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1 Notation and Convention
Throughout the report,

• We’ll be representing the power-set of a set 𝑆 by 2𝑆. Also, we’ll always equip any power set with the inclusion
partial order, ie:- if we say that for some 𝜔1 , 𝜔2 ∈ 2𝑆 we have 𝜔2 ≥ 𝜔1, then we mean 𝜔2 ⊇ 𝜔1.

• Given any set 𝑆, we will be using the terms 2𝑆 and {0, 1}𝑆 interchangeably. However, note a slight change of
perspective in this interchange: When we say 𝜔 ∈ 2𝑆, we are treating 𝜔 as a subset of 𝑆, while when we say
𝜔 ∈ {0, 1}𝑆, then we’re treating 𝜔 as a function over 𝑆, where for any 𝑠 ∈ 𝑆, 𝜔(𝑠) = 1 if and only if 𝑠 ∈ 𝜔.

• Let Ω be the sample space of a probability triple (Ω,ℱ , P). Further, assume that Ω is equipped with a partial order
≥. Then an event ℰ ∈ ℱ is called increasing, if for any 𝜔, 𝜔′ ∈ Ω we have

𝜔 ∈ ℰ ∧ 𝜔′ ≥ 𝜔 =⇒ 𝜔′ ∈ ℰ

• In the lattice Z𝑑, we define the series of cubes Λ𝑛 := [−𝑛, 𝑛]𝑑 for every natural number 𝑛 ≥ 1. We also denote 𝑥 +Λ𝑛

as Λ𝑛(𝑥) for any 𝑥 ∈ Z𝑑. Furthermore, let 𝐸𝑛 be the set of edges of Λ𝑛 .

• For any undirected graph 𝐺 := (𝑉, 𝐸), and any subset of vertices 𝑊 ⊂ 𝑉 , we define the boundary of 𝑊 to be

𝜕𝑊 := {𝑤 ∈𝑊 : ∃𝑤′ ∈ 𝑉 \𝑊, {𝑤, 𝑤′} ∈ 𝐸}

Note that in our definition, 𝜕𝑊 ⊂ 𝑊 for any set 𝑊 .

• Note that for a set of vertices 𝑊 , 𝜕𝑊 is also a set of vertices. Similar to that definition, we can also define the
boundary of edges to be

△𝑊 := {{𝑥, 𝑦} ∈ 𝐸 : 𝑥 ∈𝑊, 𝑦 ∉ 𝑊}

• Given an undirected graph 𝐺 = (𝑉, 𝐸) and an edge 𝑒 ∈ 𝐸, we call 𝑒 a bridge edge if removing 𝑒 from 𝐺 increases
the number of connected components in 𝐺.

• In this report, E𝑡[𝑋] denotes the expectation of the random variable 𝑋 as the parameter 𝑡 varies over it’s domain. In
other words, E𝑡[𝑋] is to be treated as a (deterministic) function of 𝑡.

• We use the ⊔ symbol for disjoint union.

2 The Basic Setup
Our treatment of Bernoulli percolation follows the presentations given in [DC] and and [Ste].
For introducing percolation theory, we first need to establish a setting. Our setting is the (undirected) infinite lattice
graph L𝑑 = (V,E)whose vertex set V is given by Z𝑑, and whose edge set is given by the lattice itself, ie:-

E := {{𝑥, 𝑦} : ∥𝑥 − 𝑦∥1 = 1, 𝑥, 𝑦 ∈ Z𝑑}

Now, for every edge 𝑒 ∈ E, we independently assign a Bernoulli Random Variable 𝑋𝑒 with parameter 𝑝. We call the edge
𝑒 open if 𝑋𝑒 = 1, and closed otherwise. The value of 𝑋𝑒 shall henceforward be referred to as the status of the edge 𝑒.
We can now define the usual product measure on our space, with the probability triple (Ω,ℱ , P𝑝), where the sample
space Ω is 2E, ℱ is the 𝜎-algebra generated by events dependent on only finitely many edges in E, and P𝑝 is the usual
product measure on ℱ .

2



2.1 Interpretation Issues
For ease of interpretation, since every instance 𝜔 ∈ Ω is a subset of E, one can imagine that subset to be defining a
subgraph of our lattice. Also note that when we say, for some 𝜔, 𝜔′ ∈ Ω = 2E, that 𝜔′ ≥ 𝜔, then in our graph-theoretic
interpretation we can take this to mean that the graph of 𝜔 is a subgraph of 𝜔′, or equivalently, the graph of 𝜔′ can be
obtained from that of 𝜔 by adding more edges into it. In this light, the definition of increasing events defined in Section 1
becomes much clearer: An event ℰ (of graphs) is said to be increasing if, a certain graph 𝜔 belongs to ℰ, then any
supergraph of 𝜔 must also belong to ℰ. Equivalently stated, adding edges to a graph can only increase the chance of an
increasing event on it. Events like

• There exists an infinite cluster, ie:- our event ℰ is the set of all infinite subgraphs of L.

• There exists a path connecting 0 and 1, ie:- our event ℰ is the set of all subgraphs of L in which 0 and 1 belong to
the same connected component.

• 0 belongs to an infinite cluster, ie:- our event ℰ is the set of all subgraphs of L in which 0 belongs to an infinite
connected component.

are standard examples of increasing events on graphs, in the context of percolation theory.
The entire investigation of percolation theory now focuses on “macro parameters” in this probability space, such as the
existence of infinite clusters, the average size of a cluster containing the origin, and so on.
As we shall see below, what makes percolation theory so interesting is the natural occurrence of phase transitions in it: As
we vary the parameter 𝑝, we shall see that many of the macroscopic quantities mentioned above change suddenly at a
critical probability: The exact calculation of this critical probability, the equivalence of the critical probability arising from
the phase transition of different quantities, and the probabilistic machinery needed to build all of this up will be the focus
of the upcoming sections.

2.2 Definition of the infinite cluster probability
One can note that in our Bernoulli percolation process, the set of open edges forms various “clusters” on our lattice. For
any point 𝑥 ∈ Z𝑑, one can formally define the cluster containing 𝑥 to be the connected component containing 𝑥. In this
light, we define

𝜃(𝑝, 𝑑) := P𝑝(0 belongs to an infinite cluster)
Note that there is nothing special about 0, it’s just that our probability model is translationally invariant. At this stage,
we also define our first critical probability

𝑝𝑐(𝑑) := inf{𝑝 ∈ [0, 1] : 𝜃(𝑝, 𝑑) > 0}
Note that if 𝑑 = 1, ie:- our lattice is 1-dimensional, and if 𝑝 < 1, then almost surely there are no infinite clusters since
infinite clusters in the Z-lattice can only exist if there exists some 𝑎 ∈ Z such that every edge in (−∞, 𝑎] or [𝑎,∞) is open,
which is an event of probability zero, and thus 𝑝𝑐(1) = 1.
Consequently, we now assume 𝑑 ≥ 2 hereon. We shall also suppress the dependence of 𝜃 and 𝑝𝑐 on 𝑑 for notational
clarity.
Before we move on, we also define the expected size of the cluster containing the origin, ie:-

Definition 1. Let 𝐶 be the cluster containing the origin. Then the expected value of 𝐶 is defined as

𝜒(𝑝) :=
∞∑
𝑛=0

𝑛P𝑝(|𝐶| = 𝑛) + ∞ · P𝑝(|𝐶| = ∞)︸         ︷︷         ︸
=𝜃(𝑝)

3



It is easy to see that 𝜒 is infinite if 𝜃(𝑝) > 0, ie:- 𝑝 > 𝑝𝑐 =⇒ 𝜒(𝑝) = ∞. One can also show that 𝑝 < 𝑝𝑐 =⇒ 𝜒(𝑝) < ∞, but that
is a much harder task, which we accomplish in Corollary 5.1.2.

It is very fruitful to express the 𝜒 function in terms of 2-point correlations.

Lemma 2.1 (Two-point correlation). For any 𝑝 ∈ [0, 1], we have

𝜒(𝑝) =
∑
𝑥∈Z𝑑

P𝑝(0←→ 𝑥)

Proof. We know that

𝜒(𝑝) = E[|𝐶|] = E


∑
𝐶⊂Z𝑑

0∈𝐶

∑
𝑐∈𝐶

10←→𝑐

 =

∑
𝑥∈Z𝑑

P𝑝(0←→ 𝑥)

□

We also define

Definition 2. For any 𝑛 ≥ 1 and 𝑝 ∈ [0, 1], define

𝜃𝑛(𝑝) := P𝑝(0←→ 𝜕Λ𝑛)

Note that lim𝑛→∞ 𝜃𝑛(𝑝) = 𝜃(𝑝).

