gi)2]

■

Given Lemma 5.5, the rest is easy: Note that if i and j are k steps apart inH , then E[(gi−gj)
2] = Ẽµ[(xi−xj)

2] ≤ k∆

by the Squared Triangle Inequality. Consequently, by Lemma 5.5, ϕk+1 − ϕk ≥ 2E[|M |] − O(n)
√
k∆. Set k0 =

c
∆

(
E[|M |]

n

)2
, where c is such that the last inequality in the following chain of inequalities holds, for k ≤ k0:

ϕk+1 − ϕk ≥ 2E[|M |]−O(n)

√
c

∆

(
E[|M |]

n

)2

∆ ≥ E[|M |]

Then ϕk0 ≥ k0E[|M |]. Finally, note that maxi,j∈[n](gj − gi) ≥
ϕk0

k0
≥ ϕk0

n , and thus

max
i,j∈[n]

(gj − gi) = Ω

(
k0
n
E[|M |]

)
=

Ω(1)

∆

(
E[|M |]

n

)3

=⇒ E

[
max
i,j∈[n]

(gj − gi)

]
=

Ω(1)

∆

(
E[|M |]

n

)3

On the other hand, note that gj − gi are all Gaussian RVs with variance at most O(1) 17. It is then standard to show
18 that E

[
maxi,j∈[n](gj − gi)

]
≤ O(

√
log n).

Thus
Ω(1)

∆

(
E[|M |]

n

)3

≤ O(
√
log n)

Setting∆ = Θ
(

1√
logn

)
yields that E[|M |] = O(n), which implies that deleting the vertices ofM from A(0), B(0) still

keeps |A(0) \ V (M)| · |B(0) \ V (M)| = Ω(n2), as desired.
We have thus proved the strong Global Structure Theorem, which we formally state below.

17note that the covariance matrix of gi, gj has 1s on its diagonal, and thus the covariance of gi, gj must be at most 1, from which it follows that
gj − gi has bounded variance

18see, for example, this stackexchange answer

https://math.stackexchange.com/questions/89030/expectation-of-the-maximum-of-gaussian-random-variables
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Theorem 5.6 (Strong Global Structure Theorem). Let G be a d-regular graph such that
∑

i,j D(i, j) = Ω(n2). Then
one can find, in poly(n) time, sets A and B which are Ω(1/

√
log n)-separated.

5.3. Arora-Rao-Vazirani Algorithm

Theorem 5.7. Let G be a d-regular graph with n vertices. Then there is a degree 4 SoS certificate for

fG(x)−
ΦG

Θ(
√
log n)

· d
n
fKn

(x)

Proof. As in all approximation algorithm analyses before, let µ be (close to) the optimal pseudo-distribution maxi-
mizing the pseudo-expectation of fG(x)− ΦG · dnfKn

(x).
First, invoke Theorem 5.6 19 to find two separated sets A,B such that D(A,B) ≥ Ω

(
1√
logn

)
.

Now, we mimic the analyses of the min-cut algorithm: Recall how we constructed a distribution by making a ‘cut’
in the ‘line map’ ℓ : [n] 7→ [0, 1] : i 7→ D(i, 1). We now consider the map ℓ′ : [n] 7→ [0, 1] : i 7→ D(i, A), where
D(i, A) := mina∈A D(i, a). It is not too difficult to see that D(·, A) is a bounded metric on [n] too, and thus ℓ′ is a
“valid” line map. Once again, let µ′ be the distribution of the cut of the line map ℓ′. As in the min-cut case, we once
again have Eµ′ [fG(x)] ≤ Ẽµ[fG(x)]

20. But also note that

Eµ′ [fKn
(x)] =

1

4

∑
i,j

Eµ′ [(xi − xj)
2] ≥ 1

4

∑
j∈B

D(j, A) ≥ ∆

4
|A| · |B| ≥ Ω

(
1√
log n

)
n2 ≥ Ω

(
1√
log n

)
Ẽµ[fKn

(x)]

where the last inequality follows from the fact that Ẽµ[fKn
(x)] =

∑
i,j D(i, j) ≤

(
n
2

)
= O(n2). ■

19Note that one of the hypotheses in Theorem 5.6 was that
∑

i,j D(i, j) = O(n2). We shall omit the proof of the fact that µ indeed satisfies
this property

20in fact, one might note that the min-cut algorithm described above works verbatim with the metric D(·, 1) replaced by the metricD(·, A).
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�6. Unique Games Conjecture

We have referenced the Unique Games Conjecture (UGC) multiple times before: For example, we said that condi-
tional on the UGC, an (αGW + ε)-approximation algorithm for MAX-CUT is NP-hard; or, conditional on the UGC,
any constant factor approximation algorithm for the unique sparsest cut is NP-hard.
We thus take some time out to understand what the Unique Games Conjecture is all about.

Definition 6.1 (2-Constraint Satisfaction Problem (2-CSP)). Suppose we have n variables, x1, . . . , xn, which take
values in some alphabet of size q (WLOG considered to be [q]). We also have m constraints (C1, S1), . . . , (Cm, Sm),
where each Ci is a pair of variables (xi1 , xi2), and Si ⊆ [q]2.
A constraint (Ci, Si) is said to be satisfied by an assignment ν : {x1, . . . , xn} 7→ [q] if (ν(xi1), ν(xi2)) ∈ Si.
The algorithmic goal of a 2-CSP is to find an assignment that maximizes the number of constraints satisfied.

Example (Max-Cut is a 2-CSP). For any graphG(V,E), with |V | = n, |E| = m, let our alphabet be {0, 1} (ie:- q = 2),
and let our variables be x1, . . . , xn. Finally, for every {i, j} ∈ E, we have the constraint ((xi, xj), {(0, 1), (1, 0)}).
It is easy to see that this CSP encodes the Max-Cut problem.

Example (Max-3-coloring is a 2-CSP). The problem of Max-3-coloring asks for a 3-coloring of a given graph such
that the number of edges having both endpoints of the same color is minimized.
For any graph G(V,E), with |V | = n, |E| = m, let our alphabet be {1, 2, 3} (ie:- q = 3), and let our variables be
x1, . . . , xn. Finally, for every {i, j} ∈ E, we have the constraint ((xi, xj), {(α, β) : α, β ∈ {1, 2, 3}, α ̸= β}).
It is easy to see that this CSP encodes the Max-3-coloring problem.

Definition 6.2 (Promise Problem). For 0 ≤ s ≤ c ≤ 1, the (c, s)-promise problem takes as input a 2-CSP instance,
and the goal is to decide whether:

1. There exists an assignment which satisfies ≥ c fraction of constraints, or

2. Every assignment satisfies ≤ s fraction of constraints.

Remark. A few remarks are in order:

1. If we have a
(
s
c

)
-approximation algorithm for a CSP, then that same algorithm can also decide the (c, s)-promise

problem of that CSP.

2. A
(
1, 1− 1

m

)
-2CSP promise problem can be used to check the satisfiability of a CNF. Consequently,

(
1, 1− 1

m

)
-

2CSP promise problems are NP-complete for q ≥ 3.

Example. By Lemma 3.4, (1− ε, 1−
√
ε)-Max-Cut is in P.

Definition 6.3 (Unique 2-CSP). A constraint (C = (x, y), S) is called unique, if for every assignment of x, there is a
unique assignment of y such that the constraint (C, S) is satisfied.
A 2-CSP is said to be unique if every constraint in it is unique.
A unique 2-CSP is also known as a unique game.

Remark. If (C, S) is a unique constraint, then S = {(i, π(i)) : i ∈ [q]}, where π is a permutation of [q].

