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This report is based on Steinberg’s book [Stell] on the Representation Theory of finite groups. We thank him for
making Representation Theory so accessible.

§1. Group Representations

Definition 1.1 (Representations). Let G be a group. A group homomorphism ¢ : G — GL(V) is called a represen-
tation of g, where V is a finite-dimensional vector space. We also define deg(y) := dim(V').

Remark. Throughout this report, unless otherwise stated, we will always be working with finite-dimensional repre-
sentations, i.e. we will always take V' to be finite-dimensional C-vector space.

For any g € G, we abbreviate ¢(g) as ¢,.

We want our notion of representations to be invariant under basis changes of our vector space. Motivated by this,
we define:

Definition 1.2 (Equivalence). Let V, W be vector spaces, and let 7' : V' = W be a vector space isomorphism. Two
representations ¢ : G — GL(V) and ¢ : G — GL(WV) are said to be equivalent if the following diagram commutes
for every g € G:
Vv
T lT
wg
W

W ——>

In other words, ¢, and 1, are similar linear transformations, since 1), = T, T~ ! forall g € G.
We now give a very important example of a representation:
Proposition 1. &,,, namely the symmetric group of n elements, has a degree n representation.

Proof. Ttis easy to see that ) : &,, — GL,(C) is a representation, where for any o € &,,, we define ¢; (¢;) := €,(;). M

Remark. Note that since 1), is a linear transformation of C", it is enough to specify v, on a basis of C". Indeed, for
any v = y ., v;e; € C", we now have ¢, (v) = > " | vi€s(;). Similarly, if a set S generates G, then it is enough to
specify 1, for s € S, to specify the whole representation. To summarize, it is enough to specify the action of the
generators of G on some basis of V' to specify a representation ¢ : G — GL(V).

The above proposition extends to any finite group G-
Proposition 2 (Regular Representation). A finite group G of n elements has a degree n representation.

Proof. We shall give an injective group homomorphism 7 : G — &,,. Composed with ¢ : &,, — GL,(C), we
obtain a representation ¢ o 7 : G +— GL,(C). Indeed, let ¢ : G — [n] be a bijection. Note that for any ¢ € G,
7y : G+ G, my(h) := ghis a group automorphism, and then we can define 7 as 7, := to ;071 u

Remark. The above representation is known as a regular representation of G.
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We now give some more definitions pertaining to representations:

Definition 1.3 (Invariant Subspaces). Let ¢ : G — GL(V) be a representation, and let W be a subspace of V. We
say that W is G-invariant (under ) if gw € W forall g € G,w € W.

Furthermore, note that if W is a G-invariant subspace, then ¢|y : G — GL(W) is also a representation. We call ¢ |y
a subrepresentation of .

Example. A few illustrations are as follows:
1. Note that for any representation ¢ : G — GL(V'), 0 and V are always G-invariant.

2. Consider the representation of G5 as in Proposition 1, and let W be the subspace of GL5(C) generated by
e1testestestes=[1 1 1 1 l]T. Note that for any o € &5,

Vo i de; | = i Aeg(i) = i Ae;
i=1 i=1 i=1

Thus W is G5-invariant.

We also define the direct sum of representations.

Definition 1.4 (Direct Sum of Representations). Given representations 1/(!) : G — GL(V;), ¥ : G+ GL(V3), we
define the direct sum of these representations to be:

P @ : G GL(V; ® Va)

where (1 @ @), (vy, v2) = (Y5 v1, YD v2). We also denote ¢ & - - - & ¥ as mab.
—_———
m times
In other words, if zb_f,l) is the matrix M7, and wf) is the matrix M, then (¢(1) @3 )g is the block matrix ]\gl ]\2 .
2
Furthermore, note that if V= W; & W5, then any representation ¢ : G — GL(V') decomposes as ¢ = ¢|w, & ¥|w,.

Since we eventually want to decompose all representations as a direct sum of simpler representations, we define
some necessary notions:

Definition 1.5 (Irreducible Representations). A representation ¢ : G — GL(V) is called irreducible if the only
G-invariant subspaces are 0 and V.

Example. A few illustrations are in order:

1. Consider the trivial representation ¢ : G — GL;(C) = C*, where ¢, = 1 for all g € G. It is easy to see that the
trivial representation is irreducible. Indeed, any degree 1 representation has to be irreducible.

2. Consider the dihedral group D,,, and recall that D,, = (r,s|r" = s* = 1,(rs)? = 1), where r represents an
anticlockwise rotation by 27 /n, and s represents a reflection about the z-axis. Consider the representation

¥ : Dy, — GL2(C), where
cos(2m/n) —sin(27/n) 0 1
sin(2w/n)  cos(2w/n) } 817 [1 0}
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1 is actually an irreducible representation: Indeed, assume for the sake of contradiction that 1 is not irre-
ducible. Then C? = W & U, where W, U are 1-dimensional D,,-invariant subspaces. Let W = (v) be generated
by v. Then note that v must be an eigenvector of both v, and 1),. However, .., ¢, don’t share any eigenvector,
and thus ¥ is irreducible.