The reason the definition of 𝜃𝑛 is so useful is that it allows us to study percolation in a finite, bounded, setting, and then
many results about 𝜃 follow directly by passing to the limit 𝑛 →∞. Just the definition of 𝜃𝑛 allows us to comment on the
continuity properties of 𝜃. Indeed,

Theorem 2.2. 𝜃 : [0, 1] ↦→ [0, 1] is right continuous on [0, 1].

Proof. Observe that

1. 𝜃𝑛(𝑝) is a polynomial in 𝑝, and is thus continuous.

2. 𝜃𝑛(𝑝) is an increasing function of 𝑝 1.

Thus 𝜃 is a limit of continuous increasing functions, implying that it is right continuous.
It can also be shown that 𝜃 is continuous on [0, 1] \ {𝑝𝑐}: Indeed, for 𝑝 ∈ [0, 𝑝𝑐), the result is trivial since 𝜃 is identically
0 on this interval. However, proving continuity on (𝑝𝑐 , 1] requires some deep results, including showing that for 𝑝 > 𝑝𝑐 ,
there will be a unique infinite cluster almost surely. □

2.3 A First Introduction to Coupling Arguments
Coupling is a very useful technique in probability theory that allows us to compare two probabilities, especially when
calculating them explicitly is difficult. Indeed, we shall see its power in the argument below, and the technique of coupling
itself will be used many more times throughout our treatment of percolation theory.
By a coupling argument, we now claim that 𝜃 is a non-decreasing function of 𝑝: Indeed, let 𝑝1 < 𝑝2 be two parameters in
[0, 1]. Then, for any instance 𝜔 ∈ 2E in the probability space generated by the parameter 𝑝1, consider its set of closed

1this fact is intuitively clear: For a formal proof, refer Section 2.3
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edges, ie:- E \ 𝜔 =: 𝜔. For every edge 𝑒 ∈ 𝜔, with probability 𝑝2−𝑝1
1−𝑝1

, flip 𝑋𝑒 from 0 to 1, and let 𝜔̃ be the set of open edges
generated this way. Set 𝜔′ := 𝜔 ⊔ 𝜔̃. Then the probability space generated by 𝜔′ as 𝜔 varies over 2E is exactly the same as
the one generated by the parameter 𝑝2, since the probability that an edge 𝑓 ∈ E belongs to 𝜔′ is

Pr( 𝑓 ∈ 𝜔′) = Pr( 𝑓 ∈ 𝜔) + Pr( 𝑓 ∈ 𝜔̃) = 𝑝1 + (1 − 𝑝1)
𝑝2 − 𝑝1

1 − 𝑝1
= 𝑝2

But since 𝜔′ ≥ 𝜔, we obtain that the probability of any increasing event is atleast as much in the 𝑝2-space as in the 𝑝1-space.
Now we finish off by noting that the existence of an infinite cluster is an increasing event: Indeed, adding more edges
doesn’t change the infinitude of an infinite cluster.

2.4 Basic bounds on the critical probability
We first prove some basic lemmata.
We define a self-avoiding path (abbreviated as “SAP”) to be a path of vertices in which no vertex is repeated.

Lemma 2.3. 0 belonging to an infinite cluster (connected component) is equivalent to there being self-avoiding paths of arbitrarily
large lengths containing 0.

Proof. Suppose there are arbitrarily long SAPs originating from 0. Then the number of vertices connected to 0 can be
arbitrarily large, and thus 0 is part of an infinite cluster.
Conversely, let 0 be part of an infinite cluster. Now, note that the degree of every vertex in our cluster is finite, ie:- our
cluster is locally finite since L𝑑 itself is locally finite with every vertex having degree 2𝑑 < ∞. Thus our cluster is an infinite,
connected, and locally finite graph, and consequently, by König’s lemma in graph theory, there exists an infinite SAP in
our cluster. If 0 is in this SAP, we’re done. Otherwise, choose an arbitrary 𝑥 in this SAP, and connect 0 via a path to 𝑥. Let
𝑦 be the first member of the SAP on the path from 0 to 𝑥. Then 0→ 𝑦, and then an infinite branch of the SAP originating
at 𝑦 forms an infinite SAP originating at 0. □

Let Ω𝑛 be the set of SAPs in Z𝑑 of length 𝑛 originating at 0. Then it’s easy to see that |Ω𝑛| ≤ (2𝑑)(2𝑑 − 1)𝑛−1.

Lemma 2.4. For 𝑑 ≥ 2, 𝑝𝑐(𝑑) ≥ 1
2𝑑−1 .

Proof. Note that our result follows if we can show that 𝜃(𝑝) = 0 on [0, 1
2𝑑−1 ).

Now, note that by Lemma 2.3

𝜃(𝑝) = P𝑝(0 belongs to an infinite cluster) = P𝑝

(⋂
𝑛∈N
{∃ open path in Ω𝑛}

)
But P𝑝

(
∃ open path in Ω𝑛

)
≤ |Ω𝑛|𝑝𝑛 ≤ 2𝑑(2𝑑 − 1)𝑛−1𝑝𝑛 → 0 as 𝑛 → ∞ for any 𝑝 < 1

2𝑑−1 . Consequently, 𝜃(𝑝) = 0 on
[0, 1

2𝑑−1 ). □

We can now state our first major theorem of percolation theory.

Theorem 2.5. For 𝑑 ≥ 2, 𝑝𝑐(𝑑) ∈
[ 1

2𝑑−1 , 0.9
]
.

Proof. Note that if we can show that 𝑝𝑐(𝑑) ≤ 0.9, then we’ll be done by Lemma 2.4. Also note that, by a coupling argument
similar to the one given in Section 2.3, 𝜃(𝑝, 𝑑) is an increasing function of 𝑑 for any given 𝑝: Indeed, for any two natural
numbers 𝑑 < 𝑑′, and any 𝜔𝑑′ ⊂ E𝑑′ , one can obtain a 𝜔𝑑 ⊂ E𝑑 by setting 𝜔𝑑 := 𝜔𝑑′ ∩ Z𝑑.
Consequently, if 𝜃(𝑝, 𝑑) > 0, then 𝜃(𝑝, 𝑑′) > 0 for all 𝑑′ > 𝑑, and thus it suffices to prove our theorem for 𝑑 = 2, ie:- show
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that 𝜃(0.9, 2) > 0.2
We shall now construct the dual lattice of Z2 which we denote as (Z2)∗, where (Z2)∗ is defined as Z2 + ( 12 , 1

2 ), and let the
dual lattice be E∗. Note that there is a natural correspondence between elements of E and E∗. Finally, an edge in E∗ is
set to be open if and only if the corresponding edge in E is closed. Effectively, the probability space on the dual lattice is
P1−𝑝 + ( 12 , 1

2 ).
By a theorem of graph theory, it can be shown that 0 doesn’t belong to an infinite cluster in E if and only if there is an
open cycle 𝐶∗ in E∗ enclosing 0.
Thus

1 − 𝜃(𝑝) ≤
∑
𝑛≥1

Pr(∃ open cycle of length 𝑛 in E∗ enclosing 0)

≤
∑
𝑛≥1
|cycles of length 𝑛 in E∗|(1 − 𝑝)𝑛

Similar to the calculation of |Ω𝑛|, it’s easy to see that the number of cycles of length 𝑛 in a two-dimensional lattice is at
most 𝑛4 · 3𝑛−1. Thus

1 − 𝜃 (0.9, 2) ≤
∑
𝑛≥1

𝑛4 · 3𝑛−1 (1 − 0.9)𝑛 < 1 =⇒ 𝜃(0.9, 2) > 0

as desired. □

Note:- The construction of the dual lattice and the subsequent argument is also known as a Peierls argument.

3 Crucial Inequalities
After establishing some basic results in the last section, we now need to develop some more technology to progress. This
section has been modeled after [Gri99]. This section will require heavy use of coupling arguments, and also require one
to recall the concept of increasing events.
Similar to the concept of increasing events, one can also define increasing Random Variables. Indeed, since a (real-
valued) random variable 𝑋 on a probability triple (Ω,ℱ , P) is just a function 𝑋 : Ω ↦→ R, the R.V. 𝑋 is called increasing if
for any 𝜔, 𝜔′ ∈ Ω,

𝜔′ ≥ 𝜔 =⇒ 𝑋(𝜔′) ≥ 𝑋(𝜔)
Once we have defined increasing random variables, one may note that an increasing event is an event whose indicator
function is an increasing random variable. Henceforward, we shall refer to events and their indicator random variables
interchangeably. Again, similar to increasing events, we can use a coupling argument to present an inequality on
increasing random variables.