Example. The following are some (non) examples of unique games:

1. Max-Cut is a unique game.
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2. Max-2SAT asks for the assignment satisfying the maximum number of clauses in some given instance of a
2-SAT problem (in CNF form). Max-2SAT is not a unique game.

3. Consider the Max-2LIN problem, which gives us a prime p, and some linear equations of the form xi + xj ≡
aij mod p or xi − xj ≡ aij mod p, and asks us to find an assignment {x1, . . . , xn} 7→ Z/pZ which maximizes
the number of linear equations satisfied. Max-2LIN is a unique game.

Even though (1, 1− 1
m )-2CSPs are NP-hard, (1, 1− 1

m ) Unique Games are polynomial time decidable 21.

Theorem 6.1. It can be decided in polynomial time if a unique game withm constraints is satisfiable or not. Equiv-
alently stated, (1, 1− 1

m )-Unique Games are polynomial time decidable.

Proof. Form a graph G from all pairs that appear in constraints. For every connected component of G, apply the
following algorithm:

1. Pick an arbitrary vertex u, and assign it some alphabet σ ∈ [q]. By the uniqueness constraint, this assignment
of u forces an assignment of every vertex in the same connected component as u. If some vertex can’t be
consistently assigned, then there doesn’t exist any satisfying assignment assigning u to σ. In that case, repeat
the process, picking some σ′ ∈ [q] \ {σ}.

Thus, in polynomial time, we can decide the satisfiability of a unique game. ■

We can finally state the Unique Games Conjecture.

Problem (Unique Games Conjecture). For every ε > 0, there exists a q = q(ε) ∈ N such that (1−ε, ε)-UG is hard, ie:-
it is hard to decide if ≥ 1− ε fraction of constraints of some given UG (on an alphabet of size ≥ q(ε)) are satisfiable,
or if ≤ ε fraction are satisfiable.

Remark. We can also view the UGC as the following graph problem: Consider a graph G with n vertices. On every
edge {i, j}, there is a permutation πij : [q] 7→ [q] (with πji := π−1

ij ) such that if the vertex i has color α ∈ [q], then j
must have the color πij(α) for the constraint on that edge to satisfied.
Now, suppose the underlying graph has n vertices, and maximum degree D. Then by Vizing’s theorem, the graph
has a matching of size ≥ n

D+1 . Note that if our underlying graph is a matching, then we can satisfy all constraints.
Thus, for any graph, we can always satisfy≥ n

D+1 constraints. Consequently, when it is conjectured that (1−ε, ε)-UG
is NP-hard, it is implicitly assumed that ε≫ n

m(D+1) , where m is the number of edges of the underlying graph.
Similarly, note a random assignment of colors to the vertices ensures that 1

q fraction of edges get satisfied (in expec-
tation). Consequently, we also need ε≫ 1

q , or equivalently, q = q(ε)≫ 1
ε .

However, note that the UGC is by no means the only way of approaching hardness-of-approximation results: In-
deed, one of the biggest results in recent times is the PCP theorem, (a strong version of which, proven by Håstad in
[Hås01]), states that

(
1, 7

8 + ε
)
-3SAT is NP-hard for every ε > 0 22.

6.1. A History of the Unique Games Conjecture

All hardness of approximation results stated in this section hold provided the UGC holds.
The Unique Games Conjecture was proposed by Subhash Khot in [Kho02], who showed that (1− ε, 1− εt)-2LIN is

21this difference between CSPs and UGs is because of the extra knowledge of uniqueness that we have in the case of a UG, which allows for a
polynomial time algorithm deciding the UG

22there is a trivial 7
8
-approximation algorithm for 3-SAT: Indeed, a random assignment of variables satisfies any clause of size 3 with probability

7
8
, and thus in expectation satisfies 7

8
-fraction of clauses. Thus Håstad’s result is optimal
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NP-hard for all ε > 0 and t ∈
[
1
2 , 1
]
. Shortly after, Khot and Regev, in [KR03] proved that Vertex-Cover was hard

to approximate within a factor of (2 − ε) for any ε > 0 23. Shortly after, Khot et. al., in [KKMO04] showed that the
Max-Cut problem is hard to approximate within a factor of (αGW + ε) for any ε > 0.
The hardness of approximation for Max-Cut unveiled some interesting connections between 2-CSPs and Gaussian
roundings. Work in this line culminated in Raghavendra’s work ([Rag08]), which showed that for every CSP, the
best possible approximation ratio is given by a corresponding SDP. This unified hardness of approximation results
for many problems where the best approximation algorithms had been obtained by SDPs.
Wenow turn our attention to research gone into proving theUGC itself: In his original paper ([Kho02]), Khot proved

that

(
1− ε, 1−O

(
q2ε

1
5

√
log 1

ε

))
-UG lies in P. Thereafter, this result was improved by a long line of publications,

and finally in 2006, it was shown by Charikar-Makarychev-Makarychev [CMM06] that
(
1− ε, 1−O

(√
ε log q

))
-UG

lied in P, and furthermore, they also showed that, if the UGC was true, then their result couldn’t be improved upon.

[KKMO04] corroborated this in 2007, when they proved that
(
1− ε, 1−

√
2
π

√
ε log q + ε

)
-UG was NP-hard. Inter-

estingly, the [CMM06] result just used a (variant of) degree 2 Sum of Squares algorithm.
Now, the UGC posits that (1− ε, ε)-UG is NP-hard, but it doesn’t say anything about the exponential complexity of
the problem: Progress was made in this line by Arora, Barak, and Steurer [ABS15], who showed that

(
1− ε, 1

2

)
-UG

could be solved in 2q
2nO(ε1/3) time, which is better than the naïve 2O(n) time algorithm.

The [ABS15] result is interesting when one takes a different perspective: Consider the Exponential Time Hypoth-
esis propounded by Impagliazzo, Kabanets, and Wigderson [IKW01], which hypothesizes that there is no 2o(n)

algorithm for solving 3-SAT.
Now, under the ETH, all the NP-complete problems we currently knowwill take 2Ω(n) time to solve. Thus, if UGC is
true, i.e. the Unique Games problem is NP-complete, then it will also be the first known example of a NP-complete
problem that can be solved in 2o(n) time, i.e. the UG problem would be the first known problem with “intermedi-
ate” complexity, i.e. not solvable in polynomial time, nor does it take 2Ω(n) time to solve. Another way to rephrase
this is as follows: Consider any reduction R, which takes as input any SAT instance with n variables and poly(n)
clauses, and gives as output a (1 − ε, ε)-UG instance on a graph with m variables. Then we must necessarily have
m = nΩ(ε−1/3).
A breakthrough regarding the UGC was made in 2018 when Dinur, Khot, Kindler, Minzer, and Safra [DKK+18]
settled the 2-to-2 Games conjecture, which deals with constraints where fixing one variable leaves us with 2 choices
for the other variables (as opposed to a unique choice in case of a unique constraint). One consequence of their
result is that

(
1
2 − ε, ε

)
-UG is NP-hard.

23A 2-approximation for vertex cover is very well known: Indeed, greedily construct a maximal matching on the given graph. The vertices of
the matching form a vertex cover of size at most twice that of the smallest possible vertex cover
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�7. Global Correlation Rounding

Our running example throughout this chapter would be studying MaxCut on a certain restricted class of graphs.
Before we introduce our problem though, we study some basic definitions from spectral graph theory.