3. For n > 2, the representation in Proposition 1 is not irreducible.

As hinted before, we shall seek to establish some analogies of representation theory with group theory and linear
algebra as follows:

Group Theory Linear Algebra Representation Theory
Subgroup Subspace G-invariant subspace
Simple group | One-dimensional Subspace | Irreducible Representation

Indeed, the analogy between vector spaces and representations is not too surprising in light of the fact that if ¢ :
0 — GL(V) is a representation, then v is the identity matrix, and consequently, 1o(V) = V, i.e. vector spaces can
be thought of as special cases of representations.

To strengthen the above analogies, we also make the following definitions:

Definition 1.6 (Completely Reducible). A representation ¢ is called completely reducible if there exist irreducible
representations W ™) such thaty = D @ - - @ (1),

Definition 1.7 (Decomposable). A representation ¢ : G — GL(V) is called decomposable if V' = V; & V5, where
Vi, Va are non-zero G-invariant subspaces. ¢ is called indecomposable if it is not decomposable.

It is important to note, yet not too difficult to see, that the aforementioned notions are identical for equivalent repre-
sentations, i.e.

Proposition 3. Let ¢, be two equivalent representations. Then ¢ is decomposable, irreducible, or completely
reducible if and only if ¢ is decomposable, irreducible, or completely reducible respectively.

Let U(V) be the group of unitary linear transformations of an inner product space V !, i.e. if U € U(V), then for any
two vectors vy, vy € V, (vy,v3) = (Uvy, Uvs).

Definition 1.8. A group homomorphism ¢ : G — U(V) — GL(V) is called a unitary representation.

Example. A few examples are in order:

1. Note that U (C) = {z € C: 2z = 1} = S'. Thus, for example, ¢ : R — S1,  + €™ is a unitary representation
of R.

2. In general, homomorphisms ¢ : G — S* are 1-dimensional unitary representations.

The reason we care about unitary representations is because they satisfy they are always irreducible or decompos-
able:

1V is a vector space equipped with an inner product, i.e. V is a Hilbert space



Representation Theory 5/ 34 Arpon Basu

Proposition 4. Let ¢ : G — U(V) be a unitary representation. Then ¢ is either irreducible or decomposable.

Proof. Suppose 1 is not irreducible. Then we must have a proper subspace W which is G-invariant. If we can show
that W+ is G-invariant, then we would be done, since V.= W @ W=. To that extent, let g € G,w € W,v € W be
arbitrary. Then

(thgv,w) = (v, hw) = (v, w)
Since ¢, : W +— W is a full-rank linear transformation, it is bijective, and consequently, there is a w’ € W such that
gw’ = w. Thus
(Ygv,w) = (v,w') =0
where the last equality follows from the fact that v € W+, w' € W. Since w was arbitrary, we get ;v € W+, as
desired. -

Finally, we prove that all representations of finite groups are equivalent to some unitary representation.

Theorem 1.1. Every finite-dimensional representation of a finite group G is equivalent to a unitary representation.

Proof. Let v : G — GL,,(C) be a representation. Consider the matrix:

1 .
B = @Z%@pg

geG

Note that B is a positive definite Hermitian matrix: Indeed, for any v € V,

* 1 P 1 2
v*Bu = Gl Zv Yahgv = €] Z||¢gv||

geG geG

The above expression is non-negative everywhere and is 0 only when 1,v = 0 for all g, which happens only when
v = 0 since 9,’s are invertible matrices.

Since B is a positive-definite Hermitian matrix, there exists a T' € GL,(C) such that B = T*T. Now, consider the
vector space isomorphism C" +— C” given by v — Tv. Note that ¢) will now be transformed to the equivalent
representation 79T 1. Thus, if we can show that T, 7! is unitary for all g € G, we’re done. To that end, note that
(T T=1)* = (T~ 1)*;T* = (T*)~'43T*, and thus

(T T™H) - (T T 1) = (T*) "Wy T T T = (T*) "y By T

Now, ) )
By = 1 D s nbnt, = @l > Vhgtng

heG heG

where the last equality follows from the fact that ¢ is a homomorphism. Now, for any g € G, h — hg is a group
automorphism. Thus >, c ; ¥ ,¥hg = > heq ¥ibn, and consequently,

(T, T - (T, T") = (1) ' BT = (T) ' T*TT " = I

Thus, ngT_l is unitary, as desired. [ |

Corollary 1.2. If ¢ is a representation of a finite group, then  is either irreducible or decomposable.
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Remark. Consider the following finite-dimensional representation:

¥ 7 GLy(C), 2 [(1) ﬂ

Clearly, the image of i doesn’t lie in Uy(C). Furthermore, note that when x # 0, v, is not diagonalizable: Conse-
quently, ¢ can’t be equivalent to a unitary representation, since unitary matrices are diagonalizable. Thus, infinite
groups can have representations that aren’t equivalent to any unitary representation. Furthermore, note that the
subspace generated by [1 0] " is a Z-invariant subspace, and thus 1) is not irreducible. At the same time, 9 is not
decomposable either: Indeed, if it were decomposable, then it would be a direct sum of two one-dimensional repre-
sentations. However, the direct sum of two one-dimensional representations would be a diagonal matrix, and thus
1) can’t be equivalent to it since 1), is not diagonalizable for x # 0.

