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Abstract

In this project, we’ll discuss connections between the conductance of a graph and the spectrum of its Laplacian. Of
course, the tightest inequality for general graphs is Cheeger’s inequality, which we’ll first state and prove. We’ll then
present a “converse” to Cheeger’s inequality for the special case of abelian Cayley graphs (which is nevertheless a very
rich class of graphs), called Buser’s inequality. In the process of proving Buser’s inequality, we shall highlight the connec-
tion of this inequality to the Arora-Rao-Vazirani algorithm.
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1 Notation and Preliminaries

Definition 1.1. Let G be a connected graph on n vertices with adjacency matrix A and degree matrix D, where the degree matrix
is a diagonal matrix with the degrees of the vertices of G on its diagonal. The normalized Laplacian of G is defined to be L :=
I − D−1/2 AD−1/2, which simplifies to I − A/d if G is a d-regular graph.

From now on we’ll only talk about d-regular graphs for simplicity, but all of the statements extend to non-regular graphs
with some extra work. Note that if G is a d-regular graph, then A/d is the transition matrix for the random walk on G.
Consequently, all the eigenvalues of A/d lie in [−1, 1], and 1 is an eigenvalue of A/d (with the eigenvector being the all
ones vector). Moreover, if G is connected, then 1 is a unique eigenvalue of A/d. Consequently, all eigenvalues of L lie in
[0, 2], and if G is connected then 0 is a unique eigenvalue of L.

Definition 1.2. Let 0 = λ1 < λ2 ⩽ λ3 ⩽ · · · ⩽ λn ⩽ 2 be the eigenvalues of L. λ2 is also known as the (one-sided) spectral
gap of G.

At this point, we also recall the so-called variational characterization of λ2.
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Theorem 1.1.
λ2 = min

⟨x,1⟩=0
x ̸=0

R(x)

where R(x) := xTLx/xTx is the so-called Rayleigh quotient of L, a scale-invariant version of the quadratic form associated to L.

Definition 1.3 (Conductance).

• For any non-empty set S ⊆ [n], its conductance is ϕ(S) := e(S, S)/d|S| 1.

• Given a “cut” (A, B) of G (i.e. A ⊔ B = V(G)), is conductance is ϕ(A) if |A| ⩽ |B|, and ϕ(B) otherwise.

• The conductance of graph G is ϕ(G) := min|S|≤n/2 ϕ(S).

Note that d|S| is the total number of edges incident on all the vertices in S, and thus in some sense is the “volume”
of the set S. On the other hand, e(S, S), which denotes the number of edges between S and S, is the “surface area” of
S. Thus, a low conductance set can be physically interpreted as a set escaping whom 2 is difficult. For general graphs,
calculating ϕ(G) is a NP-hard task. In designing approximation algorithms to calculate ϕ (and the S which realizes that
ϕ), the related notion of “sparsest cut” is very useful: For any non-empty S ⊊ [n], define:

ψ(S) :=
e(S, S)

d
n |S| · |S|

It’s not hard to see that for |S| ⩽ n/2, ϕ(S) ⩽ ψ(S) ⩽ 2ϕ(S), and ψ(S) = ψ(S), and thus obtaining an C-approximation
to ψ(G) := min|S|⩽n/2 ψ(S) automatically yields a 2C-approximation to ϕ(G).
We also introduce the Arora-Rao-Vazirani (ARV henceforth) relaxation for the sparsest cut problem:

minimize
∑{i,j}∈E∥xi − xj∥2

d
n ∑i,j∥xi − xj∥2

subject to xi ∈ Rn ∀i ∈ [n]
∥xi − xj∥2 + ∥xj − xk∥2 ⩾ ∥xi − xk∥2 ∀i, j, k ∈ [n]

(1)

We define the value of the above relaxation to be ARV(G).

Definition 1.4. Let G be an Abelian group, and let S be a symmetric generating multiset of G of size, i.e. s ∈ S ⇐⇒ s−1 ∈ S,
with the same multiplicity. Further let d := |S|. The Abelian Cayley graph Cay(G, S) to be a graph with vertex set G, and the
edges (g, g + s) for all g ∈ G, s ∈ S. Note that we can treat the edge (g, g + s) as undirected, since s−1 ∈ S, and thus (g + s, g)
is also an edge. We shall use the letter G to refer to both the group and the Cayley graph (with some implicit generating set S which
will be clear from the context).