7.1. Some Spectral Graph Theory

Let G be a graph on n vertices, and let AG be its random walk matrix, i.e. AG(i, j) :=
1

deg(i) . Then standard theory
tells us that the eigenvalues of AG are 1 = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn ≥ −1, with λ2 < 1 iff G is connected. If the
conductance of G (recall Definition 5.1), satisfies ΦG ≥ δ, then λ2 ≤ 1−O(δ2) (by Cheeger’s inequality).
Now, if G is a d-regular graph, then λ2 ≥ 2

√
d−1
d − on(1). 24 Turns out that a random d-regular graph (almost)

achieves this bound, i.e. λ2 for a random graph is 2
√
d−1
d + o(1).

Now, for any ρ ∈ R, define the threshold rank of a graph G as:

rankρ(G) := #{λi : λi ≥ ρ}

For example, rank1(G) = 1 iff G is connected, rank−1(G) = n, and so on. If ΦG = δ, then rankρ(G) = 1 for some
ρ = 1−O(δ2).
Consequently, if for some ρ = 1− o(1), if we have that rankρ(G) is bounded, then G is “like” an expander.

7.2. MaxCut on Bounded Rank Graphs

We shall study the problem of MaxCut on bounded rank graphs as a pretext to understand the so-called Global
Correlation Rounding.
Thus, let G be a d-regular graph on [n], and suppose we want to find the MaxCut of G, i.e. we want to maximize
fG(x) =

1
4

∑
{i,j}∈E(G)(xi − xj)

2 on {−1, 1}n.

7.3. Some De�nitions

Definition 7.1 (Marginals). Let µ : {−1, 1}n 7→ R be a pseudo-distribution. Let S ⊆ [n]. Then we define µ|S :
{±1}S 7→ R as:

µ|S(y) :=
∑

x|S=y

µ(x)

Lemma 7.1. For any T ⊆ S, we have Ẽµ|S [xT ] = Ẽµ[xT ]. In particular, if f : {−1, 1}n 7→ R is a function such that
f̂(T ) = 0 for all T ̸⊆ S, then Ẽµ[f ] = Ẽµ|S [f ]. Consequently, if µ is a pseudo-distribution of degree r, then µ|S is also
a pseudo-distribution of degree r.

Proof. Obvious. ■

Lemma 7.2. Let µ be a pseudo-distribution on {±1}n of degree r. Suppose |S| ≤ r/2. Then µ|S is an actual distri-
bution.

24where d should be imagined as some constant, and n as the parameter which goes to infinity
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Proof. Since µ|S is a pseudo-distribution of degree r over {±1}S , where |S| ≤ r/2, it must be an actual distribution
by Lemma 1.7. ■

Definition 7.2 (Local Distributions). Let µ be a pseudo-distribution of degree r. For any |S| ≤ r/2, we call µ|S the
local distribution of µ on S.

Definition 7.3 (Reweighting). Let µ be a pseudo-distribution of degree r. Suppose p is a SoS polynomial of degree
r′ ≤ r. Then Ẽµ[p] ≥ 0.
Assume Ẽµ[p] > 0. Then the reweighting of µ by p is defined to be:

µ′(x) := µ(x)p(x)/Ẽµ[p]

It is easy to verify that Ẽµ′ [1] = 1. For any f ,

Ẽµ′ [f ] =
∑

x∈±1n

µ′(x)f(x) =

∑
µ(x)p(x)f(x)

Ẽµ[p]
=

Ẽµ[pf ]

Ẽµ[p]

Consequently, µ′ is a pseudo-distribution of degree ≥ r − deg(p) ≥ r − r′.

Definition 7.4 (Conditioning). Let µ be a pseudo-distribution of degree r. Let |S| ≤ r/2. Let α ∈ {±1}S . Then
µ|x|S=α is the reweighting of µ by f2

α (we assume Ẽµ[f
2
α] > 0), where:

fα(x) :=

{
1 x|S = α

0 otherwise

One can prove that the degree of fα is |S|, and consequently the degree of µ|x|S=α is ≥ r − 2|S|.

Remark. Note that fα = f2
α. Consequently, fα has a≤ 2 deg(fα) = 2|S|-degree SoS proof, and that’s why we subtract

2|S|, and not |S|.

Definition 7.5 (Local Correlations). Let µ : {±1}n 7→ R be a pseudo-distribution. Then we define the pseudo-
covariance of xi and xj to be:

C̃ov(xi, xj) := Ẽµ

[
(xi − Ẽµ[xi]) · (xj − Ẽµ[xj ])

]
= Ẽµ[xixj ]− Ẽµ[xi]Ẽµ[xj ]

Remark. It is easy to check that the covariance of xi and xj under the local distribution of µ on {i, j} is the same as
the pseudo-covariance of xi and xj under µ.

7.4. Independent Rounding

Let µ : {±1}n 7→ R be a pseudo-distribution of degree r ≥ 4. Sample x′ ∈ {±1}n as follows:

x′
i =

{
1 with probability 1

2 (1 + Ẽµ[xi])

−1 otherwise
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Sample every coordinate of x′ independently, in the abovemanner. This sampling procedure is known as independent
rounding.
Let the distribution of x′ be called µ′. Then Ẽµ[xi] = Eµ′ [xi] for any i ∈ [n]. Consequently,

Eµ′ [fG(x)] =
1

4

∑
{i,j}∈E

Eµ′ [(x′
i−x′

j)
2] =

1

2

∑
{i,j}∈E

Eµ′ [1−x′
ix

′
j ] =

1

2

∑
{i,j}∈E

(1−Eµ′ [x′
i]Eµ′ [x′

j ]) =
1

2

∑
{i,j}∈E

(1−Ẽµ[xi]Ẽµ[xj ])

where in the last equality we use the independence of µ. On the other hand, Ẽµ[fG] =
1
2

∑
{i,j}∈E(1 − Ẽµ[xixj ]).

Consequently,

Eµ′ [fG] = Ẽµ[fG] +
1

2

∑
{i,j}∈E

(Ẽµ[xixj ]− Ẽµ[xi]Ẽµ[xj ]) = Ẽµ[fG] +
1

2

∑
{i,j}∈E

C̃ov(xi, xj)

Now, define the average covariance ofGw.r.t. µ to be 1
|E|
∑

{i,j}∈E C̃ov(xi, xj). If we can show that the average covari-
ance is at most δ, then our independent rounding scheme will yield results as good as the pseudo-distribution, upto
an additive error of δm.
A few remarks are due:

1. When does independent rounding fail to get us a good answer? When the average covariance is strongly
negative, then we’re in trouble, since we deviate too much from the actual value of Ẽµ[fG]. When can that
happen? Suppose i and j are very strongly negatively correlated, i.e. the pseudo-distribution “knows” that i
and j should be on opposite sides of the cut (say for example in a bipartite graph). For the sake of an example,
suppose the local distribution of our pseudodistribution puts 1/2 weight on (xi, xj) = (1,−1), and the other
half on (xi, xj) = (−1, 1). Then, when we “sample” from our pseudo-distribution, the edge {i, j} always gets
included in the MaxCut. However, independent rounding includes both i and j on the same side of the cut
with probability 1/2, which is a loss.

2. When we ran Goemans-Williamson algorithm, we symmetrized µ(x) 7→ µ(x)+µ(−x)
2 to ensure that Ẽµ[x] = 0.

However, note that independent rounding depends very crucially on the first moment of µ: In fact, if we run
independent rounding with pseudo-distribution whose first moment is 0, then we actually get the trivial 1/2-
approximation algorithm, which includes every vertex in the cut with probability 1/2.

