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Introduction

The importance of convex optimization can’t be overstated, and not unsurprisingly, the field of convex optimization
has also been very intensively researched over the decades. However, powerful as convex optimization might be,
many problems of practical interest arising in optimization and machine learning are non-convex, and thus the con-
ventional tools of convex optimization fail.
However, as it turns out, a special class of non-convex functions becomes convex once one imposes a different man-
ifold structure on the underlying domain. Indeed, consider the function f : Rn

>0 7→ R, where:

f(x1, . . . , xn) := ln(x21x
2
2 · · ·x2n + x2nn )−

n∑
i=1

ln(xi)

f is clearly not convex. However, under the manifold structure induced by the Hessian of the function−
∑n

i=1 ln(xi)
(see Section 1.1.2), the function is geodesically convex (see Lemma 2.11, Lemma 2.12), and consequently, we may use
tools from convex optimization to optimize this function (which arises in computing maximum entropy distribu-
tions: See [Gur06, SV17]).
Since the above function, manymore non-convex functions arising in very natural contexts were found to be geodesi-
cally convex when the ‘correct’ Riemannian metric tensor was imposed on the manifold (instead of the usual Eu-
clidean metric tensor). We shall see some examples in Section 3.
Thus, in this report, we shall invest ourselves in the study of convexity over Riemannian manifolds. In this process,
we have referred to [Vis18, Bou23]: We would like to thank Vishnoi and Boumal for making a somewhat intimidat-
ing topic much more accessible.
The rough outline of the text is as follows: In the first chapter, we introduce the concept of geodesics, and explicitly
compute them for a few manifolds of our interest. In the second chapter, we introduce and develop the theory of
geodesic convex optimization, ending the chapter with an analog of gradient descent on Riemannian manifolds (see
Theorem 2.19). We end the report by discussing two non-convex functions of practical interest that become geodesi-
cally convex under a suitable Riemannian metric.
The reader may also refer to the appendix for various useful facts about Riemannian manifolds that have been used
liberally throughout the text.
Finally, we would also like to thank Prof. Debasish Chatterjee for his excellent lectures and notes on the rudiments
of differential geometry.

https://www.sc.iitb.ac.in/~chatterjee/master/homepage/index.html
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�1. Pseudo-Riemannian Manifolds and Geodesics

We first define the useful notion of frames for manifolds in general:

Definition 1.1 (Frames). LetM be a smooth n-dimensional manifold (not necessarily equipped with a metric ten-
sor). A frame bundle onM is an ordered tuple (∂1, . . . , ∂n) of smooth vector fields (i.e. maps fromM to TM) such
that for any p ∈M , {∂i(p)}i∈[n] forms a basis for TpM .

From now on, all vectors in TpM will be expressed in some fixed frame bundle basis. We shall not explicitly state
the frame bundle basis.
We can now define a (pseudo)-Riemannian manifold.

Definition 1.2. A (pseudo)-Riemannian manifold is a smooth n-dimensional manifoldM equipped with a smooth
function g :M 7→ Sn, where Sn is the manifold of n× n symmetric invertible matrices.

The map g is sometimes also called the metric tensor: Indeed, for any p ∈ M , we have an inner product on TpM ,
given by ⟨u, v⟩g := uTG(p)v, where TpM is identified with Rn. Clearly, once we have an inner product, we can also
define a norm, and hence a metric. However, the reader is asked to note that the metric will be non-negative only if
the image of g lies in the space of positive-definite matrices (in which case we callM a Riemannian manifold).
The definition of a metric tensor also allows us to define the Christoffel symbols:

Definition 1.3 (Christoffel Symbols). Fix a point p. G(p) is a n×nmatrix, and let the (i, j)th entry ofG(p) be denoted
as gij (Note that the matrix representation of G is assumed to be in some fixed frame bundle basis). Also, denote
the (i, j)th entry of G(p)−1 as gij . Then we define:

Γk
ij :=

1

2

n∑
ℓ=1

gℓk ·

(
∂gℓi
∂yj

(y) +
∂gℓj
∂yi

(y)− ∂gij
∂yℓ

(y)

)

Once we have a pseudo-Riemannian manifold, we can define a geodesic. Indeed, let γ : [0, 1] 7→M be a smooth map,
where [0, 1] should be thought of as time (‘t’). We define the length of γ as:

L(γ) :=

∫ 1

0

√
⟨γ̇(t), γ̇(t)⟩g(γ(t))dt (1.1)

We also define the energy of γ as:

E(γ, γ̇, t) := 1

2
⟨γ̇(t), γ̇(t)⟩g(γ(t)) (1.2)

Indeed, in Euclidean space, the (kinetic) energy of a (unit mass) particle is vTv/2, where v is the velocity of the
particle. Since we are working in Euclidean space, energy was obtained from velocity by vTv. Similarly, on a general
(pseudo-)Riemannian manifold, the energy of a particle with velocity v = γ̇(t) at a point x = γ(t) will be given by
1/2⟨γ̇(t), γ̇(t)⟩g(γ(t)).

Definition 1.4 (Geodesics). Define the energy functional to be:

S(γ) :=

∫ 1

0

E(γ, γ̇, t)dt = 1

2

∫ 1

0

⟨γ̇(t), γ̇(t)⟩g(γ(t))dt
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Effectively, S(γ) denotes the work done to move the particle along the curve.
A curve γ∗ : [0, 1] 7→M , with γ∗(0) = p, γ∗(1) = q, is called a geodesic if it is a critical point of the energy functional.

Remark. A geodesic may not always exist: For example, consider the manifold R2−{(0, 0)} equipped with the usual
metric tensor. There is no geodesic between (1, 1) and (−1,−1) on this manifold. Thus, from this point onwards, we
shall only deal with pseudo-Riemannian manifolds for which there is a geodesic between any two given points.
Using the Euler-Lagrange equations to characterize geodesics yields that γ∗ must satisfy the following differential
equation:

d

dt

∂E
∂γ̇

=
∂E
∂γ

(1.3)

Simplifying the above, we obtain that a geodesic γ∗ must satisfy the following series of second-order differential
equations: Indeed, fix a point p ∈ M , and consider a chart (U,φ) such that p ∈ U . Define x∗ : [0, 1] 7→ Rn as
x∗ := φ ◦ γ∗. Then, for every k ∈ [n], we have:

(ẍ∗)k = −
n∑

i,j=1

Γk
ij(x∗)(ẋ∗)i(ẋ∗)j (1.4)

With this very useful formula in place, we can compute the geodesics for various manifolds of interest.

1.1. Calculating Geodesics for various Manifolds

We consider various examples of pseudo-Riemannian manifolds and investigate how geodesics look on them.

1.1.1. Euclidean Space

Consider the manifold Rn, equipped with the metric tensor which coincides with the ordinary dot product at every
point, i.e. gp(u, v) = uTv for all p ∈ Rn. Since the metric tensor doesn’t change with space, all the Christoffel symbols
are 0, and we obtain ẍ∗ = 0. But the only smooth function with zero second-derivative everywhere is the line, and
thus we recover the usual fact that lines are the geodesics on Rn.

1.1.2. Positive Orthant

Consider the manifold Rn
>0, whose smoothness is inherited from Rn, i.e. we consider Rn

>0 to be embedded in
Rn. However, we impose a different metric tensor now. Consider the log-barrier function f : Rn

>0 7→ R, given by
f(x1, . . . , xn) := −

∑n
i=1 ln(xi). Then the Hessian of f is a diagonal matrix whose diagonal entries are x−2

1 , . . . , x−2
n .