Lemma 3.1. Let 𝑋 be an increasing random variable. Then

𝑝1 ≤ 𝑝2 =⇒ (E[𝑋])𝑝=𝑝1 ≤ (E[𝑋])𝑝=𝑝2

Proof. Using the same coupling argument as Section 2.3, we can see that 𝑋(𝜔) ≤ 𝑋(𝜔′), where 𝜔 and 𝜔′ are the same
symbols as they were in Section 2.3. Taking an expectation of this inequality over Ω then yields our result. □

2Note that since 𝜃(𝑝, 𝑑) is an increasing function of 𝑑, 𝑝𝑐(𝑑)must be a decreasing function of 𝑑
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3.1 The FKG Inequality
We now present the first of our inequalities, the FKG inequality 3, which confirms our intuition that the occurrence of an
increasing event should positively influence the occurrence of another increasing event.

Theorem 3.2 (FKG Inequality). Let 𝑋 and 𝑌 be increasing events in Ω such that E[𝑋2], E[𝑌2] < ∞ then

E[𝑋𝑌] ≥ E[𝑋]E[𝑌]

Proof. We first prove the theorem in the case that 𝑋 and 𝑌 depend on finitely many 𝑒 ∈ E. To that end, for 𝑛 = 1, we only
have two states in the domain of 𝑋 and 𝑌, {(0), (1)}, and we note that for 𝛼, 𝛽 ∈ {(0), (1)} (note that 𝛼, 𝛽 aren’t necessarily
distinct)

(𝑋(𝛼) − 𝑋(𝛽)) · (𝑌(𝛼) − 𝑌(𝛽)) ≥ 0

=⇒
∑
𝛼,𝛽

(𝑋(𝛼) − 𝑋(𝛽)) · (𝑌(𝛼) − 𝑌(𝛽))Pr(𝛼)Pr(𝛽) ≥ 0

=⇒ 2(E[𝑋𝑌] − E[𝑋]E[𝑌]) ≥ 0

Now assume for the sake of induction that the result is true for increasing random variables 𝑋 and𝑌 which are a function
of < 𝑘 edges, and consider random variables 𝑋 and 𝑌 which are functions of 𝑘 edges, ie:-

𝑋 = 𝑋(𝜔(1), 𝜔(2), . . . , 𝜔(𝑘)), 𝑌 = 𝑌(𝜔(1), 𝜔(2), . . . , 𝜔(𝑘))

𝑋,𝑌 : {0, 1}𝑘 ↦→ R

Then
E[𝑋𝑌] = E𝜔(1),𝜔(2),...,𝜔(𝑘−1)

[
E𝜔(𝑘)[𝑋𝑌|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)]

]
≥ E𝜔(1),𝜔(2),...,𝜔(𝑘−1)

[
E𝜔(𝑘)[𝑋|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)] · E𝜔(𝑘)[𝑌|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)]

]
where the inequality follows since 𝑋{𝜔(𝑖)}1≤𝑖≤𝑘−1 , 𝑌{𝜔(𝑖)}1≤𝑖≤𝑘−1 are increasing RVs of the single edge 𝜔(𝑘).
But note that E𝜔(𝑘)[𝑋|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)] is an increasing RV of {𝜔(𝑖)}1≤𝑖≤𝑘−1, and thus

E𝜔(1),𝜔(2),...,𝜔(𝑘−1)
[
E𝜔(𝑘)[𝑋|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)] · E𝜔(𝑘)[𝑌|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)]

]
≥ E𝜔(1),𝜔(2),...,𝜔(𝑘−1)

[
E𝜔(𝑘)[𝑋|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)]

]
· E𝜔(1),𝜔(2),...,𝜔(𝑘−1)

[
E𝜔(𝑘)[𝑌|𝜔(1), 𝜔(2), . . . , 𝜔(𝑘 − 1)]

]
= E[𝑋]E[𝑌]

Thus the theorem holds for increasing RVs of finitely many edges 𝑒 ∈ E. Now, since 𝑋 and 𝑌 have finite second moments,
𝑋𝑛 → 𝑋,𝑌𝑛 → 𝑌 as 𝑛 →∞. Also, it can be seen that

E [|𝑋𝑛𝑌𝑛 − 𝑋𝑌|] ≤ E [|(𝑋𝑛 − 𝑋)𝑌𝑛| + |(𝑌𝑛 − 𝑌)𝑋|]

≤
√
E [(𝑋𝑛 − 𝑋)2]E[𝑌2

𝑛 ] +
√
E [(𝑌𝑛 − 𝑌)2]E[𝑋2]

→ 0

as 𝑛 →∞. Thus E[𝑋𝑛𝑌𝑛] ≥ E[𝑋𝑛]E[𝑌𝑛] “passes” onto 𝑋 and 𝑌 as 𝑛 →∞, and hence the inequality holds. □

This result has many immediate corollaries, which we present below.
3the FKG inequality is named after its discoverers, Fortuin, Kasteleyn and Ginibre. It’s alternatively also known as the Harris-FKG inequality

7



Corollary 3.2.1. Let𝒜 and ℬ be two increasing events. Then

Pr(𝒜 ∩ ℬ) ≥ Pr(𝒜)Pr(ℬ)

Corollary 3.2.2 (Square-Root Trick). Let𝒜1 ,𝒜2 , . . . ,𝒜𝑛 be increasing events. Then

max
1≤𝑖≤𝑛

P𝑝(𝒜𝑖) ≥ 1 −
(
1 − P𝑝

(
𝑛⋃
𝑖=1
𝒜𝑖

)) 1
𝑛

Proof. Note that the FKG inequality holds for decreasing events too, where an event is defined to be decreasing if its
complement is increasing.
Thus

P𝑝

( ⋂
1≤𝑖≤𝑛

𝒜𝑖

)
≥

𝑛∏
𝑖=1

P𝑝

(
𝒜𝑖

)
≥

(
min

1≤𝑖≤𝑛
P𝑝(𝒜𝑖)

)𝑛
=

(
1 − max

1≤𝑖≤𝑛
P𝑝(𝒜𝑖)

)𝑛
and inequality follows. □

3.2 The BK Inequality
While the FKG inequality formalized our intuition that increasing events should be mutually positively correlated, the
BK inequality 4 formalizes the intuition that the probability of two events required to happen “disjointly” is lesser than
if no such conditions were imposed.
The following definitions will help formalize this intuition.

Definition 3. Let𝒜 be an event (not necessarily increasing). For a given 𝜔0 ∈ 𝐴, a subset 𝐼 = 𝐼𝒜(𝜔0) ⊂ E is said to be a witness
of𝒜 for 𝜔0 if for any 𝜔 ∈ Ω = 2E, we have

𝜔 ∩ 𝜔0 ⊇ 𝐼 =⇒ 𝜔 ∈ 𝒜
Note that an event𝒜 is increasing if and only if every 𝜔 ∈ 𝒜 is a self-witness.

We also define

Definition 4. Let𝒜 and ℬ be events (not necessarily increasing). We then define𝒜 ◦ℬ to be

𝒜 ◦ℬ := {𝜔 ∈ 𝒜 ∩ℬ : there exist disjoint witnesses 𝐼𝒜(𝜔), 𝐽ℬ(𝜔)}

Note that𝒜 ◦ℬ ⊆ 𝒜 ∩ℬ.

At the outset, we give some examples and clarifications to clear matters up. For example, if𝒜 and ℬ depend on disjoint
sets of edges, then 𝒜 ◦ ℬ = 𝒜 ∩ ℬ. Indeed, let 𝒜 be the event that 0 is connected to some 𝑥 ∈ 𝜕Λ5 using edges only
in Λ5, and let ℬ be the event that 𝑥 is connected to some 𝑦 ∈ Z𝑑 \ Λ5 using only edges outside Λ5

5. Then 𝒜 and ℬ
depend on a disjoint set of edges, and thus they are bound to happen “disjointly” if they ever happen together, and thus
𝒜 ◦ℬ =𝒜 ∩ℬ.
On the other hand, consider 𝑥 ∈ Z𝑑 \ {0}, and let 𝒜 be the event that there is an open path between 0 and 𝑥. Also let
ℬ = 𝒜. Then𝒜 ∩ℬ = 𝒜, but𝒜 ◦𝒜 is the event that there exist two disjoint paths between 0 and 𝑥, which is a proper
subset of𝒜 in general.
We can now state the BK inequality.