Motivated by the above discussion, we make the following definition:

Definition 7.6 (Local Correlation). The local correlation of a graph G w.r.t. a pseudo-distribution µ, a.k.a. the
average covariance, is defined to be

LCG(µ) :=
1

|E|
∑

{i,j}∈E

C̃ov(xi, xj) = E{i,j}∈EC̃ov(xi, xj)

The way we’ll show that local correlation is small is by first showing that an appropriately defined notion of global
correlation is small, and then using the fact that our graph is of bounded rank, conclude that local correlations imply
global correlations, and consequently small global correlations must imply small global correlations too.
Note that we relate the notions of global and local “variance” in the theory of Markov chains too, and there too the
Poincaré constant provides a connection between them. Continuing the analogy further, we know that expanders
have good Poincaré constants, and similarly, we too are dealing with bounded rank graphs, which are a quantitiative
generalization of expanders.
Thus, following the above discussion, we define:
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Definition 7.7 (Global Correlation). The global correlation of a pseudo-distribution µ is defined to be

GC(µ) :=
1

n2

∑
(i,j)∈[n]2

Iµ|{i,j}(xi, xj)

Remark. A few remarks are due:

1. Although we defined local correlations in terms of covariance, we define global correlations through mutual
information so that some proofs become easier later on.

2. Note that we take expectation over all i, j, not just {i, j} ∈ E.

We shall now see how to reduce the global correlation of a function.

Theorem 7.3. Let µ be a pseudo-distribution on {±1}n of degree ≥ 4
η + 2. Then there is a reweighting µ′ of µ such

that:

1. GC(µ′) ≤ η,

2. deg(µ′) ≥ deg(µ)− 4
η ,

3. µ′ can be computed from µ in Cη · poly(ndeg(µ)) time, where Cη is a constant depending only on η.

Proof. The proof strategy is as follows: We shall reweight µ by “pinning” its value on a given vertex (which will be
sampled randomly). We shall do this sufficiently many times so that in expectation our global correlation becomes
small.
Thus, initialize µ0 := µ. Uniformly sample T :=

⌊
2
η

⌋
elements from [n], and call them i1, . . . , iT . For t ∈ [T ], sample

xit from the local distribution on it under µt−1. Suppose the sampling yields αt. Then set

µt := µt−1|xit=αt

Finally, stop if GC(µt) < η.
We analyze this process through a potential function: Define

ϕt :=
1

n

∑
i∈[n]

Hµt(xi) = EiHµt(xi)

Now, supposeGC(µt) ≥ η. ThenEiEj [Iµt(xi;xj)] ≥ η. For every i ∈ [n], setφ(i) := Ej [Iµt(xi;xj)]. ThenEi[φ(i)] ≥ η.
Now, note that Iµt(xi;xj) ≤ H(xj) ≤ ln 2 < 1, where the second-last inequality follows since the entropy of any
Bernoulli random variable can be at most ln 2. We claim that this implies that for ≥ η

2 fraction of i ∈ [n], we must
have φ(i) ≥ η

2 ; Indeed, otherwise Ei[φ(i)] ≤ η
2 · 1 + (1− η

2 ) ·
η
2 < η.

Consequently, with probability ≥ η
2 , we have that φ(it) ≥ η

2 . Now,

Hµt+1
(xj) = Hµt

(xj |xit) =⇒ Hµt
(xj)−Hµt+1

(xj) = Hµt
(xj)−Hµt

(xj |xit) = Iµt
(xit ;xj)

Consequently,
Ej [Hµt(xj)−Hµt+1(xj)] = Ej [Iµt(xit ;xj)] = φ(it) ≥

η

2

But Ej [Hµt(xj)] = ϕt, and thus ϕt − ϕt+1 ≥ η
2 .

Thus GC(µt) ≥ η =⇒ ϕt+1 ≤ ϕt − η
2 . Now, ϕ0 ≤ ln 2, since it is the average of entropies of Bernoulli random

variables. Also, ϕt ≥ 0 for all t. Consequently, if we pick the “correct” it at every step, within ⌈ 2 ln 2
η ⌉ ≤ T steps, we’ll



Sum of Squares 47 / 59 Arpon Basu

have GC(µt) < η, as desired. Now, we pick the “correct” it at any given step with probability ≥ η
2 . Consequently,

in expectation, repeating the above random-selection-and-pinning procedure ≤
(

2
η

)T
times should yield a pinning

which reduces the global correlation to below η.
Note that sincewe’re conditioning on a singleton at every step of our iteration, deg(µt) ≥ deg(µt−1)−2. Consequently,
deg(µ′) ≥ deg(µ)− 2T ≥ deg(µ)− 4

η , where µ′ := µT . ■

Remark. What is an intuitive way to view this proof? Note that when we have high global correlation, that is the
pseudo-distribution’s way of telling us that it has a lot of “specific knowledge”. More precisely, reconsider the
example of i, j such that the local distribution on i, j is just {(1,−1), (−1, 1)}. Then the pseudo-distribution is trying
to tell us that it “knows” that i and j should never be put on the same side of the cut.
Thus, how dowe reduce global correlation? We decide to take the pseudo-distribution’s advice. We pin some vertex
which is responsible for a significant portion of the global correlation. The moment we pin that vertex, the values
of many other variables automatically get “fixed”. Thus, the overall entropy of the system reduces, since we’re no
longer uncertain about the assignments of those vertices. Another way to view this is that by reducing the entropy
for those vertices, we “consumed” some of the knowledge that the pseudo-distribution had to offer us. Since the
pseudo-distribution only has a finite amount of advice/knowledge to offer us, eventually we’d have reduced the
entropy of the system enough, as desired.
Now that we have reduced global correlation, we find a way to link it to local correlations. Before that, we prove a
technical lemma:

Lemma 7.4. Let M ∈ Rn×n be a PSD matrix such that |M(i, j)| ≤ 1 for all (i, j) ∈ [n]2. Suppose we have a regular
graph G on n vertices such that

E{i,j}∈E(G)[M(i, j)] ≥ β

Then for all ρ ≤ β, we have E(i,j)∈[n]2 [M(i, j)2] ≥
(

β−ρ
rankρ(G)

)2
.

Proof. Note that picking an edge randomly in a regular graph is equivalent to picking a vertex randomly, and then
choosing a particular edge incident on it, randomly. Thus

β ≤ E{i,j}∈E(G)[M(i, j)] =
1

n

∑
i,j

AijMij =
1

n
⟨M,A⟩

where A is the normalized adjacency matrix of G. Note that since G is regular, A is symmetric. Let A =
∑

λkvkv
T
k

be the eigendecomposition of A (with ∥vk∥ = 1). Then

1

n
⟨M,A⟩ = 1

n

〈
M,
∑

λkvkv
T
k

〉
=

1

n

∑
λkv

T
kMvk ≤

1

n

∑
k:λk≥ρ

λkv
T
kMvk +

ρ

n

∑
k∈[n]

vTkMvk

Now, since {vk} is an orthonormal basis,
∑

k∈[n] v
T
kMvk = tr(M) ≤ n. Thus

β ≤ 1

n
⟨M,A⟩ ≤ 1

n

∑
k:λk≥ρ

λkv
T
kMvk + ρ

Consequently, there exists some k such that

λkv
T
kMvk ≥

n(β − ρ)

rankρ(G)
=⇒ vTkMvk ≥

n(β − ρ)

rankρ(G)
=⇒ ∥M∥2 ≥

n(β − ρ)

rankρ(G)
=⇒ ∥M∥F ≥

n(β − ρ)

rankρ(G)

where we use the inequality ∥M∥F ≥ ∥M∥2. Consequently,

1

n2
∥M∥2F =

1

n2

∑
i,j

M2
ij ≥

(
β − ρ

rankρ(G)

)2

■
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Finally, we can link local correlations and global correlations:

Lemma 7.5. If LCG(µ) ≥ β, then for all ρ ≤ β2, we have GC(µ) ≥ 1
2

(
β2−ρ

rankρ(G)

)2
.