Thus, for any point p = (x1, . . . , xn) ∈ Rn
>0, we define G(p) := diag(x−2

1 , . . . , x−2
n ). It is not too difficult to see that

the Christoffel symbols are given by

Γk
ij =

{
−1/xk if i = j = k

0 otherwise

Eq. (1.4) then simplifies to (ẍ)k = (ẋ)2k/xk for every k ∈ [n], solving which yields x(t) = c1 · ct2 for some constants
c1, c2 ∈ Rn

>0, where ct2 is defined componentwise. Now, assuming x(0) = p, x(1) = q, we obtain the geodesic on the
positive orthant between p and q is parametrized as:

x(t) = (p1(q1/p1)
t, . . . , pn(qn/pn)

t)

Remark: Pseudo-Riemannian manifolds whose metric tensor is the Hessian of some function are also known as
Hessian Manifolds.
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1.1.3. The Positive De�nite Cone

Let Sk++ be the space of all positive-definite symmetric k × k matrices, i.e. if S ∈ Sk++, then all eigenvalues of S are
strictly positive. We consider Sk++ as a submanifold ofRk(k+1)/2. Note that under this embedding, the standard inner
product between matrices A,B is given by ⟨A,B⟩ = tr(ATB) = tr(AB). Indeed, note that (ATB)ij =

∑
ℓ aℓibℓj , and

thus tr(ATB) =
∑

i

∑
ℓ aℓibℓi, which is exactly what one would get if one flattens out A,B into vectors in Rk(k+1)/2

and then computes the usual inner product.
If we want to “weight” this inner product by some invertible matrix X , the “weighted” inner product is given by
⟨A,B⟩X := tr(X−1AX−1B). Indeed, recall that “re-weightings” of the usual inner product on Rn are given by
⟨u, Sv⟩, where S is some positive-definite matrix. Since S is positive-definite, we have a matrix T (not necessarily
symmetric) such that S = TTT , and thus ⟨u, Sv⟩ = ⟨Tu, Tv⟩. To make certain algebraic manipulations easier, we
re-weigh A,B by the inverse of the matrix X , rather than the matrix X itself.
Finally, the metric tensor on Sk++ at some point S ∈ Sk++ is given by gS(U, V ) := tr(S−1US−1V ), i.e. the matrix itself
acts as the “re-weighting” agent at a given point.
We now want to calculate the geodesics of this manifold. Now, note that if g is the metric tensor for this manifold,
then for any S, g(S) is a k(k+1)/2× k(k+1)/2matrix. Consequently, writing down the Christoffel symbols for this
manifold becomes notationally cumbersome.
Consequently, we shall instead solve the Euler-Lagrange equations directly for this manifold. Before we begin with
that, define:

Eij =

{
eie

T
j + eje

T
i if i ̸= j

eie
T
i otherwise

Note that {Eij}i,j∈[k] form a basis for Sk, where Sk is the set of all symmetric matrices. Thus we can write γ : [0, 1] 7→
Sk++ ↪−→ Sk as

γ(t) =
∑

i,j∈[k]

γij(t)Eij

Consequently,
∂γ

∂γij
= Eij

Now, from Eq. (1.2) (we ignore the factor of 1/2),

E(γ, γ̇, t) = tr(γ(t)−1γ̇(t)γ(t)−1γ̇(t))

Thus (by Eq. (A.1)),

∂E
∂γij

= tr

(
∂γ−1

∂γij
γ̇γ−1γ̇ + γ−1 ∂γ̇

∂γij
γ−1γ̇ + γ−1γ̇

∂γ−1

∂γij
γ̇ + γ−1γ̇γ−1 ∂γ̇

∂γij

)

Also, by Eq. (A.2), we have
∂γ−1

∂γij
= −γ−1Eijγ

−1

Also, note that
∂γ̇

∂γij
= 0

Thus,
∂E
∂γij

= −2 tr
(
γ−1Eijγ

−1γ̇γ−1γ̇
)
= −2 tr

(
Eijγ

−1γ̇γ−1γ̇γ−1
)

Similarly,

∂E
∂γ̇ij

= tr

(
∂γ−1

∂γ̇ij
γ̇γ−1γ̇ + γ−1 ∂γ̇

∂γ̇ij
γ−1γ̇ + γ−1γ̇

∂γ−1

∂γ̇ij
γ̇ + γ−1γ̇γ−1 ∂γ̇

∂γ̇ij

)
= tr

(
γ−1 ∂γ̇

∂γ̇ij
γ−1γ̇ + γ−1γ̇γ−1 ∂γ̇

∂γ̇ij

)
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= tr
(
γ−1Eijγ

−1γ̇ + γ−1γ̇γ−1Eij

)
But tr

(
(γ−1γ̇) · (γ−1Eij)

)
= tr

(
(γ−1Eij) · (γ−1γ̇)

)
, and thus

∂E
∂γ̇ij

= 2 tr
(
γ−1Eijγ

−1γ̇
)

Consequently,

d

dt

∂E
∂γ̇ij

= 2 tr

(
dγ−1

dt
Eijγ

−1γ̇ + γ−1 dEij

dt
γ−1γ̇ + γ−1Eij

dγ−1

dt
γ̇ + γ−1Eijγ

−1 dγ̇

dt

)
Once again,

dγ−1

dt
= −γ−1γ̇γ−1

Thus
d

dt

∂E
∂γ̇ij

= 2 tr
(
−γ−1γ̇γ−1Eijγ

−1γ̇ − γ−1Eijγ
−1γ̇γ−1γ̇ + γ−1Eijγ

−1γ̈
)

= 2 tr
(
−Eijγ

−1γ̇γ−1γ̇γ−1 − Eijγ
−1γ̇γ−1γ̇γ−1 + Eijγ

−1γ̈γ−1
)
= 2 tr

(
Eij(γ

−1γ̈γ−1 − 2γ−1γ̇γ−1γ̇γ−1)
)

Thus, applying the Euler-Lagrange equations (Eq. (1.3)) yield:

−2 tr
(
Eijγ

−1γ̇γ−1γ̇γ−1
)
= 2 tr

(
Eij(γ

−1γ̈γ−1 − 2γ−1γ̇γ−1γ̇γ−1)
)

=⇒ tr
(
Eijγ

−1γ̇γ−1γ̇γ−1
)
= tr

(
Eij(−γ−1γ̈γ−1 + 2γ−1γ̇γ−1γ̇γ−1)

)
=⇒ tr

(
Eij(γ

−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1)
)
= 0

But
tr
(
Eij(γ

−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1)
)
= ⟨Eij , γ

−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1⟩Frob

Since {Eij}’s span Sk,
⟨S, γ−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1⟩Frob = 0

for all S ∈ Sk, and consequently,

γ−1γ̇γ−1γ̇γ−1 − γ−1γ̈γ−1 = 0 =⇒ γ̈γ−1 − γ̇γ−1γ̇γ−1 = 0 =⇒ d(γ̇γ−1)

dt
= 0

Consequently,
γ̇γ−1 = C =⇒ γ̇ = Cγ

This is a matrix-valued differential equation with the solution γ(t) = exp(tC)γ(0). Now, suppose we want to find
geodesic(s) joining matrices P,Q ∈ Sk++. Then γ(0) = P . We still need to find C such that γ(1) = Q. To that extent,
we perform a ‘diagonalization’ trick, where we write C = P 1/2SP−1/2. 1 Note that Cℓ = P 1/2SℓP−1/2, for any
ℓ ∈ N0. Then,

γ(t) = exp(tC)P =

∞∑
ℓ=0

tℓ

ℓ!
CℓP =

∞∑
ℓ=0

tℓ

ℓ!
P 1/2SℓP−1/2P =

∞∑
ℓ=0

tℓ

ℓ!
P 1/2SℓP 1/2 = P 1/2

∞∑
ℓ=0

(tS)ℓ

ℓ!
P 1/2 = P 1/2 exp(tS)P 1/2

Thus
exp(S) = P−1/2QP−1/2

Now, since S ∈ Sk++, S = UD′UT for some diagonal matrix D′. Then

exp(S) =

∞∑
ℓ=0

Sℓ

ℓ!
=

∞∑
ℓ=0

U
D′ℓ

ℓ!
UT = U exp(D′)UT

1Recall that P ∈ Sk++, and hence P = ODOT is diagonalizable, with all eigenvalues being strictly positive. Consequently, for any α ∈ R,
Pα := ODαOT,Dα := diag(λα

1 , . . . , λ
α
k ), where D = diag(λ1, . . . , λk)
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But it is easy to see that exp(D′) = diag(ed1 , . . . , edk), whereD′ = diag(d1, . . . , dk). Similarly, exp(αS) = U exp(αD′)UT =
(exp(S))α. Thus,

γ(t) = P 1/2 exp(tS)P 1/2 = P 1/2(exp(S))tP 1/2 = P 1/2(P−1/2QP−1/2)tP 1/2

Consequently, on Sk++, a geodesic between any two points P,Q is parametrized as P 1/2(P−1/2QP−1/2)tP 1/2.