4which stands for van der Berg-Kesten
5an edge 𝑒 is defined to be outside a set 𝑆 if at least one of the endpoints of 𝑒 is not in 𝑆
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Theorem 3.3 (BK Inequality). If𝒜, ℬ are events dependent on only finitely many edges in E, then

Pr(𝒜 ◦ ℬ) ≤ Pr(𝒜)Pr(ℬ)

Proof. Suppose 𝒜 and ℬ together are dependent on atmost 𝑚 < ∞ edges. Enumerate those edges from 1 to 𝑚, ie:- let
[𝑚] := {1, 2, . . . , 𝑚} be the universe of all edges in this proof. We consequently also choose to restrict our probability
space (2E) to just 2[𝑚] � {0, 1}𝑚 =: Γ.
Now, the proof sketch is simple 6: Consider 𝜔 ∈ (𝒜∩ℬ)\(𝒜◦ℬ). Then∃𝑖 ∈ [𝑚] such that 𝑖 ∈ 𝜔, and 𝜔′ := 𝜔\{𝑖} ∉𝒜∩ℬ,
ie:- “deleting” the 𝑖th edge from 𝜔 destroys both 𝒜 and ℬ as properties 7. Now, “extend” our probability space Γ into
Γ′ � {0, 1}𝑚+1 such that Γ′ has an extra “copy” of the 𝑖th index, say 𝑖′, with a stipulation that while dealing with the
𝑖th indices of members of 𝒜, we’ll mean 𝑖, while dealing with the 𝑖th indices of members of ℬ, we’ll mean 𝑖′ 8. Thus,
𝜔’s which aren’t in 𝒜 ◦ ℬ, because they were “blocked" by the index 𝑖, can now potentially be included, and thus the
probability of𝒜 ◦ℬ in Γ′ is more than what it was in Γ.
Extending this argument to every index 𝑖, our new probability space becomes Γ × Γ, we get that

Pr
Γ
(𝒜 ◦ ℬ) ≤ Pr

Γ×Γ
(𝒜 ◦ ℬ) = Pr

Γ
(𝒜)Pr

Γ
(ℬ)

as desired. □

Corollary 3.3.1. If {𝒜𝑖}1≤𝑖≤𝑘 are events in Γ, then

Pr(𝒜1 ◦ 𝒜2 ◦ . . . ◦ 𝒜𝑘) ≤ Pr(𝒜1)Pr(𝒜2) . . . Pr(𝒜𝑘)

This result can be used to derive very important bounds. But before that, a definition.

Definition 5. Given two points 𝑥, 𝑦 ∈ Z𝑑, we denote the event “𝑥 is connected to 𝑦” by 𝑥 ←→ 𝑦. To denote the event that 𝑥
percolates to∞, ie:- the connected component containing 𝑥 is infinite, we use the notation 𝑥 ←→∞.
Given a set 𝑆 ⊂ Z𝑑, we denote 𝑥

𝑆←→ 𝑦 if there exists a path 𝜏 connecting 𝑥 and 𝑦 such that the endpoints of every edge in 𝜏, except
possibly 𝑥 and 𝑦, are in 𝑆.
Finally, for any two sets 𝐴, 𝐵 ⊂ Z𝑑, we also define

{𝐴←→ 𝐵} :=
⋃
𝑎∈𝐴

⋃
𝑏∈𝐵
{𝑎 ←→ 𝑏}

Lemma 3.4. Consider a finite set 𝑆 ⊂ Z𝑑 such that 0 ∈ 𝑆, and also consider a finite 𝑋 ⊂ Z𝑑 \ 𝑆. Then

P𝑝(0←→ 𝑋) ≤
∑
𝑦∈𝜕𝑆

P𝑝(0
𝑆←→ 𝑦)P𝑝(𝑦 ←→ 𝑋)

Proof. Let 𝑛 be any natural number. Consider the event ℰ𝑛 that 0 is connected to 𝑥 inside Λ𝑛 , ie:- ℰ𝑛 := 0
Λ𝑛←→ 𝑋. Let 𝜏

be a self-avoiding path inside Λ𝑛 connecting 0 and 𝑋, and let 𝑦 be the first vertex of 𝜕𝑆 on 𝜏. Note that such a 𝑦 always
exists since 𝜏 begins at 0 inside 𝑆, but ends up in 𝑋, outside 𝑆, and thus 𝜏 must cross the boundary of 𝑆 somewhere. Then
note that

{0 Λ𝑛←→ 𝑋} =
⋃
𝑦∈𝜕𝑆
{0 𝑆←→ 𝑦} ◦ {𝑦 Λ𝑛←→ 𝑋}

6it captures the essential ideas, but is not completely formal
7Had 𝜔 been in𝒜 ◦ℬ, then we’d have been able to put the 𝑖th edge into either𝒜 or ℬ, ie:- we’d have had 𝜔′ = 𝜔 \ {𝑖} ∈ (𝒜 \ ℬ) ⊔ (ℬ \𝒜)
8𝜔𝒜 ∈ 𝒜 ⊆ Γ are transported to Γ′ with their (𝑖′)th indices zero, while 𝜔ℬ ∈ ℬ are transported such that their 𝑖th indices become 0, and their (𝑖′)th

indices inherit whatever the 𝑖th index of 𝜔ℬ originally was. This is basically to separate the elements of𝒜 and ℬ into different probability spaces
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Indeed, every (self-avoiding) path in {0 Λ𝑛←→ 𝑋} has a “first vertex” of 𝜕𝑆 inside it, and similarly, if there are disjoint paths
between 0 and 𝑦 and then 𝑦 and 𝑋, there is a self-avoiding path between 0 and 𝑋 too.
Thus

P𝑝(0
Λ𝑛←→ 𝑋) ≤

∑
𝑦∈𝜕𝑆

P𝑝({0
𝑆←→ 𝑦} ◦ {𝑦 Λ𝑛←→ 𝑋})

Since all events here depend on only finitely many edges, we can use the BK inequality to get∑
𝑦∈𝜕𝑆

P𝑝({0
𝑆←→ 𝑦} ◦ {𝑦 Λ𝑛←→ 𝑋}) ≤

∑
𝑦∈𝜕𝑆

P𝑝({0
𝑆←→ 𝑦})P𝑝({𝑦

Λ𝑛←→ 𝑋})

Finally, letting 𝑛 →∞ yields our desired result. □

Corollary 3.4.1. Consider a finite set 𝑆 ⊂ Z𝑑 such that 0 ∈ 𝑆, and also consider 𝑥 ∈ Z𝑑 \ 𝑆. Then

P𝑝(0←→ 𝑥) ≤
∑
𝑦∈𝜕𝑆

P𝑝(0
𝑆←→ 𝑦)P𝑝(𝑦 ←→ 𝑥)

A quick definition before we get to an exciting result.

Definition 6. For a given set 𝑆 ⊂ Z𝑑 define

𝜑𝑝(𝑆) := 𝑝
∑

{𝑥,𝑦}∈△𝑆,𝑥∈𝑆
P𝑝(0

𝑆←→ 𝑥)

We set 𝜑𝑝(𝑆) = 0 if 0 ∉ 𝑆.

We can now finally state the crown jewel of this section, given below.

Theorem 3.5. For a given 𝑝 ∈ [0, 1], if there exists a finite set 𝑆 containing 0 such that 𝜑𝑝(𝑆) < 1, then there exists a constant
𝑐 = 𝑐(𝑝) > 0 such that for every 𝑛 ≥ 1 we have 𝜃𝑛(𝑝) ≤ exp(−𝑐𝑛).

Proof. Let 𝑛0 be an integer such that 𝑆 ⊂ Λ𝑛0−1. Then a proof similar to that of Lemma 3.4 gives us

𝜃𝑘𝑛0(𝑝) ≤ 𝑝
∑

{𝑥,𝑦}∈△𝑆,𝑥∈𝑆
P𝑝(0

𝑆←→ 𝑥)P𝑝(𝑦 ←→ 𝜕Λ𝑘𝑛0) ≤ 𝜑𝑝(𝑆)𝜃(𝑘−1)𝑛0(𝑝)

where P𝑝(𝑦 ←→ 𝜕Λ𝑘𝑛0) ≤ 𝜃(𝑘−1)𝑛0(𝑝) since 𝑦 is at a distance at least (𝑘 − 1)𝑛0 from 𝜕Λ𝑘𝑛0 . Thus

𝜃𝑘𝑛0(𝑝) ≤ 𝜑𝑝(𝑆)𝑘 =⇒ 𝜃𝑛(𝑝) ≤ 𝜑𝑝(𝑆)⌊𝑛/𝑛0⌋

thus showing exponential decay. □

4 The Margulis-Russo Formula
We now introduce the extremely useful Margulis-Russo formula. As with the BK inequality, we will only deal with
events dependent on finitely many edges in this section, and thus let [𝑚] := {1, 2, . . . , 𝑚} be the universe of edges for our
discussion below.
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Lemma 4.1. Let Γ := {0, 1}𝑚 be our probability space. For any boolean function f : Γ ↦→ {0, 1}, define