Proof. Write xi := xi − Ẽµ[xi]. Then

E{i,j}∈E

[(
Ẽµ[xixj ]

)2]
≥
(
E{i,j}∈EẼµ[xixj ]

)2
≥ LCG(µ)

2 ≥ β2

Create the matrixM , whereMij :=
(
Ẽµ[xixj ]

)2
. Then note thatM is the Hadamard product of Z with itself, where

Z = Ẽµ[xx
T]. Since Z is PSD, M is PSD too. Moreover, since all the entries of Z lie in [−1, 1], all entries of M lie in

[0, 1] ⊂ [−1, 1] too. Now, E{i,j}∈EMij ≥ β2. Thus, by Lemma 7.4, we have E(i,j)∈[n]2M
2
ij ≥

(
β2−ρ

rankρ(G)

)2
. Since all

entries ofM lie in [0, 1], E(i,j)∈[n]2Mij ≥ E(i,j)∈[n]2M
2
ij . Consequently,

E(i,j)∈[n]2Mij = E(i,j)∈[n]2C̃ov(xi, xj)
2 ≥

(
β2 − ρ

rankρ(G)

)2

Now, note that the covariance of xi and xj under the local distribution of µ on {i, j} is the same as the pseudo-
covariance of xi and xj under µ. Also, by Lemma 0.23, we know that Covµt

(xi, xj) ≤ σxi
σxj

√
2Iµt

(xi;xj). Now,
since xi, xj are Bernoulli random variables, σxi

, σxj
≤ 1. Thus

C̃ov(xi, xj)
2 ≤ 2Iµt

(xi;xj) =⇒ GC(µ) ≥ 1

2

(
β2 − ρ

rankρ(G)

)2

■

Consequently,

1. If LCG(µ) < δ, then independent rounding gives us what we want.

2. Otherwise, LCG(µ) ≥ δ =⇒ GC(µ) ≥ δ4/(8 rankδ2/2(G)2). Apply the GC reduction lemma to get a pseudo-
distribution where the GC is lower than this threshold, which implies that the local threshold is below δ too,
as desired.
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�8. Lower Bounds Through Sum of Squares

Recall, in Section 3, how we showed that our degree 2 SoS analysis of the Max-Cut problem was optimal, by pre-
senting the cycle as a barrier to any improvement through degree 2 Sum-of-Squares alone.
Continuing a similar line of thought, we shall now see a class of problems, which are provably difficult to deal with
the Sum-of-Squares hierarchy, ie:- we’ll delineate some limitations of the Sum-of-Squares hierarchy.

8.1. k-XOR is hard using SoS

Problem (k-XOR Problem). Supposewe have n variables z1, . . . , zn ∈ F2, andm equations on these variables, where
every equation is of the form zi1 + zi2 + . . .+ zik = 0 or 1. Thus every equation involves exactly k variables.
The algorithmic goal of this problem is to maximize the number of equations satisfied.

If we set xi = (−1)zi , then our equations take the form xi1xi2 · · ·xik = ±1. Thus, an instance of k-XOR is given bym
sets C1, C2, . . . , Cm ⊆ [n], with |Cj | = k for every j ∈ [m], and for every set Cj , we have the corresponding equation∏

i∈Cj
xi = bi ∈ {−1, 1} ⇐⇒ bi

∏
i∈Cj

xi = 1.
We denote the constraints (Cj , bj)j∈[m] by I. For x ∈ Rn, define

I(x) := 1

m

m∑
j=1

bj
∏
i∈Cj

xi =
1

m

m∑
j=1

bjxCj

Note that if x ∈ {−1, 1}n ⊆ Rn, then

ValI(x) :=
1 + I(x)

2
gives us the fraction of equations satisfied by the assignment x. Thus the goal of k-XOR problem can be said to be
approximating opt(I) := maxx∈{−1,1}n ValI(x).
Note that if opt(I) = 1, then Gaussian elimination also yields x for which the optimum is attained.
Also note that for any I, a random assignment of variables satisfies half of the equations in expectation, and thus we
have a trivial 1

2 -approximation algorithm25. However, unlike the Max-Cut problem, we run out of luck when trying
to improve this approximation algorithm, due to the following theorem of Håstad ([Hås01]):

Theorem 8.1. For any ε > 0 and any k ≥ 3, it is NP-hard to decide if opt(I) ≥ 1− ε or opt(I) ≤ 1
2 + ε for some given

k-XOR instance I.

Stated differently, assuming P ̸=NP, there is no polynomial time algorithm to find a
(
1
2 + 2ε

)
-satisfying assignment

for some I such that opt(I) = 1− ε. Equivalently, for k ≥ 3, a 1
2 -approximation algorithm is the best we can get for

k-XOR. Problems such as k-XOR are thus called approximation resistant.
Now, the reader may be excused for feeling cheated at this juncture: We promised that the k-XOR problem would
underline some fundamental limitation of the Sum-of-Squares hierarchy, but that hardly seems to be the case, be-
cause (a> 1

2 -approximation algorithm for) k-XOR is resistant against all polynomial time schemes, not just SoS, and
thus it does seem a bit unfair to give k-XOR as an example of the limitations of SoS.
Nevertheless, there is a more philosophical way of interpreting the results below: Given how successful the SoS
hierarchy has been, in giving approximation algorithms and hardness of approximation results (which is not sur-
prising in light of Raghavendra’s result [Rag08]), if some problem can’t be attacked using SoS, then that gives us a
good indication that there may be no other ways to attack the problem. So, at the very least, hardness results of SoS
develop our intuition about problems whose difficulty is yet unknown.
We shall now finally state our hardness result without any ado.

25if this approximation algorithm sounds awfully similar to the 1
2
-approximation algorithm forMax-Cut, that is becauseMax-Cut is just 2-XOR

with all bj = −1.
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Theorem 8.2 (Grigoriev’s Theorem). For any k ≥ 3, c < 2, there exists a constant c′ = c′(k) and a family of k-XOR
instances (In)n∈N such that

c · opt(In)−ValIn(x)

has no degree (c′n)-SoS certificate for large enough n.

Thus a 1
c -approximation algorithm, obtained through SoS, for c < 2, yields a poly(nr) time algorithm, where r =

O(n) by the above theorem. Thus any SoS algorithm for k-XOR, which approximates better than a factor of 2 must
take poly(nO(n)) time.
We’ll prove the above theorem by the probabilistic method. Let ∆ be some parameter to be set later. Every k-sized
subset of [n] is taken to be a constraint of In with probability n∆

(nk)
26. The corresponding bit ‘b’ of the constraint is

taken to be ±1 with equal probability.
We then prove Theorem 8.2 by demonstrating a degree (c′n) pseudo-distribution µ such that

Ẽµ[c · opt(In)−ValIn
(x)] < 0⇐⇒ Ẽµ[ValIn

(x)] > c · opt(In) (8.1)

Our strategy to demonstrate such a µ goes as follows: We actually construct a µ such that Ẽµ[ValIn
(x)] = 1 ⇐⇒

Ẽµ[In(x)] = 1. The following lemma then shows that such a µ, with high probability, satisfies Eq. (8.1).