Topics in Geodesic Convexity 8 / 24 Arpon Basu

�2. Geodesic Convexity

We now define the very important notion of geodesic convexity.

Definition 2.1 (Geodesic Convexity). A subset S ⊂M of a Riemannian manifoldM is geodesically convex if for all
x, y ∈ S, there exists a geodesic γ : [0, 1] 7→M,γ(0) = x, γ(1) = y, such that γ([0, 1]) ⊂ S.

Remark. A few remarks are in order:

1. ∅ and singleton sets are vacuously geodesically convex.

2. IfM is a Riemannianmanifold such that there exists a geodesic between any two points, thenM is geodesically
convex w.r.t. itself.

3. For the Euclidean manifold, geodesically convex sets are convex.

The definition of geodesically convex functions follows almost immediately.

Definition 2.2 (Geodesic Convexity of functions). Let S be a geodesically convex subset of some ambient manifold
M . A function f : S 7→ R (not necessarily continuous/smooth) is called geodesically (strictly) convex if f ◦ γ :
[0, 1] 7→ R is (strictly) convex for all geodesics γ : [0, 1] 7→M such that γ(0) ̸= γ(1) and γ([0, 1]) ⊂ S. In other words,
for any geodesic γ, we have

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), t ∈ [0, 1]

if f is geodesically convex, and if f is strictly geodesically convex, then

f(γ(t)) < (1− t)f(γ(0)) + tf(γ(1)), t ∈ (0, 1)

Remark. If f, g are geodesically convex, µ-strongly convex, or strictly convex, then λf + (1− λ)g is also geodesically
convex, µ-strongly convex, or strictly convex, respectively, for any λ ∈ (0, 1).
We now define some related notions in analogy with usual Euclidean convexity.

Definition 2.3 (Geodesic Strong Convexity). Let S be a geodesically convex subset of some ambient manifoldM . A
function f : S 7→ R is called geodesically µ-strongly convex if for all geodesics γ : [0, 1] 7→ M with γ([0, 1]) ⊂ S, we
have:

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))− t(1− t)µ

2
L(γ)2

where L(γ) is the length of γ (recall Eq. (1.1)). Equivalently, f is geodesically µ-strongly convex if f ◦ γ : [0, 1] 7→ R
is µL(γ)-strongly convex.

Definition 2.4 (Concavity and Linearity). Let S be a geodesically convex subset of some ambient manifold M . A
function f : S 7→ R is called geodesically concave if −f is geodesically convex, and f is called geodesically linear if
f is both geodesically convex and concave.
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2.1. Properties of Convex Functions

Since geodesic convexity has been defined by pulling back along geodesics and then imposing usual convexity, many
of the usual properties of convexity transfer through.

Lemma 2.1 (LocalMinimizers are GlobalMinimizers). If f : S 7→ R is geodesically convex, then any local minimizer
is a global minimizer.

Proof. Let x be a local minimizer, and assume for the sake of contradictionwe have some y ∈ S such that f(y) < f(x).
Since S is geodesically convex, there exists a geodesic γ connecting x to y. Then for all t ∈ (0, 1]

f(γ(t)) ≤ (1− t)f(x) + tf(y) = f(x) + t(f(y)− f(x)) < f(x)

Since γ is smooth, limt↘0 γ(t) = x, and consequently, for any neighborhood U of x, there exists tU > 0 such that
γ(tU ) ∈ U , which contradicts the fact that x is a local minimizer, since in any neighborhood of x we are able to find
points x′ such that f(x′) < f(x). ■

This result immediately yields many useful corollaries.

Corollary 2.2. If f : S 7→ R is geodesically strictly convex, then it has at most one local minimizer, which, by the
above lemma, must also be a global minimizer.

Proof. Assume for the sake of contradiction that f has two global minimizers x, y. Then we must have f(x) = f(y).
Let γ be a geodesic connecting x, y. Then for any t ∈ (0, 1),

f(γ(t)) < (1− t)f(x) + tf(y) = f(x)

which leads to a contradiction. ■

Remark. Note that a global minimizer may not always exist: For example, f : [1,∞) 7→ R, f(x) := 1/x is a strictly
convex function with no global minimizer.

Corollary 2.3. Let M be a smooth manifold, and let f : M 7→ R be a function such that f has a local minimizer
which is not a global minimizer, i.e. there is a point p ∈M , and a neighborhood Up of p, such that

inf
x∈M

f(x) < f(p) = inf
x∈Up

f(x)

Then there does not exist any metric tensor onM such that f is geodesically convex w.r.t that metric tensor.

Some more of the usual stuff also holds:

Lemma 2.4 (Sublevel Sets are Convex). Let {fi}i∈I be an arbitrary collection of geodesically convex functions fi :
S 7→ R. Consider a collection of real numbers {αi}i∈I . Define the sublevel sets

Si := f−1
i

(
(−∞, αi]

)
= {x ∈ S : fi(x) ≤ αi}

Then S′ :=
⋂

i∈I Si is geodesically convex. In particular, if f is a geodesically convex function, then all sublevel sets
of f are geodesically convex.
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Proof. Empty sets are geodesically convex, so assume S′ is non-empty. Pick any x, y ∈ S′, and let γ : [0, 1] 7→
M,γ([0, 1]) ⊂ S, γ(0) = x, γ(1) = y be a geodesic in S, connecting x and y. Now, for any i ∈ I,

fi(γ(t)) ≤ (1− t)fi(x) + tfi(y) ≤ (1− t)αi + tαi = αi

Thus γ([0, 1]) ⊂ Si for all i, and thus γ([0, 1]) ⊂ S′, as desired. ■

We also state without proof the following results. See [UDR77].

Lemma 2.5. If f : S 7→ R is geodesically convex, then f is continuous on the interior of S.

Remark. Recall that in a topological space, the interior of a setA is defined to be the union of all open sets it contains.

Corollary 2.6. IfM is a connected, compact Riemannian manifold, and if f :M 7→ R is geodesically convex, then f
is constant.

Consequently, on compact manifolds (like Sn,Tn, O(n)), geodesic convexity is interesting to study only on proper
subsets. We now also seek to formalize the idea that convex functions are maximized on the boundary. To do that,
we first define a special notion of interior:

Definition 2.5 (Relative Interior). Let S be geodesically convex in the Riemannian manifold M . A point x ∈ S
belongs to the relative interior of S only if for every y ∈ S, and every geodesic γ : [0, 1] 7→ M,γ(0) = x, γ(1) =
y, γ([0, 1]) ⊂ S, there exists a ε > 0 and a geodesic ν : [−ε, 1] 7→M such that ν([−ε, 1]) ⊂ S, and ν|[0,1] = γ.
In words, every geodesic connecting x to y within S can be extended to a geodesic in S, beyond x.

Theorem 2.7. Let f : S 7→ R be geodesically convex. If f attains its maximum at a point x in the relative interior of
S, then f is a constant function.