𝑓 (𝑝) := E[f(𝜔)]

for 𝑝 ∈ [0, 1]. Then

𝑓 ′(𝑝) :=
𝑑𝑓

𝑑𝑝
=

1
𝑝(1 − 𝑝)

𝑚∑
𝑖=1

E[f(𝜔)(𝜔(𝑖) − 𝑝)]

Proof. Define |𝜔| := ∑𝑚
𝑖=1 𝜔(𝑖). Then

𝑓 (𝑝) =
∑
𝜔∈Γ

f(𝜔)𝑝|𝜔|(1 − 𝑝)𝑚−|𝜔|

=⇒ 𝑑𝑓

𝑑𝑝
=

1
𝑝

∑
𝜔∈Γ

f(𝜔)|𝜔|𝑝|𝜔|(1 − 𝑝)𝑚−|𝜔| − 1
1 − 𝑝

∑
𝜔∈Γ

f(𝜔)(𝑚 − |𝜔|)𝑝|𝜔|(1 − 𝑝)𝑚−|𝜔|

=
1
𝑝
E[f(𝜔)|𝜔|] − 1

1 − 𝑝
E[f(𝜔)(𝑚 − |𝜔|)] = 1

𝑝(1 − 𝑝)

𝑚∑
𝑖=1

E[f(𝜔)(𝜔(𝑖) − 𝑝)]

□

We now introduce the very important notion of a pivotal edge.

Definition 7. Let𝒜 be an event on Γ, and let 𝑒 ∈ [𝑚] be an edge. We define

Piv𝑒(𝒜) := {𝜔 ∈ Γ : 𝜔 ∪ {𝑒} ∈ 𝒜, 𝜔 \ {𝑒} ∉𝒜}

ie:- given an edge 𝑒, 𝑒 is pivotal to𝒜 containing 𝜔, if 𝜔 lies in𝒜 if and only if the edge 𝑒 is included in it. In other words, if one
deletes 𝑒 from 𝜔, then the property of 𝜔 belonging to𝒜 is destroyed. Piv𝑒(𝒜) then, is the set of all pivotal edges of𝒜 w.r.t 𝑒.
Note that Piv𝑒(𝒜) is independent of whether 𝑒 is in 𝜔, ie:- independent of 𝜔(𝑒).

A few examples are in order:

1. Consider the event 𝒜 := {0 ←→ 𝜕Λ𝑛}, and consider an edge 𝑒. Then Piv𝑒(𝒜) is the set of all subgraphs 𝜔 such
that 0 and 𝜕Λ𝑛 are connected in 𝜔′ := 𝜔 ∪ {𝑒}, and 𝑒 is a bridge edge in 𝜔′, ie:- removing 𝑒 from 𝜔′ increases the
number of connected components of the graph, and 0 and the vertices of 𝜕Λ𝑛 lie in different connected components
of 𝜔′ \ {𝑒}.

2. On similar lines as the example above, consider 𝑥 ∈ Z𝑑 \ {0}, and let𝒜 := {0 ←→ 𝑥}, and let 𝑒 be an edge. Then
note that Piv𝑒(𝒜) ∩ (𝒜 ◦𝒜) = ∅. Indeed, since𝒜 ◦𝒜 contains only those 𝜔 for which there are two disjoint paths
between 0 and 𝑥, disconnecting a single edge will not disconnect 0 and 𝑥, and thus 𝑒 won’t be a pivotal edge.

With this, we now state the Margulis-Russo formula.

Theorem 4.2. Let𝒜 be an increasing event that depends on finitely many edges, let f := 1𝒜 be the characteristic function of𝒜, and
let 𝑓 (𝑝) be defined as in Lemma 4.1. Then

𝑓 ′(𝑝) =
∑
𝑒∈[𝑚]

P𝑝(Piv𝑒(𝒜)) =
∑
𝑒∈[𝑚]

P𝑝(𝑒 is pivotal for𝒜)
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Proof. Note that by Lemma 4.1, we’ll be done if we can show that

E[f(𝜔)(𝜔(𝑒) − 𝑝)] = 𝑝(1 − 𝑝)P𝑝(Piv𝑒(𝒜))

Now,
E[f(𝜔)(𝜔(𝑒) − 𝑝)1Piv𝑒 (𝒜)] = E[1𝒜(𝜔(𝑒) − 𝑝)1Piv𝑒 (𝒜)] = E[1𝒜\Piv𝑒 (𝒜)(𝜔(𝑒) − 𝑝)]

But if 𝜔 ∈ 𝒜 \ Piv𝑒(𝒜), then

1. 𝜔 ∈ 𝒜 \ Piv𝑒(𝒜) =⇒ 𝜔 ∈ 𝒜 =⇒ 𝜔 ∪ {𝑒} ∈ 𝒜, since𝒜 is an increasing event.

2. 𝜔 ∈ 𝒜 \Piv𝑒(𝒜) =⇒ 𝜔 ∉ Piv𝑒(𝒜), which means that 𝑒 isn’t pivotal for 𝜔, implying, along with the first point, that
𝜔 \ {𝑒} ∈ 𝒜.

3. The first and second points together imply that 𝜔 belonging to𝒜 \ Piv𝑒(𝒜) is independent of the status of 𝜔(𝑒).

Consequently,
E[1𝒜\Piv𝑒 (𝒜)(𝜔(𝑒) − 𝑝)] = E[1𝒜\Piv𝑒 (𝒜)]E[(𝜔(𝑒) − 𝑝)] = E[1𝒜\Piv𝑒 (𝒜)] · 0 = 0

Thus
E[f(𝜔)(𝜔(𝑒) − 𝑝)] = E[f(𝜔)(𝜔(𝑒) − 𝑝)1Piv𝑒 (𝒜)] = E[1𝒜∩Piv𝑒 (𝒜)(𝜔(𝑒) − 𝑝)]

Now, consider some 𝜔 ∈ 𝒜 ∩ Piv𝑒(𝒜). Since 𝜔 ∈ Piv𝑒(𝒜), 𝜔 \ {𝑒} ∉𝒜. But we also have 𝜔 ∈ 𝒜. Consequently, we must
have 𝑒 ∈ 𝜔, ie:- 𝜔(𝑒) = 1. Thus,𝒜 ∩ Piv𝑒(𝒜) = Piv𝑒(𝒜) ∩ {𝜔(𝑒) = 1}. Then

E[1𝒜∩Piv𝑒 (𝒜)(𝜔(𝑒) − 𝑝)] = E[1Piv𝑒 (𝒜)∩{𝜔(𝑒)=1}(𝜔(𝑒) − 𝑝)] = (1 − 𝑝)E[1Piv𝑒 (𝒜)∩{𝜔(𝑒)=1}]

= (1 − 𝑝)P𝑝(Piv𝑒(𝒜) ∩ {𝜔(𝑒) = 1}) = (1 − 𝑝)P𝑝(Piv𝑒(𝒜))P𝑝(𝜔(𝑒) = 1) = 𝑝(1 − 𝑝)P𝑝(Piv𝑒(𝒜))
where the second last equality follows because Piv𝑒(𝒜) and {𝜔(𝑒) = 1} are independent events. □

We can now prove a useful lemma.

Lemma 4.3. Fix a 𝑛 ≥ 1. Define the set 𝒮𝑛 to be:

𝒮𝑛 := {𝑠 ∈ Λ𝑛 : 𝑠 ↚→ 𝜕Λ𝑛}

Then for any 𝑝 ∈ (0, 1) we have

𝜃′𝑛(𝑝) :=
𝑑𝜃𝑛(𝑝)
𝑑𝑝

=
1

𝑝(1 − 𝑝)E[𝜑𝑝(𝒮𝑛)]

where 𝜃𝑛(𝑝) and 𝜑𝑝(·) are as they were defined in Definition 2 and 𝐷𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 6, respectively.