Lemma 8.3. There exists a constant D > 0, such that if ∆ ≥ D
ε2 and Ẽµ[ValIn

(x)] = 1, then opt(In(x)) ≤ 1
2 + ε with

probability ≥ 0.99.

Proof Sketch. Fix any assignment y ∈ {−1, 1}n. Since each bit value in In was sampled i.i.d with probability 1
2 , each

constraint in In is satisfied with probability 1
2 , and furthermore, one constraint being satisfied is independent of

some other constraint being satisfied.
Thus the satisfaction of constraints in In are i.i.d Bernoulli random variables with parameter 1

2 . Then the lemma
follows by a routine application of Chernoff bounds. ■

Now, by Lemma 1.9, WLOG we can assume µ to be (c′n)-degree multilinear polynomial. Furthermore, the proof
technique of Lemma 1.9 also shows that to calculate Ẽµ[f ] for any function f (expressed as amultilinear polynomial),
it suffices to consider only the degree≤ c′n terms in f , ie:- to describe Ẽµ[·], it suffices to describe Ẽµ[xS ] for |S| ≤ c′n.
Now, note that

Ẽµ[I(x)] =
1

m

m∑
j=1

bjẼµ[xCj ] =⇒ |Ẽµ[I(x)]| ≤
1

m

m∑
j=1

|bj | · |Ẽµ[xCj ]|︸ ︷︷ ︸
≤1 by Lemma 1.6

≤ 1

Thus, if we are to have Ẽµ[I(x)] = 1, then Ẽµ[xCj
] = bj for every j ∈ [m].

Similarly,

1 = Ẽµ[I(x)]2 =

 1

m

m∑
j=1

bjẼµ[xCj
]

2

=
1

m2

Ẽµ

 m∑
j=1

bjxCj




2

Jensen’s Inequality
≤ 1

m2
Ẽµ


 m∑

j=1

bjxCj

2
 (8.2)

=
1

m2

∑
j,ℓ∈[m]

bjbℓẼµ

[
xCjxCℓ

]
≤ 1

m2

∑
j,ℓ∈[m]

|bjbℓ| ·
∣∣∣Ẽµ

[
xCjxCℓ

]∣∣∣ ≤ 1 (8.3)

Thus, if we are to have Ẽµ[I(x)] = 1, then we must also have Ẽµ[xCj
xCℓ

] = bjbℓ for every j, ℓ ∈ [m].
We now analyze the so-called degree d derivation to obtain our desired µ.

26consequently, in expectation, there are n∆ constraints in In
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8.2. Degree d Derivations

Set d = c′n for convenience.
Define Derd to be the output of the following process:

1. Set Derd ← ∅. Derd should be imagined as a set of equations.

2. For each j ∈ [m], add xCj
= bj to Derd.

3. Traverse through all monomials xS , |S| ≤ d in some fixed order, where monomials of lower degrees are pro-
cessed before monomials of higher degrees. For each xU in this traversal, if xS = bS and xT = bT belong to
Derd, such that S ⊕ T = U 27, then we add xU = bSbT =: bU to Derd.

4. Finally, for any S ⊆ [n], |S| ≤ d, set Ẽµ[xS ] = bS .

Now, note that there can be potential “conflicts” in the process described above: Indeed, consider an example where
U = {1, 2, 3, 4}, S1 = {1, 2}, T1 = {3, 4}, S2 = {1, 3}, T2 = {2, 4}, bS1

= bT1
= bS2

= 1 = −bT2
. Clearly, S1 ⊕ T1 = U =

S2 ⊕ T2, yet bS1bT1 ̸= bS2bT2 .
We show that with high probability, conflicts mentioned above don’t occur 28.

8.2.1. Con�icts don't happen in a degree d derivation

Definition 8.1 (UniformHypergraphs). A k-uniform hypergraphH on the vertex set V is a collection of hyperedges,
where every hyperedge is a subset of V of size k.

Example. A 3-uniform hypergraph on the vertex set [6]: {{1, 2, 3}, {2, 4, 5}, {3, 4, 6}, {1, 5, 6}}.

Definition 8.2 (Hypergraph Expansion). A k-uniform hypergraph on [n] is said to be (t, β)-expanding if for every
subset C of at most t hyperedges, ∣∣∣∣∣∣

⋃
e∈C

e

∣∣∣∣∣∣ ≥ β|C|

The constraints Cj , j ∈ [m] of a k-XOR instance In form a k-uniform hypergraph with m edges. We call a k-XOR
instance (t, β)-expanding if its underlying hypergraph is.
We shall now state a lemma (without proof), which essentially says that randomly generated k-XOR instances are
very good expanders.

Lemma 8.4. Let In be the random k-XOR instance as constructed in the previous section. Then for all δ > 0, there
exists η = η(δ,∆) > 0, such that with probability ≥ 0.99, In is (ηn, k − 1− δ)-expanding.

We will now use the above lemma to show that there are no conflicts.

Lemma 8.5. Suppose In is (ηn, α)-expanding, where α ∈
(

k
2 + 1

10 , k − 1
)
. Then, for d < nη

100 , there don’t exist
S1, T1, S2, T2 in Derd such that S1 ⊕ T1 = S2 ⊕ T2. Consequently, Derd doesn’t have any conflicts.

27recall that X ⊕ Y denotes the symmetric difference of the sets X and Y . IfX ⊕ Y = Z, then xX · xY = xZ .
28recall that Cj , bj are random quantities, and thus our statement holds only with high probability
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Proof. Define D := {U ⊆ [n] : (xU = bU ) ∈ Derd}.
Assume for the sake of contradiction we have S1, T1, S2, T2 such that S1 ⊕ T1 = S2 ⊕ T2.
Note that every set in D is composed by taking symmetric differences of the constraint sets Cj , j ∈ [m]. Thus, for
S ∈ {S1, T1, S2, T2}, we define US := {Cℓ : ℓ ∈ [m]}where S =

⊕
C∈US

C.
Now, consider

U :=
⊕

S∈{S1,T1,S2,T2}

US

where UX ⊕UY has the usual meaning (one should always keep in mind that the ⊕ operator on sets is really taking
the product of variables in their multiset union and performing a multilinear reduction on them).
Now, since S1 ⊕ T1 = S2 ⊕ T2, each variable occurs an even number of times across all constraints in the U∗’s
(∗ ∈ {S1, T1, S2, T2}). ■

Thus we can successfully carry out the degree d derivation without any conflicts, which means that for any S ⊆
[n], |S| ≤ d, for which S ∈ D, we can consistently set Ẽµ[xS ] = bS . For S ̸∈ D, we set Ẽµ[xS ] = 0 29. The only thing
remaining to be shown is that µ is in fact a degree d pseudo-distribution.

Theorem 8.6. Let µ ∈ R{−1,1}n be a function such that Ẽµ[xS ] = bS for all S ∈ D, and Ẽµ[xS ] = 0 for S ⊆ [n], |S| ≤
d, S ̸∈ D. Then µ is in fact a degree d pseudo-distribution such that Ẽµ[ValIn(x)] = 1.

Remark. Note that a priori, we don’t know if µ is a pseudo-distribution or not. Nevertheless, we’ll continue to use the
notation Ẽµ[·] to denote the formal expectation operator w.r.t µ.

Proof. Note that by its very definition, Ẽµ[ValIn
(x)] = Ẽµ[In(x)] = 1, as desired.