Proof. Let y ∈ S be arbitrary. Let γ : [0, 1] 7→ M be a geodesic ofM connecting x to y within S. Extend γ to ν, and
let z = ν(−ε). Since f is geodesically convex, f ◦ ν is convex, and we have

f(x) ≤ 1

1 + ε
f(z) +

ε

1 + ε
f(y) =⇒ (1 + ε)f(x) ≤ f(z) + εf(y)

Now, since x is a maximizer, f(x) ≥ f(z), and consequently

(1 + ε)f(x) ≤ f(z) + εf(y) ≤ f(x) + εf(y) =⇒ εf(x) ≤ εf(y)

But x is a maximizer, and thus f(x) ≥ f(y), implying that f(x) = f(y), as desired. ■

2.2. Other de�nitions of convexity

Let S be a geodesically convex subset of M . Let x, y ∈ S. Note that geodesic convexity only requires a geodesic
between x and y to be present in S: In particular, we don’t require all geodesics between x and y to be present in S,
and neither do we require the geodesic in S to be length minimizing (whenever that makes sense).
In a way, this permissive definition is well-suited for various purposes, since many sets can be included within this
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umbrella of definitions. However, it also leads to pathologies as follows: Let S1 := {(x1, x2) ∈ R2 : x21 + x22 =
1} be a Riemannian submanifold of R2, i.e. S1 inherits both its smoothness and its metric tensor, from R2. Then
A := {(x1, x2) ∈ S1 : x1 ≥ 0}, B := {(x1, x2) ∈ S1 : x1 ≤ 0} are both geodesically convex subsets of S1, yet
A ∩B = {(0, 1), (0,−1)} is not geodesically convex.
To avoid pathologies like this, we define a stronger notion of total convexity:

Definition 2.6 (Geodesic Total Convexity). LetM be amanifold such that there is a geodesic between any two points
inM . A subset S ⊂M is called geodesically totally convex if for any x, y ∈ S, all geodesics between x and y lie in S,
i.e. if γ : [0, 1] 7→M is any geodesic such that γ(0) = x, γ(1) = y, then γ([0, 1]) ⊂ S.

However, total convexity is not the only way to generalize the notion of geodesic convexity. Indeed,

Definition 2.7 (Geodesic Strong Convexity). LetM be a manifold. A subset S ⊂ M is called geodesically strongly
convex, if, for any x, y ∈ S, there exists a unique length-minimizing geodesic γlmin : [0, 1] 7→ M such that γ(0) =
x, γ(1) = y. Furthermore, we also demand that γlmin([0, 1]) ⊂ S.

It is clear that if S is geodesically totally convex, then it is geodesically convex. Similarly, if S is geodesically strongly
convex, then it is geodesically convex. Furthermore, unlike geodesic convexity, geodesically total convex sets are
closed under intersections, as are geodesically strong convex sets.
However, total convexity and strong convexity have no implications within each other. To highlight this point, con-
sider the following example:

Example. Consider the manifold Sn := {(x1, . . . , xn+1) ∈ Rn+1 : x21 + · · ·+x2n+1 = 1} embedded in Rn+1. Consider
the spherical cap

Sα := {(x1, . . . , xn+1) ∈ Sn : x1 ≥ α}
Now, recall that the geodesics on Sn were obtained through the ‘great circles’, i.e. let x, y ∈ Sn be such that x, y are
not diametrically opposite, and let Γ be the unique equator of Sn containing both x, y. Then, x, y split Γ into 2 arcs,
both of which are geodesics. However, the shorter arc is the unique length minimizing geodesic between x, y. If x, y
are diametrically opposite, then there are infinitely many equators containing both x, y, and each such equator gives
rise to 2 geodesics, and all these geodesics have the same length.
From this description, it is easy to see that Sα is geodesically convex for all α ∈ R (note that if α ≤ −1, then Sα = Sn,
and if α > 1, then Sα = ∅).
However, Sα is geodesically strongly convex if and only if α > 0. Furthermore, Sα is geodesically totally convex if
and only if Sα = ∅, Sn, i.e. α ̸∈ (−1, 1]. Clearly, strong convexity and total convexity don’t imply each other.

2.3. Di�erentiable Convex Functions

We eventually hope to build a theory of optimization of geodesically convex functions. For such purposes, having
some differentiability helps.

Theorem 2.8 (Differentiability and Convexity). Let S be a geodesically convex set, and let f : M 7→ R be dif-
ferentiable in a neighborhood of S. Then f |S is geodesically convex if and only if for every geodesic γ : [0, 1] 7→
M,γ([0, 1]) ⊂ S, we have:

f(γ(t)) ≥ f(γ(0)) + t⟨∇f, γ′(0)⟩g(γ(0)),∀t ∈ [0, 1]

f |S is geodesically µ-strongly convex if and only if

f(γ(t)) ≥ f(γ(0)) + t⟨∇f, γ′(0)⟩g(γ(0)) +
µt2

2
L(γ)2,∀t ∈ [0, 1] (2.1)
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f |S is geodesically strictly convex if and only if whenever γ′(0) ̸= 0, we have

f(γ(t)) > f(γ(0)) + t⟨∇f, γ′(0)⟩g(γ(0)),∀t ∈ (0, 1]

Proof. Suppose f ◦ γ is differentiable. Then it is convex if and only if for all s, t ∈ [0, 1], we have:

f(γ(t)) ≥ f(γ(s)) + (t− s)(f ◦ γ)′(s)

Now,
(f ◦ γ)′(s) = Df(γ(s)) · γ′(s)

But Df(γ(s)) will act upon γ′(s) according to the Riemannian metric tensor, and thus

D(f(γ(s))) · γ′(s) = ⟨(∇f)(γ(s)), γ′(s)⟩g(γ(s))
where g is the metric tensor. Putting s = 0 gets us what we want. The proof for µ-strong convexity is similar.
In the other direction, if we have

f(γ(t)) ≥ f(γ(0)) + t⟨∇f, γ′(0)⟩g(γ(0)),∀t ∈ [0, 1]

for all geodesics γ contained in S, then we first rewrite it as

f(γ(t)) ≥ f(γ(0)) + t(f ◦ γ)′(0),∀t ∈ [0, 1]

Now, let µ be any geodesic, and let s, t ∈ [0, 1] be arbitrary, with s ≤ t. Set ν(x) := µ(s+(t−s)x). Since sub-segments
of geodesics are also geodesics, ν is a geodesic. Consequently, we have:

f(ν(1)) ≥ f(ν(0)) + (f ◦ ν)′(0)

But ν(1) = µ(t), ν(0) = µ(s), and thus
f(µ(t)) ≥ f(µ(s)) + (f ◦ ν)′(0)

Now, consider the map [0, 1] ∋ x 7→ s+ (t− s)x =: τ(x) ∈ R. Then ν = µ ◦ τ , and thus

(f ◦ ν)′(0) = (f ◦ µ ◦ τ)′(0) = (f ◦ µ)′(τ(0)) · τ ′(0) = (f ◦ µ)′(s) · (t− s)

Consequently,
f(µ(t)) ≥ f(µ(s)) + (t− s) · (f ◦ µ)′(s)

Thus, f ◦ µ is convex. Since µ was an arbitrary geodesic, f is geodesically convex. The proofs for strong convexity
and strict convexity follow similarly. ■

Corollary 2.9. If f : S 7→ R is differentiable and geodesically convex, where S is open and geodesically convex, then
x is a global minimizer of f if and only if (∇f)(x) = 0.

