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This PDF is a “cheat sheet” of sorts, on Stochastic Differential Equations. All of the material here is from [Oks92].

�1. Brownian Motion

For any x, y ∈ Rn, and t ∈ R>0, define

p(t, x, y) := (2πt)−n/2 · exp

(
−∥x− y∥22

2t

)
For t = 0, set p(0, x, y) to be the Dirac Delta centred at x.
We can now define Brownian motion as follows: Brownian motion over Rn centered at 0 is a stochastic process
{Bt}t∈[0,∞), such that for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, we have:

Pr(Bt1 ∈ F1, . . . , Btn ∈ Fn) =

∫
F1×···×Fn

p(t1, 0, x1)p(t2 − t1, x1, x2) · · · p(tn − tn−1, xn−1, xn)dx1 · · · dxn (1.1)

where F1, . . . , Fn are arbitrary measurable subsets of Rn.
Note that a priori, it is not clear that such a stochastic process even exists, just based on Eq. (1.1) alone. However,
Kolmogorov’s extension theorem guarantees that such a process exists.
A few properties of Brownian motion are as follows:

1. Observe that Bt is a Gaussian Random vector with mean 0 and covariance tIn, i.e. E [Bt] = 0, and E
[
BtB

T
t

]
=

tIn, for all t ≥ 0.

2. In general, for any 0 < t1 ≤ t2 ≤ · · · ≤ tk, Z := (Bt1 , Bt2 , . . . , Btk) ∈ Rnk is a Gaussian random vector in Rnk.

3. E
[
BsB

T
t

]
= min{t, s} · In, i.e. the covariance of Bs and Bt equalsmin{t, s} · In. Thus, Bt and Bs are not inde-

pendent (otherwise their covariance would have been 0). We present the derivation for n = 1, the calculation
for higher dimensions is analogous. Also, assume s ≥ t.

E [BsBt] =

∫
Rn×Rn

x1x2p(t, 0, x1)p(s− t, x1, x2)dx1dx2

Substitute x2 = x1 + z. Then the above integral equals∫
Rn×Rn

x1(x1 + z)p(t, 0, x1)p(s− t, x1, x1 + z)dx1dz =

∫
Rn×Rn

x2
1p(t, 0, x1)p(s− t, 0, z)dx1dz︸ ︷︷ ︸

=:I1

+

∫
Rn×Rn

x1zp(t, 0, x1)p(s− t, 0, z)dx1dz︸ ︷︷ ︸
=:I2

where we notice that p(s− t, x1, x1 + z) = p(s− t, 0, z). Now,

I1 =

∫
Rn×Rn

x2
1p(t, 0, x1)p(s− t, 0, z)dx1dz =

∫
Rn

x2
1p(t, 0, x1)dx1 ·

∫
Rn

p(s− t, 0, z)dz = t · 1 = t

I2 =

∫
Rn

x1p(t, 0, x1)dx1 ·
∫
Rn

zp(s− t, 0, z)dz = 0 · 0 = 0

as desired.

4. For any s, t, h, h′ > 0 such that s ≥ t+ h′, Bs+h −Bs and Bt+h′ −Bt are independent. Indeed,

E
[
(Bs+h −Bs)(Bt+h′ −Bt)

]
= E [Bs+hBt+h′ ]− E [BsBt+h′ ]− E [Bs+hBt] + E [BsBt]

= t+ h′ − (t+ h′)− t+ t = 0

Since Bs+h −Bs and Bt+h′ −Bt are both Gaussian RVs, and since for Gaussian RVs uncorrelatedness implies
independence, we’re done.
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5. One can show that E
[
|Bt −Bs|4

]
= n(n+2)|t−s|2. Consequently, by Kolmogorov’s continuity theorem, there

exists a stochastic process {B̃t}t∈[0,∞) s.t. B̃t = Bt a.e. for all t ≥ 0, B̃t satisfies Eq. (1.1), and t 7→ B̃t(ω) is
continuous for almost all ω ∈ R.
Thus, WLOGwe will assume that the Brownian motion we are working with is the continuous version, whose
existence was outlined above.

6. Let 0 = t1 < t2 < · · · < tn = t be any partition P of [0, t]. Define YP :=
∑n−1

k=1(Btk+1
− Btk)

2. Finally, let
∥P∥ := max{t2 − t1, . . . , tn − tn−1} be the “mesh” of P . Then lim∥P∥→0 YP = t. Consequently, it can be shown
that the total variation of Brownian motion on [0, t] is infinite.

7. LetFs be the filtration generated byBt for all t ∈ [0, s]. {Bt} is amartingale w.r.t. this filtration, i.e. E
[
Bs|Ft

]
=

Bt for all s ≥ t.

To quickly summarize the main points,

1. E [Bt] = 0, and E
[
BtB

T
t

]
= tIn, for all t ≥ 0.

2. For any 0 < t1 ≤ t2 ≤ · · · ≤ tk, Z := (Bt1 , Bt2 , . . . , Btk) ∈ Rnk is a Gaussian random vector in Rnk.

3. E
[
BsB

T
t

]
= min{t, s} · In.