Proof. Let 𝐸𝑛 be the set of edges between vertices in Λ𝑛 . Then by the Margulis-Russo formula

𝜃′𝑛(𝑝) =
∑
𝑒∈𝐸𝑛

P𝑝(𝑒 is pivotal for 0←→ 𝜕Λ𝑛)

=
1

1 − 𝑝

∑
𝑒∈𝐸𝑛

P𝑝(𝑒 is pivotal for 0←→ 𝜕Λ𝑛 and 𝜔(𝑒) = 0)

where the equality in the second line follows since the status of 𝜔(𝑒) is independent of 𝜔 belonging to Piv𝑒(𝒜).
Now, since 𝑒 = {𝑥, 𝑦} is pivotal for 0←→ 𝜕Λ𝑛 , it is a bridge edge for 𝜔. Thus, deleting 𝑒 from 𝜔 increases the number
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of connected components of 𝜔, and the component (let’s call it 𝑆) containing 0, is not connected to 𝜕Λ𝑛 , and thus 𝑆 is a
valid candidate for 𝒮𝑛

9. Moreover, note also that 𝑥 ∈ 𝑆, and 𝑦 ∉ 𝑆. Thus the above expression is equal to

=
1

1 − 𝑝

∑
𝑆⊂Λ𝑛 ,{𝑥,𝑦}∈△𝑆

P𝑝(0
𝑆←→ 𝑥,𝒮𝑛 = 𝑆)

Now note that the event {0 𝑆←→ 𝑥} depends on edges inside 𝑆, while the event {𝒮𝑛 = 𝑆} depends on edges outside 𝑆 10.
Consequently, they’re independent events, and the above expression equals

=
1

1 − 𝑝

∑
𝑆⊂Λ𝑛 ,{𝑥,𝑦}∈△𝑆

P𝑝(0
𝑆←→ 𝑥)P𝑝(𝒮𝑛 = 𝑆)

=
1

1 − 𝑝

∑
𝑆⊂Λ𝑛

©­«
∑

{𝑥,𝑦}∈△𝑆
P𝑝(0

𝑆←→ 𝑥)ª®¬P𝑝(𝒮𝑛 = 𝑆)

=
1

1 − 𝑝
E

[
1
𝑝
𝜑𝑝(𝒮𝑛)

]
as desired. □

5 Behavior in non-critical Régimes
In this section, we shall investigate the behavior of various macroscopic quantities under 2 “régimes”: When our parameter
𝑝 is lesser than, and greater than the critical probability 𝑝𝑐 .

5.1 Sub-critical Régime (𝑝 < 𝑝𝑐)
We shall begin right away with one of the most important results of this section.

Theorem 5.1 (Exponential Decay of the Diameter). Fix a dimension 𝑑 ≥ 2. Then for every 𝑝 < 𝑝𝑐 , there exists a constant
𝑐1 = 𝑐(𝑝) > 0 such that for every 𝑛 ≥ 1, we have

𝜃𝑛(𝑝) = P𝑝(0←→ 𝜕Λ𝑛) ≤ exp(−𝑐1𝑛)

There also exists a constant 𝑐2 > 0 such that for all 𝑝 ≥ 𝑝𝑐 , we have 𝜃(𝑝) ≥ 𝑐2(𝑝 − 𝑝𝑐).
Proof. Define

𝑝𝑐 := sup{𝑝 ∈ [0, 1] : ∃ finite set 𝑆 ∋ 0 such that 𝜑𝑝(𝑆) < 1}
We claim that 𝑝𝑐 = 𝑝𝑐 : Indeed, if 𝑝 < 𝑝𝑐 , then 𝜃𝑛(𝑝) decays exponentially as a function of 𝑛 by Theorem 3.5, and
consequently 𝜃(𝑝) = 0, implying 𝑝 < 𝑝𝑐 , which further implies that 𝑝𝑐 ≤ 𝑝𝑐 .
Conversely, fix an arbitrary 𝑝 ∈ (𝑝𝑐 , 1]. Then for every finite set 𝑆 ∋ 0, we have 𝜑𝑝(𝑆) ≥ 1. Thus by Lemma 4.3 we have

𝜃′𝑛(𝑝) =
1

𝑝(1 − 𝑝)E[𝜑𝑝(𝒮𝑛)]

9conversely, every 𝒮𝑛 containing 0 and not connected to 𝜕Λ𝑛 can be a ‘𝑆’ of some 𝜔
10since 𝒮𝑛 = 𝑆, edges outside 𝑆 must conspire to prevent 𝒮𝑛 from being connected to 𝜕Λ𝑛
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But note that
E[𝜑𝑝(𝒮𝑛)] =

∑
𝑆⊂Λ𝑛\𝜕Λ𝑛

𝜑𝑝(𝑆)P𝑝(𝒮𝑛 = 𝑆) ≥
∑

𝑆⊂Λ𝑛\𝜕Λ𝑛

𝑆∋0

𝜑𝑝(𝑆)P𝑝(𝒮𝑛 = 𝑆)

≥
∑

𝑆⊂Λ𝑛\𝜕Λ𝑛

𝑆∋0

P𝑝(𝒮𝑛 = 𝑆) ≥ P𝑝(𝒮𝑛 ∋ 0) = 1 − 𝜃𝑛(𝑝)

Thus

𝜃′𝑛(𝑝) ≥
1 − 𝜃𝑛(𝑝)
𝑝(1 − 𝑝) =⇒

[
log

(
1

1 − 𝜃𝑛

)] ′
≥

[
log

(
𝑝

1 − 𝑝

)] ′
Integrating the inequality between 𝑝𝑐 and 𝑝 yields

𝜃𝑛(𝑝) ≥
𝑝 − 𝑝𝑐

𝑝(1 − 𝑝𝑐)
=⇒ 𝜃(𝑝) ≥ 𝑝 − 𝑝𝑐

𝑝(1 − 𝑝𝑐)

Consequently, since 𝑝 > 𝑝𝑐 , 𝜃(𝑝) > 0 =⇒ 𝑝 > 𝑝𝑐 . Since 𝑝 was arbitrary, we have 𝑝𝑐 ≥ 𝑝𝑐 =⇒ 𝑝𝑐 = 𝑝𝑐 .
Consequently, by Theorem 3.5 we have 𝜃𝑛(𝑝) ≤ exp(−𝑐1𝑛). We also have, by the derivation above, that for 𝑝 > 𝑝𝑐 = 𝑝𝑐 ,
𝜃(𝑝) ≥ 𝑝−𝑝𝑐

𝑝(1−𝑝𝑐 ) ≥
𝑝−𝑝𝑐
1−𝑝𝑐 , and thus the second assertion of our statement is also proved, with 𝑐2 = 1

1−𝑝𝑐 . □

Corollary 5.1.1. For every 𝑝 < 𝑝𝑐 , there exists a constant 𝑐𝑝 > 0 such that the probability that there exists a cluster of radius larger
than 𝑐𝑝 log 𝑛 in the box of size Λ𝑛 tends to 0 as 𝑛 tends to infinity.

Corollary 5.1.2. If 𝑝 < 𝑝𝑐 , then 𝜒(𝑝) < ∞, ie:- the expected size of a cluster is finite in the sub-critical régime. This settles a question
we had raised in Definition 1.

Proof. Set 𝑀 := max{𝑛 : 0 ←→ 𝜕Λ𝑛 happens}. Since 𝑝 < 𝑝𝑐 , P𝑝(𝑀 < ∞) = 1. Also, let 𝐶 be the connected component
containing 0. Then

𝜒(𝑝) =
∞∑
𝑛=0

𝑛P𝑝(|𝐶| = 𝑛) =
∞∑
𝑘=0

P𝑝(𝑀 = 𝑘)
∞∑
𝑛=0

𝑛P𝑝(|𝐶| = 𝑛 and 𝑀 = 𝑘)

≤
∞∑
𝑘=0

P𝑝(𝑀 = 𝑘)
∞∑
𝑛=0

𝑛
P𝑝(|𝐶| = 𝑛 and 𝑀 = 𝑘)

P𝑝(𝑀 = 𝑘) =

∞∑
𝑘=0

P𝑝(𝑀 = 𝑘)E
[
|𝐶|

��𝑀 = 𝑘
]

≤
∞∑
𝑘=0

P𝑝(𝑀 = 𝑘)|𝐵𝑘 | ≤
∞∑
𝑘=0

exp(−𝑐𝑘)𝒪(𝑘𝑑) < ∞

where 𝐵𝑘 is the set of all points whose ℓ1-distance from 0 is at most 𝑘. □

Corollary 5.1.3 (Sub-exponential decay of volume). Fix a 𝑝 < 𝑝𝑐 . Let 𝐶 be the connected component containing 0. Then there
exists a constant 𝑐𝑝 > 0 such that P𝑝(|𝐶| > 𝑛) ≤ exp(−𝑐𝑝𝑛1/𝑑).

Proof. Suppose |𝐶| > 𝑛. Then it’s not too difficult to see that 𝐶 ∩ 𝜕𝐵𝑘 ≠ ∅ for some 𝑘 = Θ(𝑛1/𝑑). Then

P𝑝(|𝐶| > 𝑛) ≤ 𝜃𝑘(𝑝) = exp(−Θ(𝑛1/𝑑))

as desired. □
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5.2 Super-critical Régime (𝑝 > 𝑝𝑐)
From our discussions so far, we already know quite a few things about percolation in the super-critical régime. For
example,

1. The probability of the existence of an infinite cluster is non-zero.

2. The expected size of the cluster containing 0 is infinite.

3. 𝜃(𝑝) grows super-linearly in 𝑝: Indeed, 𝜃(𝑝) ≥ 𝑝−𝑝𝑐
𝑝(1−𝑝𝑐 ) for 𝑝 > 𝑝𝑐 .