We can finally prove the decomposition theorem we have been hinting at until now.

Theorem 1.3 (Maschke’s Theorem). Every representation of a finite group is completely reducible.

Proof. Let vy : G — GL,(C) be a representation. We induct on n.

If n = 1, ¢ is irreducible, so we have nothing to prove. Thus, assuming the statement is true for all n < k, we
want to prove it for n = k + 1. If ¢ is irreducible, we have nothing to prove. Otherwise, by Corollary 1.2, 1 is
decomposable, so C¥*! = V; @ V,, where dim (V1 ), dim(V2) < k, and V3, V» are G-invariant. By induction hypothesis,
wehave Vi =41 ¢ ---® A,,Vo = B1 & - & B, where A;, B; are G-invariant, and ¢| 4, ¢| B, are irreducible, for all

i €[r],j € [s]. Consequently,
=Pl e P vz

i€[r] JE[s]

is the desired decomposition of . |

Remark. Thus, if ¢ is the representation of a finite group, then

pM 0 .0
0 @ .. 0
0 0 (™)

where (V) is irreducible for all i € [m)].
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§2. Character Theory

Theorem 1.3 makes it clear that to study representations of finite groups, it is enough to study irreducible represen-
tations. To do that, we shall equip the space of irreducible representations with further structure, and motivated by
that, we define:

Definition 2.1 (Homomorphisms of Representations). Let /(") : G+ GL(V),¢® : G + GL(W) be two repre-
sentations. We say that a linear map 7' : V + W is a homomorphism from ¢(!) to (?) if the following diagram
commutes for every g € G:

w(l)
1% g

\%4
T J{T
1/)(2)
w2 W

Remark. If T is a bijective linear map, then 1)(*), 1)(2) are equivalent, i.e. isomorphic.

The set of all homomorphisms from ¢ to 1 is denoted as Home (¢, 1). Note that Home (¢, ¢) € Home(V, W).
Once we introduce homomorphisms, we immediately have kernels and images, and some useful interpretations of
those things.

Proposition 5. Let 7" : V +— W be a homomorphism of representations on a group G. Then ker(T’) is a G-invariant
subspace of V, while im(T") is a G-invariant subspace of W.

Proof. Let (M) : G + GL(V), and 4? : G + GL(W) be the aforementioned representations. Let v € ker(T) C V.
Then T'(v) = 0, and thus 1/)§2)(T(v)) = 0. But 1/)_,52)(T(v)) = T(zﬂél)(v)), implying that wél)(v) € ker(T'), thus showing
that ker(7") is a G-invariant subspace.

Similarly, let w € im(7"), and let v € V be such that Tv = w. Then:

Y@ (w) = $(T(v)) = T (v)) € im(T)
Thus im(7') is a G-invariant subspace of . -

Toward our goal of characterizing all representations, we equip Homg (¢, p) with some additional structure, namely,
that of a vector space.

Proposition 6. Let ¢ : G — GL(V), p : G — GL(W) be representations.
Then Home (¢, p) is a subspace of Home (V, W).

Proof. LetTy,T; € Homg (i, p),c1,¢2 € C,v € V. Then
(11 + e2T3) 0 g (v) = e1T1pg(v) + c2Taipg(v) = pg(c1T1v) + pg(c2Tov) = pg((c1Th + c2T2)v)
[ |

We are now in a position to state a fundamental observation due to Schur, which severely restricts homomorphisms
between irreducible representations.
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Lemma 2.1 (Schur’s Lemma). Let ¢, p be irreducible representations of G. Let ' € Homg(p, p). Then either T is
invertible, or 7' = 0. Consequently,

1. If ¢ ¢ p, then Homg (i, p) = 0.
2. Homg(p,p) = {\: X € C}.

3. If p ~ p, then dim Homg (¢, p) = 1.

Proof. Since ker(T') is an G-invariant subspace of the irreducible representation ¢, ker(7') = 0 or V. If ker(T') =V,

then T = 0. If ker(T) = 0, then T is injective. Now, we also have that im(T) = 0,W. However, since V is not

singleton, im(T") # 0. Thus im(T") = W, i.e. T is bijective, i.e. T is invertible.

Clearly, if Homeg (¢, p) contains any invertible element, then ¢ and p are equivalent. Consequently, if ¢ ¢ p, then

Homg (¢, p) = 0, since any non-zero element of Home (¢, p) must be invertible.

Suppose T' € Home (¢, ¢), and let T # 0. Since T is a complex matrix, it must have an eigenvalue, say A € C. Then

M —T € Homg(p, ) (since Home (¢, ) is a vector space). But since AI — T' is not invertible, it must be 0.

Similarly, Homeg (¢, p) = {A\T : A € C} where T'is an isomorphism between ¢ and p, which is clearly one-dimensional.
]

We can finally describe the irreducible representations of an abelian group!

Theorem 2.2 (Irreducible Representations of Abelian Groups). Let G be an abelian group. Then any irreducible
representation has degree 1, i.e. if ¢ : G — GL(V) is irreducible, then dim(V') = 1.