We pair up the elements of the group G with their inverses (the elements which are their own inverses are left unpaired).
For each such pair, we designate one of the elements in it to be “positive”, and the other element in it to be “negative”.
Elements which are their own inverses are designated positive. S+ is the multiset of positive elements in S.

1for non-regular graphs, d|S| would be replaced by vol(S) := ∑v∈S degG(v)
2in a random walk
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2 A Combinatorial Characterization of λ2: Cheeger’s Inequality

ϕ can be viewed as a “combinatorial analogue” of λ2 by restricting the variational characterization to discrete inputs:
Indeed, note that for any x ∈ Rn, xTLx = 1

d ∑{i,j}∈E(xi − xj)
2. Consequently, for any S ⊆ [n],

1TS L1S =
e(S, S)

d
=⇒

(
1S
|S|

)T

L
1S
|S| =

e(S, S)
d|S|2 .

Now, note that L1 = 0, and 1TL = 0 too, since L is symmetric. If x⊥ is the component of x orthogonal to 1 then
xT⊥Lx⊥ = xTLx. Note that for x = 1S/|S|, x⊥ =: yS = 1S

|S| −
1
n , and thus

(
1S
|S| −

1
n

)T

L
(

1S
|S| −

1
n

)
=

(
1S
|S|

)T

L
1S
|S| =

e(S, S)
d|S|2 ,

and consequently we have

R(yS) =
e(S, S)/d|S|2

(1/|S| − 1/n)2|S|+ (−1/n)2|S|
=

ϕ(S)
|S|/n

Thus, if S is such that ϕ(S) = ϕ(G), then λ2 ⩽ R(yS) = ϕ(G)/(|S|/n) =⇒ ϕ(G) ⩾ λ2|S|/n ⩾ λ2/2.
Consequently, ϕ(G) can be viewed as a combinatorial analog of λ2. In that light, ϕ(G) ⩾ λ2/2 becomes quite natural,
since λ2 is the optimal value of R(x) over the subspace 1⊥, while ϕ(G) is the optimal value only over vectors arising
from indicator sets.
Cheeger’s inequality (a version of which, for graphs, was proven by Alon and Milman) gives a converse to the above
inequality:

Theorem 2.1 (Cheeger’s Inequality [AM85]). For any graph G, λ2/2 ⩽ ϕ(G) ⩽
√

2λ2.

Proof from [Spi19], Chapter 21. Given the discussion above, it only remains to prove ϕ(G) ⩽
√

2λ2. We present a proba-
bilistic proof in this writeup. The proof inspires a polynomial time algorithm to produce such a cut, which we describe
after the proof.
Let x be an unit eigenvector of L corresponding to the eigenvalue of λ2. Sort the entries of x in increasing order. By rela-
beling vertices, WLOG assume x1 ⩽ x2 ⩽ · · · ⩽ xn. Write z = x− x⌈n/2⌉ · 1. Observe that xTLx = zTLz. Furthermore,
zTz = xTx− 2x⌈n/2⌉(1Tx) + nx2

⌈n/2⌉ = xTx + nx2
⌈n/2⌉ ⩾ xTx since x is orthogonal to 1. This allows us to conclude that

R(z) ⩽ R(x) and in the remaining part of the proof, we shall prove that there exists τ ∈ R such that the threshold cut
Sτ = {j ∈ [n] | zj < τ} satisfies max{ϕ(Sτ), ϕ(Sτ)} ⩽

√
2R(z). Since either |Sτ | ⩽ n/2 or |Sτ | ⩽ n/2, this would allow

us to conclude that ϕ(G) ⩽
√

2R(z) ⩽
√

2R(x) =
√

2λ2.
We shall assume without loss of generality that z2

1 + z2
n = 1. This can be achieved by multiplying z with a constant since

R(z) is invariant to scaling. Given a distribution over τ, if we prove that E[e(Sτ , Sτ)] ⩽
√

2R(z)E[min(|Sτ |, |Sτ |)] then
this would imply the existence of some τ ∈ R such that e(Sτ , Sτ) ⩽