Since the super-critical phase is when infinite clusters exist in our lattice, the natural question to ask is: How many infinite
clusters do we have? Answering this will require us to use some foundational results of probability theory, such as
Kolmogorov’s 0 − 1 law. But before that, a short observation on our probability space (2E ,ℱ , P𝑝): Note that the measure
P𝑝 is translation invariant: In other words, let 𝒜 be any event in ℱ , and let 𝜏𝑥(𝒜) be a translation of 𝒜, ie:- for every
𝜔 ∈ 𝒜, translate 𝜔 by 𝑥 to get the corresponding element of 𝜏𝑥(𝒜). Then observe that P𝑝(𝒜) = P𝑝(𝜏𝑥(𝒜)).
One can also show that P𝑝 is ergodic, ie:- every translation invariant event 11 has probability 0 or 1. Consequently, we
have

Lemma 5.2. For 𝑝 > 𝑝𝑐 , there exists an infinite cluster almost surely, ie:- with probability 1.

Proof. Note that the existence of an infinite cluster is a translation invariant event. Since the probability of the existence
of an infinite cluster is > 0 for 𝑝 > 𝑝𝑐 , it can only be 1. □

Lemma 5.3. Fix 𝑝 > 𝑝𝑐 . Let 𝑋 be the random variable denoting the number of infinite clusters. Then 𝑋 = 1 or∞ almost surely.

Proof. Note that ℰ𝑘 := {𝑋 = 𝑘}, where 𝑘 ∈ N∪ {∞}, is a translation invariant event, and thus has probability 0 or 1. Thus
there exists a specific 𝑘 = 𝑘0 for which P𝑝(ℰ𝑘0) = 1, and for all other 𝑘 ≠ 𝑘0, we have P𝑝(ℰ𝑘) = 0.
Thus we must show that 𝑘0 = 1 or ∞. Assume for the sake of contradiction that 𝑘0 is some finite integer greater than 1.
Thus, P𝑝(ℰ1) = 0. Now, consider the sequence of events ℒ1 ⊆ ℒ2 ⊆ . . ., where ℒ𝑖 denotes the event that Λ𝑖 intersects all
𝑘0 clusters. Note that P𝑝(ℒ𝑖) is an increasing sequence, and also note that since

⋃
𝑖∈Nℒ𝑖 = ℰ𝑘0 , we have lim𝑖→∞ P𝑝(ℒ𝑖) = 1.

Consequently, there exists 𝑖 = 𝑖0 such that P𝑝(ℒ𝑖0) > 1
2P𝑝(ℰ𝑘0) = 1

2 .
Now, let ℰ be the event that all edges in Λ𝑖0 are open. Then note that ℰ and ℒ𝑖0 are independent: Indeed, changing the
status of edges inside Λ𝑖0 may change how deep an infinite cluster “penetrated it”, but it won’t change the fact that the
infinite cluster intersected it at the first place, because that is dependent on edges outside Λ𝑖0 . Consequently,

P𝑝(ℰ ∩ ℒ𝑖0) = P𝑝(ℰ)P𝑝(ℒ𝑖0) >
𝑝|𝐸𝑛 |

2 > 0

But note that since all clusters intersected Λ𝑖0 in the event ℒ𝑖0 , in the event ℰ ∩ ℒ𝑖0 we have that all clusters amalgamate
into one since all edges in our cube are opened, implying that P𝑝(ℰ1) > 0, which is a contradiction. □

We now show that 𝑋 = 1 almost surely, ie:- almost surely we don’t have infinitely many infinite clusters. However, to do
that, we need to define the notion of a trifurcation point, also known as an encounter point in some sources. To motivate the
definition, we first state an elementary lemma.

Lemma 5.4. Let 𝑇 be a tree. Let 𝑘𝑖 be the number of vertices of 𝑇 with degree 𝑖. Then 𝑘3 + 2 ≤ 𝑘1. A fortiori, we have 𝑘3 < 𝑘1.
11ie:- events𝒜 such that𝒜 = 𝜏𝑥(𝒜) for every 𝑥 ∈ Z𝑑
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Proof. Note that
∑𝑛−1

𝑖=1 𝑖𝑘𝑖 is the sum of degrees of all vertices of 𝑇. But we know that quantity to be 2(𝑛 − 1) since a tree
has 𝑛 − 1 edges. Thus

𝑛∑
𝑖=1
(𝑖 − 2)𝑘𝑖 = 2(𝑛 − 1) − 2

𝑛−1∑
𝑖=1

𝑘𝑖 = 2(𝑛 − 1) − 2𝑛 = −2

But we also have
𝑛∑
𝑖=1
(𝑖 − 2)𝑘𝑖 = −𝑘1 + 𝑘3 + 2𝑘4 + . . . ≥ 𝑘3 − 𝑘1

□

Note:- The above result immediately implies 𝑘3 < 𝑘1 for forests too.
As promised, we now define trifurcation points.

Definition 8. Let 𝐶 be a (connected) infinite cluster. A point 𝑥 ∈ 𝐶 is called a trifurcation point if 𝐶 \ {𝑥} has exactly 3 connected
components, all of them infinite. Note that the degree of a trifurcation point is exactly 3.

We now prove the most important part of our proof that 𝑋 ≠ ∞ almost surely.

Lemma 5.5. Let 𝑇 be the maximum number of trifurcation points contained in Λ𝑛 , under any configuration 𝜔 ∈ 2E. Then
𝑇 < |𝜕Λ𝑛|.

Proof. Let 𝜔 be any configuration. Consider the graph 𝜔0 := 𝜔∩Λ𝑛 . Delete the minimum number of edges possible from
𝜔0 so that it becomes a forest. Call this forest 𝜔′. Enumerate the edges in 𝜔′ as {𝑒1 , 𝑒2 , . . . , 𝑒𝑠}. Now, run the iteration
below, where our iterating index 𝑖 starts from 1 and goes till 𝑠:

1. Let our forest at this stage be 𝜔′
𝑖
. We set 𝜔′1 = 𝜔′.

2. If 𝜔′
𝑖
\ {𝑒𝑖} contains any connected component 𝛼 such that 𝛼 ∩ 𝜕Λ𝑛 = ∅, then delete 𝑒𝑖 and 𝛼 from 𝜔′

𝑖
. Otherwise,

leave 𝜔′
𝑖
as it is.

Now, notice that all the leaves (ie:- vertices of degree 1) of the forest left after this iteration lie in 𝜕Λ𝑛 , and also notice that
any trifurcation points inside Λ𝑛 must be vertices of this forest. Since trifurcation points have a degree of 3, they must be
lesser in number than the leaves, which can be at most |𝜕Λ𝑛|, as desired. □

Theorem 5.6. Let 𝑝 > 𝑝𝑐 . Then we have a unique infinite cluster almost surely.

Proof. By the preceding discussion, the only thing left to prove is that the probability of having infinitely many infinite
clusters is 0.
To that end, let 𝒯0 be the event that 0 is a trifurcation point. Let 𝑘 = 𝑘(𝑑) be a large enough integer such that if 𝑘 infinite
clusters intersect Λ𝑛 , then we have 3 points 𝑥, 𝑦, 𝑧 ∈ 𝜕Λ𝑛 such that 𝑥, 𝑦, 𝑧 are far away enough from each other to ensure
that there exist 3 edge-disjoint paths from 0 to them. By an argument similar to that given in the proof of Lemma 5.3,
we can find a large enough 𝑛 such that at least 𝑘 infinite clusters intersect Λ𝑛 with some positive probability 𝛿 > 0, and
consequently the probability of the aforementioned 𝑥, 𝑦, 𝑧 existing is also positive.
Now, choose 3 edge-disjoint paths 𝜋𝑥 ,𝜋𝑦 ,𝜋𝑧 between 0 and 𝑥, 𝑦, 𝑧 respectively, and change the status of edges within Λ𝑛

so that only the edges on 𝜋𝑥 ,𝜋𝑦 ,𝜋𝑧 remain open, and all other edges are closed. Then

P𝑝(𝒯0) ≥ 𝛿 ·
(
𝑝(1 − 𝑝)

) |𝐸𝑛 |
= 𝜂 > 0

16



Indeed, the inequality follows because the event that “more than 𝑘 infinite clusters intersect Λ𝑛", and independently 12,
“exactly a certain configuration of edges are open in Λ𝑛", is a subset of the event 𝒯0.
Now, note that by translational invariance, the probability that some 𝑥 ∈ Λ𝑛 is a trifurcation point is equal to the probability
that 0 is a trifurcation point. Consequently, if 𝑇 is a random variable denoting the number of trifurcation points in Λ𝑛 ,
then we have

E[𝑇] = P𝑝(𝒯0) · |Λ𝑛| = 𝜂|Λ𝑛|
But on the other hand we also have 𝑇 ≤ |𝜕Λ𝑛|, and consequently, we have that for all 𝑛 large enough, 𝜂|Λ𝑛| < |𝜕Λ𝑛|,
which is a contradiction since lim𝑛→∞

|𝜕Λ𝑛 |
|Λ𝑛 | = 0. □

6 Behavior at Criticality and the Computation of 𝑝𝑐
Unlike our study of behavior under non-critical régimes, behavior under criticality is much harder to determine. However,
we can still say a few things.
This section will also mark the end of our exciting journey through Bernoulli percolation: We will finally determine the
exact value of the critical probability for dimension 𝑑 = 2. So let’s begin!