Proof. Fix some h € G, and set T' = ¢},. Then forany g € G,

Tog = onpg = Ohg = Pgh = Pgn = gl

Thus T' € Home (¢, ¢), and consequently, T' = A, I for some );, € C. Then for any non-zero vector v,
T(w) = prpw = Ay € ()

Consequently, (v) is a G-invariant subspace for ¢y,. Since h was arbitrary, (v) is a G-invariant subspace for ¢. Since
 is irreducible, we must have (v) = V, implying that dim(V') = 1, as desired. [ ]

We now start moving towards irreducible representations of non-abelian groups. All groups henceforth will be
assumed to be finite.

2.1. Orthogonality Relations

Let G be a finite group, and let C% := {f | f : G +— C} be the set of all functions (not necessarily homomorphisms)
from G to C. C€ is also known as the group algebra of the group G. We also denote C¢ as L(G).
Clearly, CC is a C-vector space, and given fi, fo € C%, we define their inner product to be:

1 —_—
(f1,f2) = il Z fi1(9)f2(9)

geaG

Having had success with looking at unitary representations earlier, we try to replicate similar methods here. In
particular, we shall now have the occasion to use the averaging trick again to describe a projection from Hom(V, W)
to Homeg (¢, p).
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Lemma 2.3. Let o : G — GL(V), p : G — GL(W) be representations, and let T : V — W be an arbitrary linear map.

Define:
= ST
geG

Then the map P : Hom(V,W) — Homg(p, p) given by P(T) := T# is an idempotent surjective linear map. In
particular, if T € Homg (i, p), then T# = T. In other words, P is a projection map from Hom(V, W) to Homg (¢, p).

Proof. Note that we first have to verify that 7# € Homg(y, p) for any 7' € Hom(V, W). We do that by direct compu-
tation, by noting that:

T#p, = ‘G‘ > o1 Tonpg = pg - \GI > pg-1on-1Tong = pg - |G| > bty Tong = pgT*
heG heG heG
Furthermore, if T € Homg (¢, p), then
geG geG
Thus the map P is idempotent. Furthermore, since for any T € Homg (¢, p), we have P(T') = T, P is surjective too.

The linearity of P is also easy to see. u

In the case ¢, p are unitary representations, we can explicitly calculate the map P. Indeed, if V = C", W = C™,
Hom(V, W) can be identified with C™*"™. Also, let E™* denote the m x n matrix whose (r, s)'" entry is 1, and all other
entries are 0. Then the matrices { £"°},.¢c[mm] sc[»] form a basis of C"*™ as a C-vector space.

Thus, for the following lemma, we shall treat Homg(go7 p) as a subspace of C"*".

Lemma 24. Let ¢ : G — U,(C), p : G — U, (C) be unitary representations. Let A = E¥ € C™*". Then
A?; = <pkg, Qoij>r where Pkt refers to the function Pke - G— C, pkg(g) = (pg)ké-

Proof. The proof is by direct computation. Firstly, note that since p is a unitary representation, p,-1 = p; ' = pi.

Then
kz
= Z pq ‘
A \G | %
Now,
(E]”‘Pg)rs = Z Eftl(@g)ts = Z 5167"51?t(509)ts = 5kr(999)is

t t

Then ‘
(3B 0g)es = > (0})etdki(09)is = (03)en(9g)i = (Pg)ie(pq)ii

t

The result then follows from the definition of the inner product on C¢. ]

We now restate Schur’s lemma (Lemma 2.1) in terms of the T# notation for further use later on.

Lemma 2.5. Let ¢ : G — GL(V), p : G — GL(W) be irreducible representations, and let T : V — W be an arbitrary
linear map. Then:

1. If ¢ # p, then T# = 0.
2. If ¢ = p, then T# = (tx(T)/ deg(p))1-
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Proof. If ¢ # p, then Homg (¢, p) = 0. Since T# € Homg (i, p), we get that T# = 0.
If ¢ = p, then T# = AI for some \. To calculate )\, note that tr(7#) = n)\, where n = dim(V') = deg((). At the same

time,
1 1
tr(T#) = @ Z tr(pg-1Tpy) = @ Z tr(Tgpy-1) = tr(T)
geG geq

Thus T# = (tr(T)/ deg(y))I, as desired. [ |

The results stated above are sufficient to prove the so-called Schur Orthogonality Relations, a very important result
in representation theory.

Theorem 2.6 (Schur Orthogonality Relations). Let ¢ : G — U(V), p : G — U(W) be inequivalent irreducible unitary
representations. Then:

1. {pre, pi5) = 0.
2. (e, pij) = (1/ deg())dirdje-

Proof. Note that (pie, i) = AZ_ for some A% € Homg (g, p). But Homg (¢, p) = 0. The other result also follows from
Lemma 2.4 and the second part of Lemma 2.5. u

Corollary 2.7. If ¢ is an irreducible unitary representation of G' of degree d, then {V/dy;; : i, 7 € [d]} is an orthonor-
mal set.

The above corollary immediately allows us to classify all equivalence classes of irreducible representations of G.