√
2R(z)min(|Sτ |, |Sτ |) ⇔ max{ϕ(Sτ), ϕ(Sτ)} ⩽√

2R(z). We shall consider the distribution with density 2|t| between z1 and zn. The probability that τ lies in the interval
[a, b] where z1 ⩽ a ⩽ b ⩽ zn is given by sgn(b)b2 − sgn(a)a2. Notice that the probability of τ lying in the interval [z1, zn]
is 1 since z1 ⩽ z⌈n/2⌉ = 0 ⩽ zn.
Due to our centering of z, if τ < 0, then min(|Sτ |, |Sτ |) = Sτ and if τ ⩾ 0, then min(|Sτ |, |Sτ |) = Sτ . Moreover, under
this distribution, E[|Sτ |] = ∑n

i=1 Pr[i ∈ Sτ ] = ∑n
i=1 Pr[zi ⩽ τ] and E[|Sτ |] = ∑n

i=1 Pr[i ∈ Sτ ] = ∑n
i=1 Pr[zi > τ]. Thus, for
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i ⩽ ⌈n/2⌉, i is in the smaller set if τ < 0 and for i > ⌈n/2⌉, i is in the smaller set if τ ⩾ 0. Hence,

E[min(|Sτ |, |Sτ |)] =
⌈n/2⌉−1

∑
i=1

Pr[zi < τ < 0] +
n

∑
i=⌈n/2⌉

Pr[zi > τ ⩾ 0] =
⌈n/2⌉−1

∑
i=1

z2
i +

n

∑
i=⌈n/2⌉

z2
i = zTz (2)

And edge (i, j) ∈ E with zi ⩽ zj is also in the set e(Sτ , Sτ) if zi ⩽ τ < zj. Hence, the probability can be written as:

Pr[(i, j) ∈ e(Sτ , Sτ)] =

{
|z2

i − z2
j | if sgn(zi) = sgn(zj)

z2
i + z2

j if sgn(zi) ̸= sgn(zj)

We observe that |z2
i − z2

j | = |zi − zj||zi + zj| ⩽ |zi − zj|(|zi|+ |zj|) and z2
i + z2

j ⩽ (zi − zj)
2 ⩽ |zi − zj|(|zi|+ |zj|). Since

both the terms are bounded, we get:

E[|e(Sτ , Sτ)|] = ∑
(i,j)∈E

Pr[(i, j) ∈ e(Sτ , Sτ)] ⩽ ∑
(i,j)∈E

|zi − zj|(|zi|+ |zj|)

⩽
√

∑
(i,j)∈E

(zi − zj)2
√

∑
(i,j)∈E

(|zi|+ |zj|)2 [∵ Cauchy-Schwarz] (3)

By the definition of Rayleigh coefficient, ∑(i,j)∈E(zi − zj)
2 ⩽ R(z)zTz. Moreover, we observe that:

∑
(i,j)∈E

(|zi|+ |zj|)2 ⩽ 2 ∑
(i,j)∈E

z2
i + z2

j = 2zTz

Thus, we conclude using equations (3) and (2) that:

E[|e(Sτ , Sτ)|] ⩽
√

R(z)zTz
√

2zTz =
√

2R(z)zTz =
√

2R(z)E[min(|Sτ |, |Sτ |)]

The proof motivates the simple algorithm of computing the second eigenvector of the Laplacian, arranging its coordinates
in an increasing order, and choosing the cut which minimizes max{ϕ(S), ϕ(S)} among all the n possible threshold cuts.

Remark. Both sides of the inequality are tight: Indeed, take the cycle graph Cn. Its conductance is 2/n (which is given by the cut
induced by n/2 consecutive vertices on the cycle), while λ2(Cn) ∼ sin2(π/n) = Θ(1/n2), and thus ϕ(Cn) = Θ(

√
λ2(Cn)).

On the other hand, for the hypercube graph Hn (graph on Fn
2 where pairs of vertices with Hamming distance 1 are connected),

ϕ(Hn) = 1/n (which is given by the cut induced by S := {x ∈ Fn
2 : x1 = 0}), while λ2(Hn) = 1/n, i.e. ϕ(Hn) = Θ(λ2(Hn)).

It is worth noting that both Cn, Hn are Cayley graphs of abelian graphs (Cn = Cay(Z/nZ,±1), Hn = Cay(Hn, {e1, . . . , en}).

As we can see, the above proof is algorithmic. This is helpful, since calculating ϕ(G) exactly is NP-hard, and thus the
aforementioned algorithm gives us a O(1/

√
ϕ(G))-approximation to calculating ϕ(G).