Proof. If (∇f)(x) = 0, then f(γ(t)) ≥ f(x) for any t ∈ [0, 1]. Since f is defined on a geodesically convex set, for any
point x′ ∈ S, we can find a geodesic γ with γ(1) = x′, thus yielding f(x′) ≤ f(x) (using Theorem 2.8), i.e. x is a
global minimizer. Note that we didn’t need to use the openness of S for this implication.
Conversely, let x be a global minimizer of f . Then f(x′) ≥ f(x) for all x′ ∈ S. Now, let ξ : [−1, 1] 7→ S be any smooth
map 2 such that ξ(0) = x. Assume for the sake of contradiction that (f ◦ ξ)′(0) < 0. Since (f ◦ ξ)′(0) < 0, there exists
δ > 0 such that (f ◦ ξ)′(α) < 0 for all α ∈ [0, δ]. Consequently, for any α ∈ (0, δ], we have:

f(ξ(α)) = f(ξ(0)) +

∫ α

0

(f ◦ ξ)′(s)ds < f(ξ(0)) = f(x)

which is a contradiction.
We now claim that (f ◦ξ)′(0) is actually 0: Otherwise, set ν(α) := ξ(−α), andwe get that (f ◦ν)′(0) = −(f ◦ξ)′(0) < 0.
Since (f ◦ξ)′(0) = (∇f)(x) ·ξ′(0) = 0 for all smooth curves ξ : [−1, 1] 7→ S, wemust have (∇f)(x) = 0, as desired. ■

2since S is an open subset ofM , we can consider it to be an embedded submanifold ofM , based on which smoothness of maps can be defined
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We now also give characterizations based on second-order derivatives, without proof (the proof is essentially iden-
tical to that in standard convex analysis, except for the fact that we have to pull f back along the geodesics):

Theorem 2.10. Let f : S 7→ R be twice-differentiable, and assume S is open and geodesically convex. Then f is:

1. Geodesically convex if and only if Hess f(x) ⪰ 0.

2. Geodesically µ-strongly convex if and only if Hess f(x) ⪰ µ · Id.

3. Geodesically strictly convex if Hess f(x) ≻ 0. Note that this is just an ‘if’ condition, not an ‘if and only if’
condition.

In all of the above conditions, it is assumed that x ∈ S is arbitrary.

2.4. Some Examples

Now that we have studied the properties of geodesic convex functions in some detail, let’s see a few examples.

Lemma 2.11 (Geodesic Linearity of the log-barrier function). The map Rn
>0 ∋ x 7→ ⟨1, ln(x)⟩ ∈ R is geodesically

linear on the manifold Rn
>0 as defined in the first chapter.

Proof. Note that the geodesics on Rn
>0 are of the form exp(αt+ β), α, β ∈ Rn (the exponential function is evaluated

coordinate-wise). Thus, the restriction of ⟨1, ln(x)⟩ on a geodesic yields ⟨1, α⟩t+⟨1, β⟩, which is linear, as desired. ■

Remark. At some level, this result shouldn’t be so surprising: The manifold Rn
>0 (with the log-barrier metric tensor)

is a Hessianmanifold, with the Hessian being generated from the log-barrier function. Consequently, the log-barrier
function will be geodesically linear on this manifold. We shall see another example of this phenomenon with the
manifold Sn++ soon.

Lemma 2.12 (Geodesic Convexity of Polynomials with positive coefficients). Let p(x1, . . . , xn) be a multivariate
polynomial with positive coefficients. Then p is geodesically convex on Rn

>0.

Proof. If we can show that the monomial xλ :=
∏n

i=1 x
λi
i , λ ∈ Nn

0 is geodesically convex on Rn
>0, then we’re done

since p is a positive linear combination of such monomials, and thus the Hessian of p(γ(t)) will also be a positive
linear combination of PSD matrices, which will be PSD.
Now, xλ evaluated on a geodesic yields exp(⟨λ, α⟩t+ ⟨λ, β⟩), which is convex, as desired. ■

In fact, we will now show that not only are multivariate polynomials geodesically convex, but they are geodesically
log-convex, which is a much more powerful property.

Lemma 2.13 (Geodesic Log-Convexity of Polynomials with positive coefficients). Let p(x1, . . . , xn) be a multivariate
polynomial with positive coefficients. Then p is geodesically log-convex on Rn

>0.

Proof. Fix a geodesic γ(t) := exp(αt+ β). Let p(x) =
∑

λ∈Nn
0
cλx

λ, where cλ ≥ 0. Then

p(γ(t)) =
∑
λ∈Nn

0

cλ exp(⟨λ, α⟩t+ ⟨λ, β⟩)
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Then
d ln p(γ(t))

dt
=

∑
λ∈Nn

0
cλ⟨λ, α⟩ exp(⟨λ, α⟩t+ ⟨λ, β⟩)∑

λ∈Nn
0
cλ exp(⟨λ, α⟩t+ ⟨λ, β⟩)

d2 ln p(γ(t))

dt2
=

∑
λ,λ′∈Nn

0
(cλ⟨λ, α⟩ − cλ′⟨λ′, α⟩)2 exp(⟨λ, α⟩t+ ⟨λ, β⟩) exp(⟨λ′, α⟩t+ ⟨λ′, β⟩)(∑

λ∈Nn
0
cλ exp(⟨λ, α⟩t+ ⟨λ, β⟩)

)2
Both the numerator and denominator are non-negative, as desired. ■

We shall now give analogs of all the above examples for the manifold Sn++. There is indeed an analogy between Rn
>0

and Sn++ in the sense that they are both Hessian manifolds, that too of “log-barrier functions” (
∑

ln(xi) for Rn
>0,

ln det(X) for Sn++).

Lemma 2.14 (Geodesic Linearity of the log-det map). The map Sn++ ∋ X 7→ ln det(X) ∈ R is geodesically linear on
the manifold Sn++ as defined in the first chapter.

Proof. Let X,Y ∈ Sn++. Then there is a unique geodesic joining X,Y , which is given by

γ(t) := X1/2(X−1/2Y X−1/2)tX1/2

Thus

ln det γ(t) = ln det(X1/2(X−1/2Y X−1/2)tX1/2) = ln det(X)+t(ln det(Y )−ln det(X)) = (1−t) ln det(X)+t ln det(Y )

Thus ln det(·) is a geodesically linear function. ■

Lemma 2.15 (Geodesic Convexity of Strictly Positive Linear Operators). Let T : Sn 7→ Sm be a linear map such that
T (Sn++) ⊆ Sm++. Such maps are also called strictly positive linear operators. Then Sn++ ∋ X 7→ T (X) ∈ Sm++ is a
geodesically convex map w.r.t the order ⪯ on Sm++, i.e. for any geodesic γ : [0, 1] 7→ Sn++, and any t ∈ [0, 1], we have

T (γ(t)) ⪯ (1− t)T (γ(0)) + tT (γ(1))

Proof. It is easy to see that any linear map from Sn++ to Sm++ has to be of the form:

T (X) :=
∑
i∈[d]

AiXBi

for some matrices Ai ∈ Rm×n, Bi ∈ Rn×m. Let γ(t) := P 1/2 exp(tQ)P 1/2 be an arbitrary geodesic in Sn++. Then

T (γ(t)) =
∑
i∈[d]

AiP
1/2 exp(tQ)P 1/2Bi

dT (γ(t))

dt
=
∑
i∈[d]

AiP
1/2Q exp(tQ)P 1/2Bi = T (P 1/2Q exp(tQ)P 1/2) (2.2)

where we use the fact that (see Eq. (A.3))

d exp(tQ)

dt
= Q exp(tQ)
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Now, also note that

d2T (γ(t))

dt2
=
∑
i∈[d]

AiP
1/2Q2 exp(tQ)P 1/2Bi = T (P 1/2Q2 exp(tQ)P 1/2) (2.3)

Since Q and exp(tQ) commute,

T (P 1/2Q2 exp(tQ)P 1/2) = T (P 1/2Q exp(tQ)QP 1/2)

Now, we claim that P 1/2Q exp(tQ)QP 1/2 is positive semi-definite (note that this is not obvious, sinceQ ∈ Sn): Note
that since P 1/2 is positive definite, it suffices to show that Q exp(tQ)Q is positive semi-definite. To that extent, it
is easy to see that if λ1, . . . , λn are the eigenvalues of Q, then the eigenvalues of Q exp(tQ)Q are λ21etλ1 , . . . , λ2ne

tλn ,
which are obviously non-negative.
Now, since T is continuous, 3

T
(
Sn++

)
⊆ T (Sn++) ⊆ Sm++

Thus T maps positive semi-definite matrices to positive semi-definite matrices, and thus T (P 1/2Q exp(tQ)QP 1/2) is
positive semi-definite, whence we’re done by Theorem 2.10. ■

Lemma 2.16 (Geodesic Convexity of log-det of Strictly Positive Operators). Let T : Sn 7→ Sm be a linear map such
that T (Sn++) ⊆ Sm++. Then Sn++ ∋ X 7→ ln det(T (X)) ∈ R is a geodesically convex map.