Theorem 2.8 (Equivalence Classes of Irreducible Representations). Let G be a finite group. Then there are only
finitely many equivalence classes of irreducible representations, say (1), ..., (). Furthermore, if we write d; :=
deg(¢), then the set

(Ve k€ [s],i,j € [dil}

is an orthonormal subset of C“, and consequently, s < d$ + - -- + d? < |G|.

Proof. By Theorem 1.1, WLOG we can assume that all the equivalence classes of representations are being repre-

sented by unitary representations. If M @) are inequivalent unitary representations, then 99511), 30521) form

an orthogonal system by Theorem 2.6. Since C¢ is finite-dimensional, we get that the number of inequivalent
representations is finite and thus denote them as ¢, ..., (*). Finally, since the dimension of C% is |G|, and

since {\/@gogf) : k € [s],i,7 € [di]} is an orthonormal system (and hence linearly independent), we get that
d? +--- +d? < |G|, as desired. [ |

We now introduce characters to prove the uniqueness of the decomposition obtained in Maschke’s theorem.

2.2. Characters

Characters are a remarkably economical way of encapsulating a lot of information about a representation.

Definition 2.2. Let ¢ : G — GL(V) be a representation. The character of ¢, denoted ., is a function x,, : G — C,
where x,(9) = tr(pg).
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The first thing that we need to verify is that the characters of isomorphic representations should be the same. Indeed,
Proposition 7. If ¢ ~ 9, Xy = Xu-

Proof. If ¢ ~ 1, then there is an invertible linear transform 7T such that ¢, = T, T~ forall g € G, and

tr(xg) = tr(Tgpngl) = tr(gongl -T) = tr(py)
as desired. [ |

Another useful fact is as follows:
Proposition 8. x,(1) = deg(¢y).

Proof. Note that ;. = I since ¢ is a homomorphism. Consequently, x.,(1) = deg(¢). |

Also note that if ¢ is a degree 1 representation, then ¢, € C, and thus x,(g9) = ¢4. Thus, henceforth, we shall not
distinguish between a degree 1 representation and its character. In particular, that implies the following proposition.

Proposition 9. Let ¢ be a degree 1 representation, and let x be its character. Then x : G — C* is a group homomor-
phism.

Remark. Note that characters are not multiplicative in general: Indeed,

Xo(9192) = tr(Pg,g,) = tr(0g,Pg,) # tr(0g, ) t1(0g,) = X (91) X (92)

We also note the following fact:
Proposition 10. Let ¢ = p @ 1. Then x, = x, + Xu-

Proof. Note that
_|ps O
o {0 wg]
Thus, x,(g9) = tr(eg) = tr(pg) + tr(vg) = x,(9) + X (9), as desired. [ ]

Now, the fact that tr(A) = tr(PAP~!), which we used to show that characters of isomorphic representations are the
same, can also be used to give a decomposition of the group in terms of the character. On the surface of it, it seems
like the character, associating just one number to a whole matrix, loses a lot of information. However, as we shall see
now, the character manages to ‘retain’ a significant bit of information.

Proposition 11. Let ¢ : G — GL(V) be a representation. Then for any g, € G,

Xe(g) = Xw(hgh_l)
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Proof. Note that

Xo(hgh™) = tr(pngn-1) = tr(pnpgpn-1) = tr(pnpgpy ) = trlegey on) = Xo(9)
Motivated by this proposition, we make the following definition:
Definition 2.3 (Class Function). A function f : G — C is called a class function if f(g) = f(hgh™!) for any g, h € G.

Recall that for any group, we say that g1, g2 are conjugate if there exists some h € G such that g; = hgoh~'. Conjugacy
is an equivalence relation, and the equivalence classes of a group under conjugacy are called conjugacy classes.
To quickly refresh our memory of conjugacy classes from group theory, let’s look at the following examples:

1. Consider the group &s: Firstly, note that for any group G, the identity element 1 forms a singleton conjugacy
class, since g~ '1gg = 1g 2. Next, note that all order 2 elements of &3 are conjugate to each other: Indeed,
(ac) = o=1(bc)o, where o = abc + cab, and similar conjugacy relations can be obtained between (bc) and (ab)
too. Finally, the two remaining elements of &3, both of which are order 3, are conjugate to each other: Indeed,
(bea) = (be) ™! (cab)(be). Thus, the conjugacy classes of &3 are {{1}, {(ab), (bc), (ca)}, {(bca), (cab)}}.

2. Let Qs be the group of quaternions, i.e. s is generated by /z'\, 5, E, where 2 = }2 =k = m = —1. Note that
Qs = {+£1,+i,4j, £k}, and Z(Qg) = {£1}. Thus, {1}, {—1} are two conjugacy classes. Furthermore, t, —t are

o~~~

conjugate for ¢ € {i,J, k}: For example, note that — = k~Yik = —kik = —k - (—ki) = k% = —i. Thus the
conjugacy classes of Qs are {{1}, (—1), {£0), {5}, {iE}}.