Furthermore, |Ẽµ[xS ]| ≤ 1 for S ⊆ [n], |S| ≤ d. Consequently, we can mimic Eq. (8.2) and get that Ẽµ[xCj
xCℓ

] = 1

for every j, ℓ ∈ [m]. Setting j = ℓ yields that Ẽµ[x
2
Cj
] = 1 =⇒ Ẽµ[1] = 1.

Now, let p be a multilinear polynomial of degree ≤ d
2 . Then we must show that Ẽµ[p

2] ≥ 0.
Consider the relation ∼ on [n] d

2
:= {T ⊆ [n] : |T | ≤ d

2}, where T1 ∼ T2 if Ẽµ[xT1
xT2

] ̸= 0. We claim that ∼ is an
equivalence relation. The symmetry of ∼ is obvious, and the reflexivity of ∼ follows from the fact that Ẽµ[1] = 1.
Finally, if T1 ∼ T2 and T2 ∼ T3, then

Ẽµ[xT1
xT3

] = Ẽµ[xT1
xT2

xT2
xT3

] = Ẽµ[xT1
xT2

]︸ ︷︷ ︸
̸=0

· Ẽµ[xT2
xT3

]︸ ︷︷ ︸
̸=0

̸= 0

where the second equality follows from the definition of Derd.
Let the equivalence classes of [n] d

2
under ∼ be Q1, . . . , Qr. Then, decompose p as

p(x) =
∑
i∈[r]

∑
S∈Qi

pSxS =
∑
i∈[r]

pi(x)

Thus

Ẽµ[p
2] =

r∑
i=1

Ẽµ[p
2
i ] +

∑
i,j∈[r]

Ẽµ[pipj ] =

r∑
i=1

Ẽµ[p
2
i ]

where the second equality follows from the fact that Ẽµ[xT1xT2 ] = 0 if T1, T2 don’t belong to the same equivalence
class. Now, fix any i ∈ [r], and let T be an arbitrary member of Qi. Then note that

Ẽµ[p
2
i ] = Ẽµ


∑

T∈Qi

pTxT

2
 =

∑
T1,T2∈Qi

pT1pT2 Ẽµ[xT1xT2 ] =
∑

T1,T2∈Qi

pT1pT2Ẽµ[xT1xT xT xT2 ]

29This choice is essentially borne out of laziness. Since we don’t know anything about the pseudo-expectation of µ over S, we may as well
assume that µ is ‘unbiased’ for xS
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=
∑

T1,T2∈Qi

pT1
pT2

Ẽµ[xT1
xT ]Ẽµ[xT xT2

] =

∑
T∈Qi

pT Ẽµ[xTxT ]

2

≥ 0

as desired. ■
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�9. SoS vs. Spectral Algorithms

As we noted in the proof of Grigoriev’s theorem, small degree Sum-of-Squares is unable to solve even average case
instances of the k-XOR problem. Stated differently, even the average case complexity of the k-XOR problem is hard for
SoS.
We now give somemotivation for the notion of average case hardness: Traditional complexity analysis of an algorithm
isworst case analysis. We analyze what the worst possible performance of our algorithm could be under some (adver-
sarially chosen) input, and based on that worst-case performance, we rate the efficiency of the algorithm in general.
It is clear that the above measure of judging an algorithmmight be too pessimistic: Indeed, the worst case complex-
ity of quick sort is O(n2), yet, in practice, quick sort is one of the fastest sorting algorithms known.
Thus to remedy this situation, the notion of average case analysis was introduced in computer science: In average
case analysis, we judge the performance of an algorithm based on the expected performance of the algorithm on some
input chosen from some distributionD, whereD is designed so as to represent some “natural/common distribution
of inputs”.
Average case algorithms may be further divided into 3 classes based on the nature of the distribution D:

1. Refutation Problems: In this class of problems, we have to produce a certificate for the non-existence of some
entity: For example, refuting random CSPs entails producing a certificate of unsatisfiability. In this light,
Grigoriev’s theorem can be interpreted as saying that SoS can’t be used for (efficiently) refuting random CSPs.
Furthermore, it is usually assumed thatwith high probability, an input instance fromD is “unsatisfiable”. Such
distributions are usually denoted as “Dnull”.

2. Planted Problems: In this class of problems, we have to find some particular entity in the input, provided it
is known that with high probability, the input indeed possesses the particular entity. For example, suppose
we sample graphs from some probability distribution, where with high probability, every graph has a clique
of size O(log n)within it. Then the planted problem in this context would be to find a O(log n)-sized clique in
some graph sampled from the said distribution.

3. Distinguishing Problems: Suppose we have two distributions, Dnull and Dplanted. For example, consider two
distributions, the first one (whichwe callDnull) containing graphs, which, with high probability don’t contain a
clique of sizeO(log n). The second distribution, which we call Dplanted, contains, with high probability, graphs
that have cliques of size O(log n)within them.
Given two graphs G1, G2, one sampled from Dnull and the other sampled from Dplanted, we have to tell which
graph was sampled from which distribution.

In this chapter, we shall look at the 3 different “flavors” of some average-case problems, and we shall see how SoS
fares in them. In the process, we shall also introduce spectral algorithms. So without ado, let’s begin!

9.1. The Max-Clique Problem

Consider the Erdős-Rényi graph G = G
(
n, 1

2

)
, where there is an edge between any two vertices with probability 1

2 .
A folklore result of Bollobás about the size of the maximum clique in G goes as follows.

Theorem 9.1. With probability 1− o(1), the size of the maximum clique in G is ⌊2 log2(n)⌋ or ⌊2 log2(n) + 1⌋.

Thus, in light of Bollobás’s theorem, a refutation problem may be framed as follows: Let ω ∈ N be greater than
⌊2 log2(n)+1⌋. Given an Erdős-Rényi random graph, produce a certificate for the non-existence of a clique of size ω.
A brute force algorithm for this problem takes O(nω) = Ω(nlogn) time, which is clearly unacceptable.
We will now study our first spectral algorithm for this refutation problem.
Let G be the input graph, and define A ∈ Rn×n as follows:

Aij :=

{
1, i and j adjacent in G

−1, otherwise
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Let x ∈ {0, 1}n be the indicator vector of some clique C ⊆ [n] in G. Then note that

xTAx =

 n∑
i=1

xi

2

− 2

n∑
i=1

x2
i =

 n∑
i=1

xi

2

− 2

n∑
i=1

xi = |C|2 − 2|C|

But by the definition of spectral norms, we also have that

xTAx ≤ ∥x∥22 · ∥A∥2 = |C| · ∥A∥2

Thus
|C|2 − 2|C| ≤ |C| · ∥A∥2 =⇒ |C| ≤ 2 + ∥A∥2

Thus our spectral refutation algorithm goes as follows: Calculate ∥A∥2 30, and return C := ∥A∥2 + 2. C is an upper
bound for the maximum clique size of G.
Now, it is a classical result in randommatrix theory (see [AGZ09]. Also see [Tao11], [TV08]), that the spectral norm
of a symmetric Rademacher random matrix, such as A, converges to the so-called “semi-circular” distribution over
an interval of size Θ(

√
n).

Thus, if ω ≫
√
n, then the spectral norm ofA serves as a refutation of the hypothesis that there is some clique of size

ω. Conversely, if ω = o(
√
n), then for a non-negligible fraction 31 of Erdős-Rényi graphs, ∥A∥2 + 2 will fail to refute

the existence of some clique of size ω.
What is surprising is that the above

√
n bound is essentially the best known (asymptotically) refutation algorithm

for the Max-Clique problem. Notice the huge gap between the reality (which says that there are no cliques of size
≥ 2 log2(n) + 2), and what we can actually certify in polynomial time (

√
n). In fact, an algorithm for refuting even

clique sizes of ω = n0.49 is not known.
Such a gap between the size of some quantity (in this case the size of the Max-Clique), and what we can actually
compute/certify in polynomial time, is known as an information computation gap.
Thus we saw a spectral algorithm, and saw how it (asymptotically) establishes the best bounds for the Max-Clique
refutation algorithm. As usual, we now wish to subsume the class of spectral algorithms under the Sum-of-Squares
hierarchy.