Lemma 6.1. For any dimension 𝑑 ≥ 2, 𝜒(𝑝𝑐) = ∞, ie:- the expected size of the cluster containing the origin is infinite at the critical
probability.

Proof. Consider any finite set 𝑆 ⊂ Z𝑑 such that 0 ∈ 𝑆: Then 𝜑𝑝(𝑆) is a (non-trivial) polynomial in 𝑝, and thus is a continuous
function, from (0, 1) to (0,∞). Thus, by the topological definition of continuity, we have that 𝜑−1

𝑝 ((0, 1))must be an open
set 𝐼 ⊂ (0, 1). Also, observe from the proof of Theorem 5.1 that for 𝑝 > 𝑝𝑐 , we have 𝜑𝑝(𝑆) ≥ 1. Thus 𝐼 ⊂ (0, 𝑝𝑐]. But since
𝐼 is open, it can not contain 𝑝𝑐 without also containing some 𝑝 > 𝑝𝑐 , and consequently, 𝐼 can’t contain 𝑝𝑐 , implying that
𝜑𝑝𝑐 (𝑆) ≥ 1.
In particular, 𝜑𝑝𝑐 (Λ𝑛) ≥ 1 for every 𝑛 ≥ 1. Now, note that

𝜒(𝑝𝑐) = E[|𝐶|] =
∑
𝑥∈Z𝑑

P𝑝𝑐 (0←→ 𝑥) ≥ 1
𝑑𝑝𝑐

∑
𝑛≥1

𝜑𝑝𝑐 (Λ𝑛) = ∞

□

We now arrive at our moment of truth: We can finally calculate 𝑝𝑐(2). But before we do that, a word about higher
dimensions: Calculating the critical probability for dimensions greater than 2 is an extremely difficult task. For large
enough dimensions, however, we do know that 𝑝𝑐(𝑑) ∼ 1

𝑑 , which is an approximation we obtain from Bethe lattices.
However, for intermediate dimensions of 3, 4, 5, it is much harder to make an accurate comment.
While calculating the value of 𝑝𝑐(2), ie:- the critical probability for 2 dimensions, we shall also show that 𝜃(𝑝𝑐(2), 2) = 0:
ie:- even though the expected size of the cluster containing the origin is infinite at 𝑝𝑐 , that cluster is almost surely not
infinite! Since 𝜃 is 0 at the critical probability, we can then also show that 𝜃(·, 2) is a continuous function on [0, 1]: Indeed,
note that the continuity of 𝜃 on [0, 𝑝𝑐) is obvious. Since 𝜃 was right continuous everywhere, combined with the fact that
𝜃(𝑝𝑐(2), 2) = 0, we get that 𝜃(·, 2) is continuous at 𝑝𝑐(2) too. Showing the continuity of 𝜃(·, 2) on (𝑝𝑐(2), 1] requires the fact
that the infinite cluster in our lattice is almost surely unique. However, the argument is nuanced and we shall not present
it here. Since the value of 𝜃(𝑝𝑐(𝑑), 𝑑) is not known 13, for dimensions 𝑑 ≥ 3, the strongest statement we can make, as of
today, is that 𝜃 is continuous on [0, 1] \ {𝑝𝑐}, and 𝜃 will be continuous at 𝑝𝑐 if and only if it vanishes on 𝑝𝑐 .
So without any further ado, let’s get to it.

12the independence argument is the same as in Lemma 5.3
13but suspected to be 0
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Lemma 6.2. Let us fix our dimension to 𝑑 = 2.
Let ℋ𝑛 be the event that there exists an open path going from the left vertical edge to the right vertical edge of the rectangle
𝑅𝑛 := [0, 𝑛] × [0, 𝑛 − 1]. Also, fix a 𝑝 < 𝑝𝑐 . Then

lim
𝑛→∞

P𝑝(ℋ𝑛) = 0

Proof. By Theorem 5.1, there exists a constant 𝑐 > 0 such that

P𝑝(0←→ 𝜕Λ𝑛) ≤ 𝑒−𝑐𝑛

But then

P𝑝(ℋ𝑛) ≤
𝑛−1∑
𝑖=0

P𝑝((0, 𝑖) is connected to the right vertical edge of 𝑅𝑛)

≤ 𝑛P𝑝(0←→ 𝜕Λ𝑛) ≤ 𝑛𝑒−𝑐𝑛 → 0

as 𝑛 →∞. □

Lemma 6.3. Letℋ𝑛 be as defined above. Then P1/2(ℋ𝑛) = 1/2 for all 𝑛 ∈ N.

Proof. Construct the dual lattice, as in the Peierls argument. Then there is a left-right path in 𝑅𝑛 if and only if the event
ℬ𝑛 happens, where ℬ𝑛 is the event that there is no bottom to top path in 𝑅∗𝑛 . Consequently, for any 𝑝 ∈ [0, 1], we have
P𝑝(ℋ𝑛) = 1 − P𝑝(ℬ𝑛). But for 𝑝 = 1/2, by symmetry, we have that P1/2(ℋ𝑛) = P1/2(ℬ𝑛), and consequently P1/2(ℋ𝑛) = 1/2
for all 𝑛 ∈ N. □

Lemma 6.4. Fix a 𝑝 such that 𝜃(𝑝) > 0 14. Letℋ𝑛 be as defined above. Then

lim
𝑛→∞

P𝑝(ℋ𝑛) = 1

Proof. Fix integers 𝑛 ≫ 𝑘 ≫ 1. Since a path from Λ𝑘 to∞ intersects 𝜕Λ𝑛 in one of its four sides (left, right, bottom, top),
we have, by Corollary 3.2.2,

P𝑝(Λ𝑘 is connected to the left boundary of Λ𝑛) ≥ 1 − P𝑝(Λ𝑘 ↚→ ∞)1/4

Set 𝑛′ := ⌊(𝑛 − 1)/2⌋, and let𝒜𝑛 be the event that there exists a path from Λ𝑘 + (𝑛′, 𝑛′) to the left side of 𝜕Λ𝑛 , and there
also exists a path from Λ𝑘 + (𝑛′ + 2, 𝑛′) to the right side of 𝜕Λ𝑛 . By Corollary 3.2.2, we then have

P𝑝(𝒜𝑛) ≥ 1 − 2P𝑝(Λ𝑘 ↚→ ∞)1/4

Now, note that the event𝒜𝑛 \ ℋ𝑛 is contained in the event𝒜, that there are two different clusters, each intersecting Λ𝑘 ,
but not each other, and𝒜 further is included in the event that there are two different clusters, which has zero probability.
Consequently,

lim inf
𝑛→∞

P𝑝(ℋ𝑛) = lim inf
𝑛→∞

P𝑝(𝒜𝑛) ≥ 1 − 2P𝑝(Λ𝑘 ↚→ ∞)1/4

Since there exists an infinite cluster, the right-hand side of the above inequality→ 1 when 𝑘 → ∞, and consequently,
lim𝑛→∞ P𝑝(ℋ𝑛) = 1. □

Corollary 6.4.1. 𝑝𝑐(2) = 1/2, ie:- the critical probability for 2 dimensions is 1/2.

Corollary 6.4.2. 𝜃(𝑝𝑐(2), 2) = 0, ie:- there is no percolation at criticality, in two dimensions.
14note how we didn’t instead require 𝑝 > 𝑝𝑐 , as one would expect from the previous lemmata. This will help us show later that 𝜃(𝑝𝑐 , 2) = 0
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