However, note that if ϕ(G) = o(1), then the above approximation algorithm doesn’t have a nice guarantee (for example,
if ϕ(G) ∼ 1/n2, then we only have a O(n)-approximation algorithm). In this context, we now look into the Arora-Rao-
Vazirani algorithm, which gives a O(

√
log n)-approximation to ψ(G), and thus ϕ(G).
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3 The Arora-Rao-Vazirani Algorithm

The ARV algorithm [ARV09] is for approximating ψ(G). Note that for x = 1S,

e(S, S)
d
n |S| · |S|

=
xTLx
xTLnx

,

where Ln := I − 11T/n is (roughly) 3 the Laplacian of the complete graph. Finally, if x⊥ is the component of x in 1⊥,
then xTLx = xT⊥Lx⊥ and xTLnx = xT⊥Lnx⊥. Consequently,

min
x∈Rn\{0},⟨x,1⟩=0

xTLx
xTLnx

= min
x∈Rn\{0}

xTLx
xTLnx

Now, Ln = I− 11T
n . Thus, if ⟨x, 1⟩ = 0, then xTLnx = ∥x∥2, and thus minx∈Rn\{0},⟨x,1⟩=0

xTLx
xTLnx = minx∈Rn\{0},⟨x,1⟩=0 R(x) =

λ2. Thus λ2 ⩽ ψ(G), since ψ(G) = minx=1S ,0<|S|⩽n/2
xTLx

xTLnx . Now, note that if x is the indicator vector of a set, then the fol-

lowing “squared-triangle” inequality holds for any i, j, k: (xi − xj)
2 + (xj − xk)

2 ⩾ (xi − xk)
2, since (xi − xj)

2 = |xi − xj|
if x is a 0-1 vector. Finally, we can relax the condition of xi’s being real numbers to xi’s being vectors, and reformulate
xTLx

xTLnx as
∑{i,j}∈E∥xi−xj∥2

d
n ∑i,j∥xi−xj∥2 . Consequently, we have the relaxation 4 Eq. (1) to calculate ψ(G).

Clearly, ARV(G) ⩽ ψ(G). Also note that λ2 = minx∈Rn ,x ̸=0
xTLx

xTLnx . Now, xTLx = ⟨L, xxT⟩, where the inner product is

induced by the Frobenius norm, and thus λ2 ⩾ minX⪰0
⟨L,X⟩
⟨Ln ,X⟩ , since λ2 is the optimum of ⟨L,X⟩

⟨Ln ,X⟩ when X is restricted to be

matrices of the form xxT, i.e. rank 1 PSD matrices. On the other hand, any n× n symmetric PSD matrix X can be written

as ∑i∈[n] xixTi , and note that ⟨L,X⟩
⟨Ln ,X⟩ ⩾ mini∈[n]

⟨L,xixTi ⟩
⟨Ln ,xixTi ⟩

since ⟨L, xixTi ⟩, ⟨Ln, xixTi ⟩ ⩾ 0 for all i. Thus, λ2 = minX⪰0
⟨L,X⟩
⟨Ln ,X⟩ ,

and thus λ2 ⩽ ARV(G) (note that Eq. (1) can be also be recast in terms of PSD matrices, by considering the matrix X
given by Xij := ⟨xi, xj⟩). We thus have λ2 ⩽ ARV(G) ⩽ ψ(G).
Although we won’t need it further, the way the ARV algorithm rounds a solution x of the SDP is as follows: Suppose
x1, . . . , xn are the vectors produced by the SDP. Let g be a random Gaussian vector, and write yi := ⟨xi, g⟩. WLOG
suppose y1 ⩽ y2 ⩽ · · · ⩽ yn. Write L := {i : i ⩽ c1n}, R := {i : n− i ⩽ c1n}, i.e. L is the set of c1n indices for which
yi’s are the smallest, and R is the set of c1n indices for which yi’s are the largest. Let i ∈ L, j ∈ R be such that ∥xi − xj∥2

is the minimum. If |xi − xj∥2 ⩽ c2/
√

log n, delete i from L, and j from R, and continue this process until every point in
L is distance ⩾ c2/

√
log n away from every point in R. Now, for i ∈ [n], define di := minj∈L∥xi − xj∥2. Use these di’s

to arrange the vertices of [n] on a number line, and then select a t uniformly between the smallest di (which will be 0 if
L is non-empty) and the largest di. The cut induced by this t (i.e. the cut given by S := {i ∈ [n] : di > t}), is with good
probability, 5 a O(

√
log n)-approximation to the sparsest cut.