9.2. Sum of Squares Derivations in {0, 1}n

Since we are working with characteristic vectors of sets, we shift our attention to Sum-of-Squares proofs on {0, 1}n,
instead of our usual boolean hypercube.

Lemma 9.2. Let µ be a degree 2 pseudo-distribution on {0, 1}n. Then Ẽµ[x
TMx] ≤ ∥M∥2 · Ẽµ[∥x∥22].

Proof. We have to prove that Ẽµ[x
T(∥M∥2 −M)x] ≥ 0. Now, note that (∥M∥2 −M) is a PSD matrix, and thus, by

Lemma 0.3, ∥M∥2 −M = BTB for some matrix B. But then xT(∥M∥2 −M)x = ∥Bx∥22, which is the sum of squares
of linear polynomials, and thus has non-negative pseudo-expectation. ■

Lemma 9.3. Let µ be a degree 2 pseudo-distribution on {0, 1}n such that Ẽµ[xixj ] = 0 for every i ̸= j which are not
adjacent in our graph G (we denote adjacency as ∼).
Then Ẽµ

[
∥x∥42

]
≤ Ẽµ

[
∥x∥22(2 + ∥A∥2)

]
.

30the spectral norm of A can be calculated in polynomial time (see power iteration), so our refutation algorithm is indeed polynomial time
31more precisely, a 1−O

(
ω2

n

)
fraction

https://en.wikipedia.org/wiki/Power_iteration
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Proof. Note that

Ẽµ[∥x∥42] = Ẽµ


 n∑

i=1

x2
i

2
 = Ẽµ


 n∑

i=1

xi

2


Ẽµ


 n∑

i=1

xi

2
 = Ẽµ

 n∑
i=1

x2
i

+ 2Ẽµ

∑
i∼j

xixj

+ 2Ẽµ

∑
i ̸∼j
i ̸=j

xixj

 = Ẽµ

 n∑
i=1

x2
i

+ 2Ẽµ

∑
i∼j

xixj



= Ẽµ

 n∑
i=1

x2
i

+ 2Ẽµ

∑
i∼j

xixj

− 2Ẽµ

∑
i ̸∼j
i ̸=j

xixj

 = 2Ẽµ

 n∑
i=1

x2
i

+ Ẽµ

[
xTAx

]

where A ∈ {−1, 1}n×n is the matrix we defined earlier.
Since µ is a degree 2 pseudo-distribution, by Lemma 9.2, Ẽµ[x

TAx] ≤ Ẽµ[∥A∥ · ∥x∥22], and thus we have our desired
result. ■

Finally, we get rid of the 4th power by the pseudo-distribution Cauchy-Schwarz inequality.

Lemma 9.4 (Cauchy-Schwarz Inequality). Let µ be a pseudo-distribution of degree d, and let p, q be polynomials of
degree ≤ d

2 on {0, 1}n. Then
Ẽµ[pq]

2 ≤ Ẽµ[p
2] · Ẽµ[q

2]

Proof. It can be easily seen that Ẽµ[pq]
2 ≤ Ẽµ[p

2] · Ẽµ[q
2] is equivalent to∑

x,y∈{0,1}n

µ(x)µ(y)(p(x)q(y)− p(y)q(x))2 ≥ 0⇐⇒ Ẽµ

[
(p(x)q(y)− p(y)q(x))2

]
≥ 0

Now, note that the both the x-degree and the y-degree of the polynomial p(x)q(y)− p(y)q(x) is bounded by d
2 . Also

note that

Ẽµ

[
(1, x, 1, y)⊗

d
2 ((1, x, 1, y)⊗

d
2 )T
]
=

(
Ẽµ

[
(1, x)⊗

d
2 ((1, x)⊗

d
2 )T
])⊗(

Ẽµ

[
(1, y)⊗

d
2 ((1, y)⊗

d
2 )T
])

Since the tensor product of PSD matrices is PSD, it follows that Ẽµ

[
(p(x)q(y)− p(y)q(x))2

]
≥ 0, as desired. ■

Theorem 9.5. Let µ be a degree 4 pseudo-distribution on {0, 1}n such that Ẽµ[xixj ] = 0 for every i ̸= j which are
not adjacent in our graph G (we denote adjacency as ∼).
Then Ẽµ

[
∥x∥22

]
≤ (2 + ∥A∥2).

Proof. By Cauchy-Schwarz, Ẽµ[∥x∥42] ≥ Ẽµ[∥x∥22]2. Thus Ẽµ

[
∥x∥22(2 + ∥A∥2)

]
≥ Ẽµ

[
∥x∥22

]2
=⇒ Ẽµ

[
∥x∥22

]
≤

(2 + ∥A∥2), as desired. ■

Consequently, if we can find a degree 4 pseudo-distribution µ maximizing the quantity Ẽµ[∥x∥22] under the con-
straints Ẽµ[xixj ] = 0 for i ̸∼ j, i ̸= j 32, then we have a SoS refutation proof in our hands: Indeed, note that if x ̸= 0
is such that E[xixj ] = 0 for non-adjacent i, j, then the maximum value of Eν [∥x∥22] for actual distributions ν is the

32pseudo-expectations with these additional constraints can also be maximized in polynomial time, à la Theorem 2.6
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size of the maximum clique in G (and the corresponding maximizer is the characteristic vector of the maximum
clique). Since actual distributions are also pseudo-distributions, the maximum value of Ẽµ[∥x∥22] exceeds the max-
imum clique size, and thus serves a refutatory purpose. Furthermore, the inequality Ẽµ

[
∥x∥22

]
≤ (2 + ∥A∥2) also

establishes that our SoS algorithm is atleast as good as the spectral algorithm described above.
Note that this exact algorithm also helps us solve the planted version of the max-clique problem.
The planted version goes as follows.

Problem (Planted Version of Max-Clique). LetG be a randomly sampled Erdős-Rényi graph, and let ω ≫ 2 log2(n).
We randomly select a subset S ⊆ [n] such that |S| = ω, and we add all the (missing) edges in S to make S a clique.
We then gives this modified graph as an input to our algorithm, which must find out this “planted” clique.

It is quite clear how our SoS algorithm solves this planted problem: as we noted earlier, the maximizer of Ẽµ[∥x∥22] is
the indicator vector of the largest clique, which in the case of the planted problem, is S (with very high probability).
Thus the maximizer of the SDP program Ẽµ[∥x∥22] is the required planted clique.
Similarly, we may also use either the SoS algorithm or the spectral algorithm to solve the so-called distinguishing
problem.

Problem (Distinguishing Version of Max-Clique). Let G1 be a randomly sampled Erdős-Rényi graph.
SampleG2 as an Erdős-Rényi graph, independently ofG1, and letG′

2 be the planted version ofG2 for some ω ≫
√
n.

Given G1, G
′
2, we have to tell which graph is the planted graph.

Once again, if we calculate 2 + ∥A1∥ and 2 + ∥A′
2∥, then with very high probability, one of these two values will

exceed
√
n, which tells us which graph is the planted one.

Note that gap between the ω for which the Planted problem can be solved, vs. the ω for which the distinguishing
problem can be solved.
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