3. Recall the dihedral groups from Item 2, i.e. D,, := (r, s|r™ = s* = (rs)? = 1). To calculate the conjugacy classes
of D,,, we make cases:

2 1

(a) Suppose nisodd: Note that s is conjugate to sr?: Indeed, r-sr?-r~! = rsr = s. Similarly, sr? ~ sr? (we use
~ to denote conjugacy), and so on, until sr" ! ~ sr ~ sr3 ~ sr® ~ -+ ie. {s,sr,...,sr" "'} all belong
to the same conjugacy class. At the same time, note that » ~ r—1: Indeed, srs™! = srs = ssr=t = r=1.
Similarly, r* ~ r~* for all k. Moreover, for any k, we have 7 - 7k . r=3 = ¢k spi . php=ig=l = grkg =

r=k. Thus, {r*,r=*} form a conjugacy class. Consequently, the conjugacy classes of D,,, for odd n are

{{1}’ {ror o (D2 (DY s s sr"fl}}.

(b) Suppose n is even: Note that {1}, {r,r~'},..., {r"/2,r="/2} 3 continue to remain conjugacy classes for
the same reasons as above. However, the conjugacy class {s, sr,...,sr" "'} now splits into two parts,
namely {s, sr?, ..., sr" "2}, {sr,sr3,..., sr"~1}. Consequently, the conjugacy classes of D,,, for even n are

{{1}, {ryr= 2, {2 e 2Y Ls sr? L s 2Y [y srd L sr"‘l}}.

Consequently, class functions are constant on conjugacy classes.
We denote the set of all class functions in L(G) = C% as Z(L(G)) .

Proposition 12. Z(L(G)) is a subspace of C©.

2In general, all elements of Z(G') form singleton conjugacy classes, because they commute with everything else

3note that /2 = y—7/2

“4the notation Z(-) is indicative of it being the ‘center’ of something: A priori, that is a bit confusing since L(G) is an abelian group (and thus
the center of L(G) as a group is L(G) itself). However, we shall later equip L(G) with a non-commutative multiplication operator, and Z (L(G))
will turn out to be the center of that (non-commutative) ring
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Proof. Let f1, f2 € Z(L(G)). Then
(c1f1 + cafa)(hgh™) = 1 fi(hgh™") + ca fa(hgh™") = c1f1(g) + c2fa(g) = (c1 f1 + c2f2)(9)

We shall now describe a basis for Z(L(G)) and hence compute its dimension.
Let C1(G) be the set of conjugacy classes of G. For every C' € Cl(G), define §¢c : G — C, where d¢ := 1¢, i.e.

1, ze€C
1) =<
c(@) {O, otherwise

Lemma 2.9. {éc : C € CI(G)} is a basis for Z(L(G)). Thus dim Z(L(G)) = | C1(G)|.

Proof. Let f € Z(L(G)). Choose c € C for every C' € CI(G). Then note that

f= > fc

CEeCI(Q)

Note that the above definition is consistent, since f(c) = f(¢') forany ¢, ¢’ € C, since f € Z(L(G)) is a class function.
Thus {0¢ : C' € CI(G)} span Z(L(G)). Furthermore, if

Z Oéc~($c:0

CeCI(@)

then ac = 0 for all C' € CI(G): Indeed, for any = € G, inputting x in the above expression yields ac, = 0, where
x € Cy € CI(G). Thus, varying z over G yields the desired result. [ |

We now describe another spanning set for Z(L(G)), which will finally connect representations to class functions.

Theorem 2.10 (First Orthogonality Relation). Let ¢, p be irreducible representations of G. Then:

)1, ifp~p
<X¢’X”>_{0, if o o p

Consequently, any group G has at most | C1(G)| inequivalent irreducible representations.

Proof. By Theorem 1.1, ¢, p are equivalent to some unitary representation(s). Since characters of equivalent repre-
sentations are the same, WLOG we may assume ¢, p are unitary. Let deg(y) = n, deg(p) = m. Then

n
(Xps Xp) ZX@ Ztr ©g) tr (pg) ZZZ Pg)i

geG geG g€eG i=1 j=1

:Zn:i :ii (piis pjj)

i=1 j=1 geG i=1 j=1

By Theorem 2.6, if ¢ # p, the above expression is 0. On the other hand, if ¢ ~ p, then (pi;, p;;) = (1/ deg(y)) - 6% =

n m n n
0ij

DD lpurpii) =3 3w =1

i=1j=1 i=1 j=1

as desired. m
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We can finally prove the uniqueness of Maschke’s decomposition:

Theorem 2.11 (Uniqueness of Maschke’s decomposition). Let V). ., »(*) be a complete set of representatives of
the equivalence classes of irreducible representations of G. Let p be any representation of G. Then by Theorem 1.3,
we have

o~ mie® @ - @ myp®

Then m; = <X¢><“ . Xp)- Consequently, the decomposition of p into irreducible constituents is unique.

Proof. By Proposition 10,
Xp = M1Xpm) -+ MsX )

Thus,

> Theorem 2.10
(Xpr X)) = D milXpr: X)) = g
i=1

Corollary 2.12. A representation p is irreducible iff (x,, x,) = 1.