3we say “roughly” because the Laplacian of the n-clique is n
n−1 I − 11T

n−1 = n
n−1 Ln

4the following relaxation optimizes rational functions, and in general it is not known how to optimize programs of rational functions. However, we
can employ the following trick: We optimize ∑{i,j}∈E∥xi − xj∥2− α d

n ∑i,j∥xi − xj∥2 for some parameter α, which is chosen through a binary search (note
that 4/n2 ⩽ ψ(G) ⩽ 2, and thus we have an interval of polynomial aspect ratio to search in). The interval in our binary search where the minimum

of the SDP goes from being positive to being negative is a 2-approximation to the optima of the rational function
∑{i,j}∈E∥xi−xj∥2

d
n ∑i,j∥xi−xj∥2 . Note that optimizing

∑{i,j}∈E∥xi − xj∥2 − α d
n ∑i,j∥xi − xj∥2 can be achieved through a SDP

5of course, c1, c2 have to be carefully adjusted in terms of each other
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4 Buser’s inequality

4.1 Some Motivation

Cheeger’s inequality was first proved in the context of Riemannian manifolds by Cheeger. Indeed, if M is a compact
Riemannian manifold, then for any measurable subset S ⊂ M, we define ϕ(S) := vol(∂S)/ vol(S), where ∂S is the
boundary of S, and then define ϕ(M) to be minvol(S)⩽vol(M)/2 ϕ(S). The Laplacian is defined to be the operator div(∇ f ),
and the Rayleigh quotient of a smooth L2 map f : M→ R w.r.t. the Laplacian is defined as:

R( f ) :=

∫
M∥∇ f ∥2∫

M f 2

If M is a compact connected Riemannian manifold, the Laplacian has a discrete 6 spectrum 0 = λ1 < λ2 ⩽ · · · → ∞.
Furthermore, the corresponding eigenfunctions f1, f2, . . . form an orthonormal eigenbasis of L2(M), which is the vector
space of all L2 functions on M. We also have a variational characterization of λ2, which is

λ2 = min
f :M→R smooth,

∫
M f=0

R( f )

In this context, Cheeger [Che71] showed that ϕ(M) ⩽ O(
√

λ2). However, unlike in the graph case, ϕ(M) ⩾ λ2/2 doesn’t
hold: Indeed, the analog of 1S, which is the indicator function of a subset of M, is not smooth (we require smoothness so
that ∇ f is defined). If we try to “smoothen” it through functions which are 1 on S, and decay rapidly to 0 outside S, we
run into the following issue: Around ∂S, ∥∇ f ∥ is extremely large. Now, suppose the volume of the manifold “explodes”
close to ∂S. 7 Then the integral

∫
M∥∇ f ∥2 would blow up, and R( f ) would deviate significantly from the “intended”

value of ϕ(S).
This issue of the volume blowing up can arise if the manifold has negative curvature in some places. Thus, one might
ask if some analog of ϕ(S) ⩾ λ2/2 can be established for manifolds with non-negative curvature everywhere.
The answer is yes, and Buser [Bus82] established that λ2 ⩽ 10ϕ(M)2 for compact manifolds M with non-negative cur-
vature everywhere. 8 Note that this is much stronger than λ2 ⩽ 2ϕ(G); Indeed Buser’s inequality along with Cheeger’s
inequality establishes that for manifolds with non-negative curvature everywhere, ϕ(M) = Θ(

√
λ2).

Knowing this result for manifolds, we can ask the analogous question for graphs. While there is no widely agreed upon
definition of curvature in graphs, abelian Cayley graphs have non-negative curvature according to some definitions.
Thus, we might ask if we can show that ϕ(G) = Θ(

√
λ2) for abelian Cayley graphs. We can show something even

stronger:

Theorem 4.1. [GT21a, GT21b] Let G be a d-regular abelian Cayley graph. Then

λ2(G) ⩽ O(d) · ARV(G)2 ⩽ O(d) · ψ(G)2 ⩽ O(d) · ϕ(G)2

Proof. Let the adjacency matrix of G be A. Fix a parameter t, and let Gt be the graph with adjacency matrix At. Note that
λ2(Gt) = 1− (1− λ2(G))t, and ARV(Gt) ⩾ λ2(Gt). Thus, if we can show that ARV(Gt) ⩽

√
2dt · ARV(G) for all t, then

by setting t := ⌈1/λ2⌉, we obtain:

1− 1
e
⩽ 1− (1−λ2(G))t = λ2(Gt) ⩽ ARV(Gt) ⩽

√
2dt ·ARV(G) ⩽

√
2d

(
1

λ2
+ 1

)
·ARV(G) =⇒ λ2 ⩽ O(d) ·ARV(G)2

6i.e. the multiplicity of all finite eigenvalues is finite
7For a concrete example, imagine a dumb-bell shaped manifold, with an extremely short and thin bottleneck. Then the volume of the manifold

grows rapidly around the bottleneck
8if the Ricci curvature of M is ⩽ −R everywhere, then we have λ2 ⩽ 2

√
(n− 1)|R| · ϕ(M) + 10ϕ(M)2
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Now, when we’re looking at
∑{i,j}∈E∥xi−xj∥2

d
n ∑i,j∥xi−xj∥2 for a Cayley graph G, we can get some further mileage out of the symmetry.