Proof. Let γ(t) := P 1/2 exp(tQ)P 1/2 be an arbitrary geodesic in Sn++. By Theorem 2.10, if we can show that

d2 ln det(T (γ(t)))

dt2
≥ 0

then we’d be done. Since Sn++ is geodesically complete, and we can start a geodesic from any point with any velocity,
it in fact suffices to show that

d2 ln det(T (γ(t)))

dt2

∣∣∣∣
t=0

≥ 0

Now, we first recall Jacobi’s formula:

ddet(A(t))

dt
= det(A(t)) · tr

(
A(t)−1 · Ȧ(t)

)
Then

d ln det(T (γ(t)))

dt
=

1

det(T (γ(t)))
· det(T (γ(t))) · tr

(
T (γ(t))−1 · dT (γ(t))

dt

)
= tr

(
T (γ(t))−1 · dT (γ(t))

dt

)
d2 ln det(T (γ(t)))

dt2
=

d

dt
tr

(
T (γ(t))−1 · dT (γ(t))

dt

)
= tr

(
dT (γ(t))−1

dt
· dT (γ(t))

dt
+ T (γ(t))−1 · d

2T (γ(t))

dt2

)

= tr

(
−T (γ(t))−1 · dT (γ(t))

dt
· T (γ(t))−1 · dT (γ(t))

dt
+ T (γ(t))−1 · d

2T (γ(t))

dt2

)

= tr

T (γ(t))−1 ·

(
d2T (γ(t))

dt2
− dT (γ(t))

dt
· T (γ(t))−1 · dT (γ(t))

dt

)
3if f is a continuous map, then f(U) ⊆ f(U)
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Thus, the evaluation of the above second derivative, at zero, yields, by Eq. (2.2), Eq. (2.3),

tr

(
T (P )−1 ·

(
T (P 1/2Q2P 1/2)− T (P 1/2QP 1/2) · T (P )−1 · T (P 1/2QP 1/2)

))
Since tr(·) is the sum of eigenvalues, and since T (P ) ≻ 0, it suffices to show that

T (P 1/2Q2P 1/2) ⪰ T (P 1/2QP 1/2) · T (P )−1 · T (P 1/2QP 1/2)

More generally, if Sn ∋ X 7→ T ′(X) := T (P )−1/2T (P 1/2XP 1/2)T (P )−1/2, and if we can show that T ′(X2) ⪰ T ′(X)2,
then the above result follows by putting X = Q.
Now, a classic result from matrix algebra says that if A,B,C,D are matrices such that A,D are square matrices, D
is invertible, and the expression A−BD−1C is well-defined, then A ⪰ BD−1C if and only if[

A B
C D

]
⪰ 0

Thus, we wish to show that [
T ′(X2) T ′(X)
T ′(X) Im

]
⪰ 0

After this point, it is just bashing, by substitutingX =
∑n

i=1 λiuiu
T
i (this follows from the spectral theorem). Indeed,

X2 =

n∑
i=1

λ2iuiu
T
i , Im = T ′(In) = T ′

 n∑
i=1

uiu
T
i

 =

n∑
i=1

T ′(uiu
T
i )

Then [
T ′(X2) T ′(X)
T ′(X) I

]
=

n∑
i=1

[
T ′(λ2iuiu

T
i ) T ′(λiuiu

T
i )

T ′(λiuiu
T
i ) T ′(uiu

T
i )

]
Set Ui := T ′(uiu

T
i ). Since uiuTi is PSD, Ui is PSD. Then[

T ′(λ2iuiu
T
i ) T ′(λiuiu

T
i )

T ′(λiuiu
T
i ) T ′(uiu

T
i )

]
=

[
λ2iUi λiUi

λiUi Ui

]
=

[
λ2i λi
λi 1

]
⊗ Ui

Since
[
λ2i λi
λi 1

]
is PSD, and Ui is PSD, their tensor product is PSD too. Finally, since

[
T ′(X2) T ′(X)
T ′(X) I

]
is a sum of

PSD matrices, it is PSD too, as desired. ■

2.5. Riemannian Gradient Descent

Before we get to Gradient Descent on Riemannian manifolds, we first recall the exponential map. The exponential
map helps us rephrasemany thingsmore elegantly: For example, instead of saying that there is a geodesic connecting
x and y, we can say that there exists some v ∈ TxM such that expx(v) = y.
Note that we can now rephrase Eq. (2.1) as:

f(expx(tv)) ≥ f(x) + t⟨∇f(x), v⟩x +
µt2

2
· ∥v∥2x (2.4)

where we use the fact that L(γx,v|[0,1]) = ∥v∥x =:
√
⟨v, v⟩x (see Definition A.2).

Thewaywe use this inequality for optimization is by topping it offwith an upper bound: Indeed, if∇f isL-Lipschitz
continuous, then

f(expx(tv)) ≤ f(x) + t⟨∇f(x), v⟩x +
Lt2

2
· ∥v∥2x (2.5)

We shall now slowly build up towards using these things to design Riemannian Gradient Descent. Before, that, we
need some lemmata:
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Lemma 2.17. Let S be a non-empty, closed, and geodesically convex subset ofM , whereM is a complete Riemannian
manifold. Assume f :M 7→ R is differentiable on a neighborhood of S. If f |S is geodesically µ-strongly convex with
µ > 0, then the sublevel sets of f |S are compact, and f |S has exactly one global minimizer.

Proof. Let x0 ∈ S be arbitrary. We first prove that the sublevel set S0 := {x ∈ S : f(x) ≤ f(x0)} is compact. Firstly,
S0 is closed, since S0 = (f |S)−1

(
(−∞, f(x0)]

)
is the pre-image of a closed set under a continuous map. Secondly, we

claim that S0 is bounded: Suppose not. Then there is a sequence x1, x2, x3, . . . ∈ S0 such that d(x0, xk)
k→∞

−−−−−→ ∞.
Since S is geodesically convex, there exist geodesics between x0 and xk for all k ∈ N, and thus let vk ∈ Tx0M be such
that γx0,vk(1) = xk. Then by Eq. (2.4), we have

f(xk) ≥ f(x0) + ⟨∇f(x0), vk⟩x0 +
µ

2
∥vk∥2x0

(2.6)

Now, recall that
∥vk∥x0 = L(γx,vk

|[0,1]) ≥ d(x0, xk)

where the last inequality follows since d(x0, xk) is the infimum of the lengths of all paths joining x0, xk. Thus, since

d(xk, x0) → ∞, we have that ∥vk∥x0 → ∞ as k → ∞, and consequently, by Eq. (2.6), we have that f(xk)
k→∞

−−−−−→ ∞,
which is a contradiction, since xk ∈ S0, which entails f(xk) ≤ f(x0). Since S0 is closed and bounded, and sinceM
is complete (as a metric space), by the Hopf-Rinow theorem (see Theorem A.2), S0 is compact, as desired.
Now, since S0 is compact, and since f is continuous over S0, f attains its minima at x∗ ∈ S0. Now, for any x ∈ S, if
x ̸∈ S0, then f(x) > f(x0) ≥ f(x∗). If x ∈ S0, then f(x) ≥ f(x∗). Consequently, x∗ is the minimizer of f |S . Since f
is strictly convex, by Corollary 2.2, we have that x∗ is the unique global minimizer of f |S . ■

The above lemma can be quantitatively sharpened to obtain estimates about f(x∗), which we shall need later.

