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The Second Eigenvalue

▶ For this talk, we will assume all graphs are unweighted,
d-regular and connected.

▶ Define A as the adjacency matrix, then as usual define the
Laplacian L = I − A

d .

▶ Call the eigenvalues as 0 = λ1 < λ2 ≤ · · · ≤ λn < 2.

▶ Recall the all ones vector 1 is the vector with e-val 0.

▶ Variational definition of λ2:

λ2 = min
⟨x ,1⟩=0, x ̸=0

R(x)

where

R(x) =
xTLx

xT x
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Sparsest Cut Problem

▶ Sparsity/Conductance of a Cut (S ,S):

ϕ(S) =
e(S , S)

d |S |

▶ Conductance of a Graph

ϕ(G ) = min
|S |⩽n/2

ϕ(S)

▶ Sparsest Cut Problem: Find cut witnessing conductance.

4 / 16



Spectral View of Sparsest Cut

▶ ϕ(G ) can be seen as a “combinatorial analogue” of λ2.

▶ If instead you only allow 0-1 vectors (i.e. integral cuts), then:

1TS L1S =
e(S , S)

d

▶ And one can show if one orthogonalizes yS = 1S
|S | −

1
n that

R(yS ) =
ϕ(S)

|S |/n

▶ Which means, if |S | ⩽ n/2 and ϕ(S) = ϕ(G ), that

λ2 ≤ R(yS ) ≤ 2ϕ(G )
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Cheeger’s Inequality

▶ Cheeger’s Inequality [AM85]:

1

2
λ2 ≤ ϕ(G ) ≤

√
2λ2

▶ Algorithmic Proof idea: Show that there exists a randomized
algorithm that gives a cut with expected conductance
ϕ(S) ≤

√
2λ2.

▶ Randomized algorithm [Spi19], though trivially derandomized

1. Find 2nd eigenvector, y .
2. Relabel the vertices such that y1 ≤ y2 ≤ · · · ≤ yn.
3. Pick i ∈ [n] u.a.r and output S = [i ].

▶ =⇒ λ2 gives
√

1/ϕ(G )-approx for sparsest cut.
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Arora-Rao-Vazirani Algorithm [ARV09]
▶ Relax Sparsest Cut Problem to the following quantity, which is

a 2-approximation

ψ(G ) := min
S

e(S , S)
d
n |S ||S |

▶ Relax further to rational function (can be minimized by SDP)

minimize
∑{i ,j}∈E∥xi − xj∥2
d
n ∑i ,j∥xi − xj∥2

▶ Tighten the relaxation by adding triangle inequalities, which
would hold if xi ’s were 0-1 indicator of a cut.

subject to xi ∈ Rn ∀i ∈ [n]
∥xi − xj∥2 + ∥xj − xk∥2 ⩾ ∥xi − xk∥2 ∀i , j , k ∈ [n]
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Arora-Rao-Vazirani Algorithm [ARV09]

▶ Property of the relaxation:

λ2 ≤ ARV(G ) ≤ ψ(G )

▶ In their paper, ARV find a rounding scheme which achieves
O(
√
log n)-approximation to ARV(G ).

▶ Idea: Use g ∼ N (0, I ) and yi = ⟨xi , g⟩ to construct a linear
embedding. Then round using thresholds of that embedding.
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Cheeger’s Inequality on Riemannian Manifolds

▶ Cheeger proved ϕ(M) ≤ O(
√

λ2)

▶ However, ϕ(M) ≥ λ2
2 doesn’t hold

▶ Indicators of sets are not smooth
▶ If you try to smooth them out, then ⟨f , Lf ⟩ =

∫
M∥∇f ∥

2 is
big on the boundary; and M could have a lot of volume in this
region
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Buser’s Inequality

▶ It turns out, the problem is manifolds with negative curvature.

▶ Buser was able to upgrade Cheeger to prove that for
manifolds with nonnegative curvature,

λ2 ≤ 10ϕ(M)2

▶ Much stronger! Implies ϕ(M) = Θ(
√

λ2)
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Buser’s Holds in the Graph Case

It turns out that for some notions of curvature, Abelian Cayley
Graphs have nonnegative curvature.

Definition
An Abelian Cayley Graph is given by an abelian group G and
symmetric multiset of group elements S = S−1. There is a vertex
for all g ∈ G and edges (g , g + s) for all s ∈ S . We will identify
some set of “positive elements” S+ ⊆ S .

Theorem ([GT21])

Let G be a d-regular abelian Cayley graph. Then

λ2(G ) ⩽ O(d) · ARV(G )2 ⩽ O(d) · ψ(G )2 ⩽ O(d) · ϕ(G )2

▶ In particular,
√

λ2 is a O(
√
d) approximation to ϕ(G ).
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Proof of Buser’s Inequality For the Graph Case

▶ Let G t be the graph with adjacency matrix At . Note that
λ2(G t) = 1− (1− λ2(G ))t .

▶ Then, the first inequality can be shown by proving that
ARV(G t) ⩽

√
2dt · ARV(G ) and choosing t = 1/λ2

1− 1

e
⩽ 1− (1− λ2(G ))t = λ2(G

t)

⩽ ARV(G t) ⩽
√
2dt · ARV(G ) =

√
2d

λ2
· ARV(G )

=⇒ λ2 ⩽ O(d) · ARV(G )2
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Proof of Buser’s Inequality For the Graph Case

▶ Note that we can write the ratio of quadratic forms as, for
PSD X :

∑{i ,j}∈E∥xi − xj∥2
d
n ∑i ,j∥xi − xj∥2

=
⟨L,X ⟩
⟨Ln,X ⟩

▶ If we permute the rows/cols as (Xg )ij = ⟨xg+i , xg+j ⟩ the
objective doesn’t change, so we can always replace
X ← 1

|G | ∑g Xg .

▶ Then, by symmetry, for s ∈ S , ∥xu − xu+s∥ = ∥xv − xv+s∥
▶ Thus, the objective becomes

⟨L,X ⟩
⟨Ln,X ⟩

=
n
2 ∑s∈S∥xs − x0∥2
d
n ∑i ,j∈G∥xi − xj∥2

=
n2

2
· Es∼S∥xs − x0∥2

∑i ,j∈G∥xi − xj∥2
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Proof of Buser’s Inequality For the Graph Case

▶ It suffices to show that

√
2dt · E

s∼S
∥xs − x0∥2 ⩾ E

s1,...,st∼S
∥xs1+···+st − x0∥2

▶ Let s1 + . . . + st = ∑s∈S+ cs · s be the “reduced” version

▶ By squared triangle inequality,

∥xs1+···+st − x0∥2 =
∥∥∥x∑s∈S+ cs ·s − x0

∥∥∥2 ⩽ ∑
s∈S+

cs · ∥xs − x0∥2

▶ Note that cs is a sum of t independent {0,±1}-valued
random variables (which we call X1, . . . ,Xt) with mean 0
which take the value 0 with probability 1− 2/d .
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Proof of Buser’s Inequality For the Graph Case

▶ Note that cs is a sum of t independent {0,±1}-valued
random variables (which we call X1, . . . ,Xt) with mean 0
which take the value 0 with probability 1− 2/d .

▶ E c2s = t EX 2
1 = 2t/d and thus by Cauchy-Schwarz

E |cs | ⩽
√
2t/d .

▶ Therefore,

E

∥∥∥x∑s∈S+ cs ·s − x0

∥∥∥2 ⩽ √2t/d · ∑
s∈S+

E∥xs − x0∥2

⩽
√
2td · E

s∼S
∥xs − x0∥2
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