Indeed, write
∑{i,j}∈E∥xi−xj∥2

d
n ∑i,j∥xi−xj∥2 = ⟨L,X⟩

⟨Ln ,X⟩ for the appropriate PSD matrix X. Note that if X is a solution, then Xg is also a

solution with the same cost, where (Xg)ij := ⟨xg+i, xg+j⟩. To see this, note that the denominator is preserved under any
permutation of the indices; the numerator is preserved as long as the transformation is a graph automorphism (edges
map to edges). Thus WLOG we’ll always replace X with its “symmetrized version” 1

|G| ∑g∈G Xg. Note that if X is
symmetrized, then for any u, v ∈ G, s ∈ S, we have that symmetrization performed

⟨xu, xu+s⟩ ←
1
|G| ∑

g∈G
xu+gxu+s+g =

1
|G| ∑

g∈G
xv+(u−v+g)xv+s+(u−v+g) =

1
|G| ∑

g′∈G
xv+g′xv+s+g′

where the last step follows from the fact that g = g′ − u + v is always in the group. The last expression is exactly
what ⟨xv, xv+s⟩ became. Thus, ∥xu − xu+s∥ = ∥xv − xv+s∥ and consequently, for a symmetrized X, we have: ⟨L,X⟩

⟨Ln ,X⟩ =
n
2 ∑s∈S∥xs−x0∥2

d
n ∑i,j∈G∥xi−xj∥2 = n2

2 ·
Es∼S∥xs−x0∥2

∑i,j∈G∥xi−xj∥2 where S is the generating set of the Cayley graph. Note that |S| = d.

Thus, to show ARV(Gt) ⩽
√

2dt · ARV(G), it suffices to show that
√

2dt ·Es∼S∥xs − x0∥2 ⩾ Es1,...,st∼S∥xs1+···+st − x0∥2.
Now, let s1 + . . . + st = ∑s∈S+ cs · s be the “reduced” version of s1 + · · · + st, i.e. pair up all elements of S with their
inverses, and retain the “positive” parts in S+. Then reduce the sum. For example, if the generator s appears 4 times,
while −s appears twice, then cs = 2. 9

Now, by squared triangle inequality and symmetrization, we have

∥xs1+···+st − x0∥2 =
∥∥∥x∑s∈S+ cs ·s − x0

∥∥∥2
⩽ ∑

s∈S+

|cs| · ∥xs − x0∥2

Now, let us estimate Es1,...,st∈S |cs| for some s ∈ S+. Note that cs is a sum of t independent {0,±1}-valued random
variables (which we call X1, . . . , Xt) with mean 0 which take the value 0 with probability 1− 2/d. Also, E |cs| ⩽

√
E c2

s .
But c2

s =
(
∑t

i=1 Xi
)2

= ∑i X2
i + 2 ∑1⩽i<j⩽t XiXj, and thus E c2

s = t E X2
1 = 2t/d, i.e. E |cs| ⩽

√
2t/d. 10

Consequently, E

∥∥∥x∑s∈S+ cs ·s − x0

∥∥∥2
⩽ ∑s∈S+ E |cs| · E∥xs − x0∥2 ⩽

√
2t/d · ∑s∈S+ E∥xs − x0∥2 ⩽

√
2t/d · ∑s∈S E∥xs −

x0∥2 =
√

2td ·Es∼S∥xs − x0∥2, as desired.

Corollary 4.1.1. Let G be the Cayley graph of an abelian group G with generating set S. Write |G| = n, |S| = d. Then
√

λ2 is a
O(
√

d)-approximation to the conductance of G. In particular, if d = o(log n), then we have a strictly better guarantee than ARV.

9if s is its own inverse, add ±1 to cs with probability 1/2 each
10if s is its own inverse, then cs takes the value 0 with probability 1− 1/d, and thus E X2

1 = t/d ⩽ 2t/d
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