4. Independent Increments: For any s, t, h, h′ > 0 such that s ≥ t+h′,Bs+h−Bs andBt+h′−Bt are independent.

5. t 7→ Bt(ω) is continuous for almost all ω ∈ Rn. In fact, for every α < 1/2, there exists a Cα > 0 such that
|Bt(ω) − Bs(ω)| ≤ Cα|t − s|α for all t ̸= s, and for almost all ω. Conversely, |Bt(ω)−Bs(ω)|

|t−s|α is unbounded (as
t → s) for all α ≥ 1/2. In particular, t 7→ Bt(ω) is differentiable nowhere.

6. lim∥P∥→0

∑n−1
k=1(Btk+1

−Btk)
2 = t. Consequently, the total variation of Brownian motion on [0, t] is infinite.

7. Brownian motion is a martingale w.r.t. the filtration it generates.

8. lim supt→∞
Bt√

2t ln ln t
= 1 almost surely.

�2. Itô Integral

We give meaning to the integral
∫ T

S
f(t, ω)dBt(ω).

Let f : [0,∞)× Ω 7→ R be a measurable function satisfying the following properties:

1. f(t, ω) is Ft-adapted, i.e. ω 7→ f(t, ω) is Ft-measurable for all t ≥ 0.

2. E
[∫ T

S
f(t, ω)2dt

]
< ∞ for almost all ω.

Then ∫ T

S

f(t, ω)dBt(ω) = lim
∥P∥→0

∑
j

f(tj , ω)1t∈[tj ,tj+1)

Note that unlike the Riemann-Stieltjes integral, even if f is Itô-integrable, lim∥P∥→0

∑
j f(t

∗
j , ω)1t∈[tj ,tj+1) may not

equal the Itô integral of f unless t∗j = tj for all j,P . In fact, when t∗j =
tj+tj+1

2 , the integral we get is the Stratonovich
integral, which does not equal the Itô integral in general, even when both of them exist.

Lemma 2.1 (Itô isometry). If f is Itô-integrable,

E

(∫ T

S

f(t, ω)dBt(ω)

)2
 = E

[∫ T

S

f(t, ω)2dt

]
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Some properties of the Itô integral:

1.
∫ T

S
fdBt =

∫ U

S
fdBt +

∫ T

U
fdBt

2.
∫ T

S
(λf + µg)dBt = λ

∫ T

S
fdBt + µ

∫ T

S
gdBt

3. E
[∫ T

S
fdBt

]
= 0

4.
∫ T

S
fdBt is FT -measurable

5. t 7→
∫ t

S
fdBt is a continuous function

6. t 7→
∫ t

S
fdBt is a martingale w.r.t. Ft

�3. Itô's Formula

Let g : [0,∞)× R 7→ R be a doubly differentiable function. Let Xt be an Itô process 1. Let Yt = g(t,Xt). Then

dYt = (∂tg)dt+ (∂xg)dXt +
1

2
(∂2

xg)(dXt)
2

where dt · dt = dt · dBt = dBt · dt = 0, and (dBt)
2 = dt. Finally,

∫ t

0
dZt = Zt − Z0. Let’s see some examples:

1. Let Xt = Bt, g(t, x) = x2/2, i.e. Yt = B2
t /2. Then dYt = BtdBt +

1
2dt. Thus

∫ t

0
BsdBs = 1

2B
2
t − 1

2 t. Notice the
additional t/2 term.

2. Let Xt = Bt, g(t, x) = tx, i.e. Yt = tBt. Then dYt = Btdt+ tdBt. Thus
∫ t

0
sdBs = tBt −

∫ t

0
Bsds. In general, let

c(s) be a differentiable function of s, with no dependence on t. Then
∫ t

0
c(s)dBs = c(t)Bt −

∫ t

0
Bsc

′(s)ds.

�4. Stochastic Di�erential Equations

Consider the differential equation
dXt

dt
= b(t,Xt) + σ(t,Xt)Wt

whereWt ∼ N (0, 1) is “white noise”. Then,

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

Let’s see an example. Consider the stochastic version of the standard exponential-growth differential equation, i.e.

dNt

dt
= (r + αWt)Nt

Then
dNt = rNtdt+ αNtdBt =⇒ dNt

Nt
= rdt+ αdBt =⇒

∫ t

0

dNt

Nt
= rt+ αBt

Now, apply Itô’s formula with g(t, x) = lnx,Xt = Nt. Then

d(lnNt) =
1

Nt
· dNt +

1

2
·
(
− 1

N2
t

(dNt)
2

)
Now,

(dNt)
2 = (rNtdt+ αNtdBt)

2 = r2N2
t (dt)

2 + 2rαN2
t dtdBt + α2N2

t (dBt)
2 = α2N2

t dt

1we won’t define what an Itô process is, since most “nice” functions satisfy the bill
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Thus
d(lnNt) =

1

Nt
· dNt −

α2

2
dt =⇒

∫ t

0

dNt

Nt
= ln

Nt

N0
+

α2t

2

and thus

Nt = N0 exp

((
r − 1

2
α2

)
t+ αBt

)
Using the fact that E

[
exp(αBt)

]
= 1, we get that E [Nt] = E [N0] e

rt, which matches our intuition.
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