Proof. Let
pr~mieM @ ®myp®

be the Maschke decomposition of p. Then by Theorem 2.10, we have (x,, x,) = >_;_, m?. Consequently, if p is not
irreducible, (x,, x,) > 1. Conversely, if p is irreducible, then p ~ ¢(*) for some s, and (x,, x,) = 1. |
2.3. Regular Representations

Recall regular representations (Proposition 2); we shall now develop regular representations from another view-
point.
Given any finite set X, we can synthetically ‘build” a C-vector space which has X as its basis: Indeed, define:

CX := Zczx:cxeC

reX

Addition and scalar multiplication are obvious: Indeed,

Z . T + z byx = Z (ag + by)x

reX rzeX rzeX
A E a2 = E (Aaz)z
zeX zeX

Finally,
<Z Az, Z bxx> = Z by
zeX zeX zeX

Remark. Note that unlike in the case of C¢, the dot product for CX (or CG) does not involve scaling by 1/|G].
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Definition 2.4 (Regular Representations). Let G be a finite group. The regular representation of G is defined to be
the homomorphism L : G — GL(CG), where

L, Z cph = Z chgh = Cg—15T

heG heG zeG

Remark. The ‘L’ stands for ‘Left’, since g gets left multiplied with h.
We remark that L is not only a representation but a unitary representation.

Proposition 13. L is a unitary representation.

Proof. We must first prove that L is a representation, i.e. L is a group homomorphism. To that extent,
Lg,Lg,h = g1(g2h) = (9192)h = Lg, 4,1

Thus, L is a representation. To show that L is unitary, we have to show that (L,v, L,w) = (v, w) forallv,w € CG, g €
G. Indeed,

<Lg Z Chh,Lg Z k’hh> = <Z chgh, Z khgh> = <Z 9127, Z ]{Jg1xI> = Z Cg—1g - kgf1z

heG heG heG heG zeG zeG zeCG

Since z — g~ 'z is an automorphism of G,
S by = S b= (S )
z€G zeG heG heG
as desired. Since L, is unitary, it is also invertible, and thus L : G — GL(CG) is a unitary representation. |

It turns out that L has a particularly simple character.

Proposition 14. The character of L is given by:

WGE) = 0, otherwise

Proof. Fix any g, and consider L, as a matrix, whose rows and columns are indexed by elements of . Note that
(Lg)hyh, = lif and only if Ly(h1) = ho, i.e. ghh = ho. Thus, note that (Ly), = 1 if and only if g = 1.

Thus, if g = 1, then L, is the identity matrix, with trace |G|. If g # 1, then no diagonal entry is 1, and the trace is
0. [ |

Now that we have calculated the character of G, we can calculate the Maschke decomposition of L. It has a particu-
larly nice form.

Theorem 2.13. Let (1), ... »(®) be the (representatives of) the inequivalent irreducible representations of G. Let
d; = deg(p®). Then
LrdipM @ @ depl®
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Proof. Note that
(XLs X)) = X (1) = deg(p') = d;

Thus, by Theorem 2.11,
L~ d1(,0(1) DD ds(p(s)

|

Corollary 2.14. We have |G| = d3 + - -+ + d2.

Proof. We have

XL =Y dixpe = |Gl =x0(1) =Y dixpw(1) =Y d
i=1 i=1 i=1

[ |

Corollary 2.15. Write

Bi={Vae sk elslij € ]}

From Theorem 2.8, we know that B is an orthonormal spanning set of C®. It is in fact an orthonormal basis of C©.

Proof. This follows from the fact that
i+ +d=|G|

|
For convenience, we shall henceforth refer to x,) as xi-
Theorem 2.16. The set x1, ..., X is an orthonormal basis for Z(L(Q)).
Proof. By Theorem 2.10, we know that x4, ..., xs are an orthonormal, and hence linearly independent, set. We must

now show that they span Z(L(G)). Now, by Corollary 2.15, {\/ﬁcpgf) tkels),i,je [dk]} spans CY D Z(L(G)), and
thus, for any f € Z(L(G)), we have:
f=2aey

1,5,k

k ) . .
for some constants cl(-j). Now, since f is a class function,

> flgwg) = ZZ oM (g lag) =3 ) S oM ag)
| \ 1G] |G\

geG 9€G i,5,k i,5,k geG

(k)

— (k) . (k) (k) (k) 2 : (k) Lemma 2.5 (k) tr( )
=2 \Gl P AR ik ( )ij - “ < T
ij

gk 9eG g ik gk

_ RO Xk Zc(k) Xk

Cij
1,5,k
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Thus,

-2 (2

?

Thus, f actually lies in the span of x1, ..., xs. Consequently, x1,. .., xs form an orthonormal basis for Z(L(G)). N

Corollary 2.17. s = dim(Z(L(G))) = | C1(G)|, i.e., the number of inequivalent irreducible representations of a group
G is equal to the number of conjugacy classes.

Corollary 2.18. A finite abelian group G has |G| inequivalent irreducible representations.
Proof. Note that every element of an abelian group forms a singleton conjugacy class. |

Lemma 2.19 (Irreducible Representations of Z/nZ). Letw = e*™/". Define xy, : Z/nZ + C* as:

Xk () = Wt

Then xo, . .., xn—1 are representatives of all the inequivalent irreducible representations of Z/nZ.