Lemma 2.18 (Polyak-Łojasiewicz Inequality). Let S be a non-empty, closed, and geodesically convex subset ofM ,
whereM is a complete Riemannian manifold. Assume f :M 7→ R is differentiable on a neighborhood of S. If f |S is
geodesically µ-strongly convex with µ > 0, then

f(x)− f(x∗) ≤
1

2µ
∥∇f(x)∥2x

for all x ∈ S, where x∗ is the unique global minimizer of f |S .

Proof. Since x, x∗ ∈ S, and since S is geodesically convex, there exists vx ∈ TxM such that x∗ = expx(vx), and
[0, 1] ∋ t 7→ expx(tvx) ∈ S. Then by Eq. (2.4), we have

f(x∗) = f(expx(vx)) ≥ f(x) + ⟨∇f(x), vx⟩x +
µ

2
∥vx∥2x ≥ f(x) + inf

v∈TxM

(
⟨∇f(x), v⟩x +

µ

2
∥v∥2x

)
Now, if G = g(x) is the evaluation of the Riemannian metric tensor at x, then

⟨∇f(x), v⟩x +
µ

2
∥v∥2x = (∇f(x))TGv + µ

2
vTGv

This expression is a quadratic in v, and is minimized at v = −∇f(x)
µ , at which point the expression evaluates to

−∥∇f(x)∥2x/(2µ), and thus

f(x∗) ≥ f(x)− ∥∇f(x)∥2x
2µ

as desired. ■
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We are finally ready to prove results about Riemannian Gradient Descent!

Theorem 2.19 (Riemannian Gradient Descent). Let f :M 7→ R be a differentiable geodesically convex function on a
complete connected manifoldM . Let x0 ∈M , and consider the sublevel set S0 := {x ∈M : f(x) ≤ f(x0)}. Assume
f has aL-Lipschitz continuous gradient on a neighborhood ofS0, and suppose f |S0

is geodesicallyµ-strongly convex.
Consider gradient descent with exponential retraction and step-size 1/L initialized at x0, i.e.

xk+1 = expxk

(
− 1

L
∇f(xk)

)
, k ∈ N0

By Lemma 2.17, there exists a unique global minimizer of f |S0
which is x∗ ∈ S0, and convergence to x∗ is linear, i.e.

if we set κ = L/µ, then we have that xk ∈ S0 for all k ∈ N0, and

f(xk)− f(x∗) ≤
(
1− 1

κ

)k

(f(x0)− f(x∗))

d(xk, x∗) ≤
√
κ ·
(
1− 1

κ

)k/2

d(x0, x∗)

Proof. We argue by induction that xk ∈ S0 for all k ∈ N0. The base case is clear. Suppose xk ∈ S0. Now, consider the
curve

τ(t) := expxk
(−t∇f(xk))

Then by Eq. (2.5),

f(τ(t)) ≤ f(xk)− t

(
1− t

L

2

)
∥∇f(xk)∥2xk

Since τ(1/L) = xk+1, we have

f(xk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2xk

≤ f(xk) ≤ f(x0)

where the last inequality follows since xk ∈ S0. Consequently, we also have xk+1 ∈ S0. Furthermore,

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)−
1

2L
∥∇f(xk)∥2xk

At the same time, by Lemma 2.18,
∥∇f(xk)∥2xk

≥ 2µ(f(xk)− f(x∗))

and consequently, we have

f(xk+1)− f(x∗) ≤
(
1− µ

L

)
· (f(xk)− f(x∗)) =

(
1− 1

κ

)
· (f(xk)− f(x∗))

as desired.
Now, since xk ∈ S0 for all k ∈ N0, since x∗ ∈ S0, and since S0 is geodesically convex, there exists vk ∈ Tx∗M such
that xk = expx∗

(vk), and [0, 1] ∋ t 7→ expx∗
(tvk) ∈ S0. Consequently, by Eq. (2.4), we have

f(xk) ≥ f(x∗) + ⟨∇f(x∗), vk⟩x∗ +
µ

2
∥vk∥2x∗

Since x∗ is the minimizer of f |S0
, by Corollary 2.9, ∇f(x∗) = 0. Furthermore, d(xk, x∗) ≤ ∥vk∥x∗ , and thus

f(xk) ≥ f(x∗) +
µ

2
∥vk∥2x∗

≥ f(x∗) +
µ

2
d(xk, x∗)

2
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Thus

d(xk, x∗) ≤

√
2(f(xk)− f(x∗))

µ
≤

√
2(f(x0)− f(x∗))

µ
·
√

1− 1

κ

k

(2.7)

Now, sinceM is complete, by the Hopf-Rinow theorem (Theorem A.2), there exists a length-minimizing geodesic γ
such that γ(0) = x∗, γ(1) = x0, L(γ) = d(x0, x∗). Furthermore, since f is geodesically convex onM ,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)) = f(x0)− (1− t)(f(x0)− f(x∗)) ≤ f(x0)

for all t ∈ [0, 1], and consequently, γ([0, 1]) ⊂ S0. Applying Eq. (2.5) to γ (which can be viewed as an exponential
map) yields (after recalling ∇f(x∗) = 0) yields

f(x0) ≤ f(x∗) +
L

2
d(x0, x∗)

2 (2.8)

Combining Eq. (2.7) and Eq. (2.8) yields the desired result. ■
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�3. Applications of Geodesic Convexity

3.1. Determining the Brascamp-Lieb Constant

Before we describe the applications of geodesic convexity, we take a brief detour into functional analysis and state
the very important Brascamp-Lieb inequality ([BL76]):

Theorem 3.1 (Brascamp-Lieb Inequality). Given linear maps B = (Bj)j∈[m], Bj : Rn 7→ Rnj , and non-negative
real numbers (pj)j∈[m], there exists a number C ∈ [0,∞] such that for any tuple of measurable functions (fj)j∈[m],
f : Rnj 7→ R≥0, the following inequality holds:∫

x∈Rn

m∏
j=1

fj(Bjx)
pjdx ≤ C

m∏
j=1

(∫
x∈Rnj

fj(x)dx

)pj

The smallest C for which the above inequality holds is called the Brascamp-Lieb constant for the system (B, p), and is
denoted as BL(B, p). A system (B, p) is called feasible if BL(B, p) <∞.
Bennett, Carbery, Christ, and Tao [BCCT08] showed that BL(B, p) < ∞ if and only if the following criteria are
satisfied:

1. n =
∑

j∈[m] pjnj .

2. dim(V ) ≤
∑

j∈[m] pj dim(BjV ) for any subspace V of Rn.

Henceforth, we will only be working with feasible Brascamp-Lieb systems.
Now, Lieb showed that equality occurs in the Brascamp-Lieb inequality when fj(x) = exp(−xTAjx) for some posi-
tive definite matrix Aj , for all j ∈ [m]. Plugging the above into the Brascamp-Lieb inequality yields:

BL(B, p) ≥

 ∏
j∈[m] det(Aj)

pj

det
(∑

j∈[m] pjB
T
j AjBj

)


1/2

And thus

BL(B, p) = sup
(X1,...,Xm)

 ∏
j∈[m] det(Xj)

pj

det
(∑

j∈[m] pjB
T
j XjBj

)


1/2

where Xj ∈ Snj

++ for all j ∈ [m].
To simplify the expression a bit, we usually deal with the negative logarithm of it. Under that, we obtain:

− lnBL(B, p) = −1

2
sup

(X1,...,Xm)

∑
j∈[m]

pj ln det(Xj)− ln det

∑
j∈[m]

pjB
T
j XjBj




Now, it can be shown that the function of (X1, . . . , Xm) inside the supremum is not concave in the usual Euclidean
sense: Indeed, suppose it was. Fix X2, . . . , Xm. Then we are effectively dealing with

p1 ln det(X1)− ln det
(
p1B

T
1X1B1 + C

)
where C is some positive definite matrix. Note that X1 7→ ln det(X1), and X1 7→ ln det

(
p1B

T
1X1B1 + C

)
are both

concave functions and thus it is difficult to comment on the concavity of their difference. One might even suspect
that the difference is not concave: That is indeed the case. There exist values of X2, . . . , Xm for which the above
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function is not concave. Refer to [VY18] for further details.
Thus, the usual tools of convex optimization fail for this problem. Here comes the true power of geodesics: We will
prove that the above formulation is geodesically concave, and thus potentially amenable to methods of geodesic
convex optimization.
Before coming to analyses of convexity, we prove another equivalent characterization of the Brascamp-Lieb constant:

−2 lnBL(B, p) = inf
X∈Sn++

FB,p(X)

where
FB,p(X) :=

∑
j∈[m]

pj ln det(BjXB
T
j )− ln det(X)

Theorem 3.2. FB,p is a geodesically convex function on the manifold Sn++ with the dot product induced by the
Riemannian tensor being given by gX(U, V ) := tr(X−1UX−1V ).

Proof. By Lemma 2.14, ln det(X), and hence − ln det(X) is geodesically linear, and hence geodesically convex. Thus
it suffices to show that

∑
j∈[m] pj ln det(BjXB

T
j ) is geodesically convex. Furthermore, since pj ≥ 0, it suffices to show

that ln det(BjXB
T
j ) is geodesically convex. Equivalently, it suffices to show that t 7→ ln det(BjM exp(tN)MBT

j ) is
convex. But

ln det(BjM exp(tN)MBT
j ) = ln det exp(tN) + 2(ln(det(MBj))

But det(exp(tN)) = (det exp(N))t, and thus ln det exp(tN) = t ln det exp(N), which is obviously convex. ■

3.2. Operator Capacity For Square Operators

Another important problem in functional analysis is to find the capacity of a square operator, i.e. let T be a strictly
positive linear operator. This problem has its origins in the so-called ‘matrix-scaling problem’ for bipartite graphs
(see [Vis18]), but has since then grown to have applications in various fields of computer science andmath, including
‘non-commutative identity testing’ (i.e. testing if a symbolic matrix of non-commuting variables overQ is invertible
or not)! See [Gur04, GGOW16, GGOW17, AZGL+18] for further details.
Define:

cap(T ) := inf
X∈Sn++

det(T (X))

det(X)

It can be shown that the function X 7→ ln cap(X) is not convex. However, it is geodesically convex:

Lemma 3.3. Sn++ ∋ X 7→ ln cap(X) is a geodesically convex function.

Proof. Note that
ln cap(X) = ln det(T (X))− ln det(X)

The first term is geodesically convex by Lemma 2.15, and − ln det(X) is geodesically convex by Lemma 2.14. ■
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�A. Appendix

A.1. Matrix Calculus

We include a few useful identities from matrix calculus for the reader’s reference:

d tr(X)

dy
= tr

(
dX

dy

)
(A.1)

d(X−1)

dy
= −X−1 · dX

dy
·X−1 (A.2)

deAt

dt
= AeAt = eAtA (A.3)

A.2. The Exponential Map

Definition A.1 (Maximal Geodesics). LetM be a Riemannian manifold. Then for every (x, v) ∈ TM , there exists a
unique maximal geodesic γx,v : I 7→ M where I is an interval in R containing 0, such that γx,v(0) = x, γ′x,v(0) = v.
Themaximality of I just means that there is no interval I ′ ⫌ I such that γx,v can be extended to a geodesic (satisfying
the given conditions) defined on I ′.

Definition A.2 (Exponential Map). Consider the following subset of the tangent bundle:

O := {(x, v) ∈ TM : γx,v is defined on an interval containing [0, 1]}

Also, consider its restriction at x:
Ox := {v ∈ TxM : (x, v) ∈ O}

Then we define the exponential map as exp : O 7→M as:

exp(x, v) := expx(v) := γx,v(1)

Remark. A few remarks are due:

1. A Riemannian manifold is called geodesically complete ifO = TM . In other words, the domain of γx,v for any
(x, v) ∈ TM is R.

2. Given t ∈ R, if tv ∈ Ox for some v, then γtv(1) = γv(t), i.e. expx(tv) = γv(t).

3. Fix any x ∈M . If v ∈ Ox, then tv ∈ Ox for all t ∈ [0, 1]. Consequently,Ox is star-shaped (a subset S of aR-vector
space is called star-shaped if tS ⊂ S for all t ∈ [0, 1]).

4. Ox is open in TxM , and henceO is open in TM . Note that (x, 0) ∈ O for all x. Consequently,O is a neighborhood
of the zero section of the tangent bundle.

5. exp is smooth.

6. Fix (x, v) ∈ O, and let γ = γx,v|[0,1]. Then L(γ) = ∥v∥x.
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A.3. Hopf-Rinow Theorem

A manifoldM is called connected if it is connected as a topological space.

Lemma A.1. Connected manifolds are path-connected, i.e. if M is a connected manifold, then for any x, y ∈ M ,
there exists a continuous function τ : [0, 1] 7→M with τ(0) = x, τ(1) = y.

Proof. Fix arbitrary x ∈ M , and denote as Ux := {y ∈ M : There is a path from x to y}. Note that x ∈ U , and hence
U ̸= ∅. We claim that U is open: Indeed, suppose q ∈ U , and let (V, ψ) be a coordinate chart such that q ∈ V . WLOG
ψ(V ) is an open ball in an Euclidean space and hence is path-connected. Since V and ψ(V ) are homeomorphic, V
is path connected. But that implies V ⊂ U : Indeed, if v ∈ V , then there is a path from x to v via q. Since V is open,
we get that there is a neighborhood of q in U , showing that U is open. Now, note that if α ∈ Uβ , then β ∈ Uα, and
consequently, if Uα ̸= Uβ , then Uα ∩ Uβ = ∅. Finally, if Ux ̸=M , then we could partitionM into open sets as

M =
⊔

Uα

which would contradict the fact thatM was connected. ■

Remark. The above proof has been reproduced from here.
Thus, letM be a connected Riemannian manifold. Then, for any x, y ∈M , we can define:

d(x, y) := inf
τ :[0,1] 7→M

τ is a path from x to y

L(τ)

where recall that
L(τ) :=

∫ 1

0

√
⟨τ̇(s), τ̇(s)⟩τ(s)ds

It is easy to verify that d(·, ·) turnsM into a metric space.
The following is a very important theorem about connected Riemannian manifolds:

Theorem A.2 (Hopf-Rinow Theorem). LetM be a connected Riemannian manifold. Then the following statements
are equivalent:

1. The closed bounded sets ofM are compact.

2. M is a complete metric space.

3. M is geodesically complete.

Furthermore, any one of the above implies the existence of a length-minimizing geodesic between any two given
points on the manifold.

Remark. A few remarks are due:

1. The Hopf-Rinow theorem is not true for pseudo-Riemannian manifolds: See the Clifton-Pohl torus.

2. If a Riemannian manifold is not complete, there may not exist a geodesic between two given points in the
first place: For example, consider the Riemannian manifold R2 \ {(0, 0)} embedded in R2, inheriting the usual
smoothness and metric tensor. Then there is no geodesic between (1, 1) and (−1,−1).

https://math.stackexchange.com/questions/1145293/connected-manifolds-are-path-connected
https://en.wikipedia.org/wiki/Clifton%E2%80%93Pohl_torus

	Pseudo-Riemannian Manifolds and Geodesics
	Calculating Geodesics for various Manifolds
	Euclidean Space
	Positive Orthant
	The Positive Definite Cone


	Geodesic Convexity
	Properties of Convex Functions
	Other definitions of convexity
	Differentiable Convex Functions
	Some Examples
	Riemannian Gradient Descent

	Applications of Geodesic Convexity
	Determining the Brascamp-Lieb Constant
	Operator Capacity For Square Operators

	Appendix
	Matrix Calculus
	The Exponential Map
	Hopf-Rinow Theorem