Proof. Recall that the irreducible representations of a finite abelian group are degree 1, and thus WLOG we identify
them with their characters. Also, note that

n—1

_ 1 2km __
<Xk7Xk>—ﬁZw =1
m=0

and thus all the x.’s are irreducible. Finally, it is clear that x.’s are different as functions, and hence correspond
to inequivalent representations. Since an abelian group has exactly n inequivalent irreducible representations, it
follows that xo, - . ., xn—1 are representatives of all the inequivalent irreducible representations of Z/nZ. [ |

2.3.1. Irreducible Representations of finite abelian groups

Let G be a finite abelian group. Then by the structure theorem for finite abelian groups,
u
G =z/n;z
j=1
whereny, ..., n, are prime powers (not necessarily distinct). Recall that to specify any representation of a group G, it

suffices to specify the images of the generators of G. Now, G is generated by ¢; := (0,0,...,1,...,0) € ®}_Z/n;Z,
where the ‘1’ varies over all the u positions. Now, if p is an irreducible representation of G, it is easy to see that

p(e;) = exp(2ink;j/n;), where 0 < k; < n;. Consequently, for any (n1,...,n,) € G, we have:
k ’uku
p((m1,...,My)) = exp (22'77 <m1 Lyt m))
ni Lo

Thus, for every (k1,...,k,) € {0,...,n1—1} x---x{0,...,n,—1}, we obtain a representation of G. By Corollary 2.12,
it is easy to verify that they are irreducible. It is also easy to see that they are distinct (i.e. inequivalent). Since

[{0,...,n1 =1} x - x {0,...,ny — 1} =n1 - ny=n


https://en.wikipedia.org/wiki/Abelian_group#Classification

Representation Theory 18 / 34 Arpon Basu

, by Corollary 2.18, these are the representatives of all the inequivalent irreducible representations of G.

Theorem 2.20 (Irreducible Representations of finite abelian groups). Let G be a finite abelian group, and let

be the decomposition of G into cyclic groups, as given by the structure theorem. Write w; := exp(2in/n;). Define
Xk1,....ky - G —= C* as:

u

u
Xkl,...,ku(mla'”vmu) = ijJmJ = ka](m])
Jj=1 1

Then {Xpk,.....k. } (oo ) €100 11} %% {0,...ma 1} AT€ TEPTEsentatives of all the inequivalent irreducible representa-

tions of G.

The characters of the group (Z/2Z)" = F3 are very important in computer science. Indeed, for any (ki,...,k,) €
{0,1}", we have a character xg, .. %, : F5 — Cas:

.....
n

Xkl,...,k7l(lmla"'7mn) = (71) J=1 kjmj

We restate this slightly differently: Note that there is a correspondence between elements of {0,1}" and subsets
of n, where (ki,...,k,) € {0,1}" corresponds to {i € [n] : k; = 1}. Thus, let S C [n]. Also, rewrite the group
((z/)2Z)™,+,(0,...,0))inamultiplicative form, as ({—1,1}", -, (1,...,1)). Thenitis easy to see that the new character

function becomes:
Xs(z1,...,2n) == Hﬂcl
ies
where (21,...,z,) € {—1,1}".
Since G = {—1,1}" is abelian, {xs}sc[, form a basis for C¢, i.e. any function f : {—1,1}" + C can be uniquely

written as f = 3 ¢, @sxs. The coefficients as are known as the Fourier coefficients of f.
We shall deal with Fourier expansions in detail in the upcoming chapters.

2.4. Character Tables

Definition 2.5. Let G be any group, and write | C1(G)| =: s. Then the character table of G is a s x s matrix X, with
Xi; = xi(C;), where x; is the i*? irreducible representation, and Cj is the 4th conjugacy class.

One very surprising fact is that X* X is a diagonal matrix:

Theorem 2.21 (Second Orthogonality Relation). Let C, C’ be conjugacy classes of a group G, and suppose g € C, h €
C’. Then
|G|

;mxz(h) = m -leo—cr

Consequently, X* X is a diagonal matrix.
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Proof. Note that {dc}ceci(e) and {x;}ic[s] are orthonormal bases for Z(L(G)). Expressing them in terms of each

other gets what we want. Indeed,
S

e =3 (xi6c)xi

i=1

Thus,

- %;‘ S @) - del@)xilh) =

zeG

°L 1

zeC zeC

Thus,

ZS _ Gl Gl
pa ( ) ( |C| ( ) |C| c=C

Remark. Although the columns of X are orthogonal, the rows of X need not be orthogonal, as we shall see soon.

2.5. Computing Character Tables

We shall compute the character tables for some groups of interest.

2.5.1. The Quaternion Group

Recall the quaternion group Qs from Item 2. It has 5 conjugacy classes, namely {1}, {—1}, {£i}, {£5}, {:I:E} Thus,
s = 5,and we have d3 +- - -+d? = 8. The only way 5 positive integers’ squares can sum to 8 isif dy,...,ds = 1,1,1,1,2.
Thus Qg has 4 inequivalent irreducible degree 1 representations, and one irreducible degree 2 representation.
Thus, suppose p : Qs — C*is a homomorphlsm Let o = p(i), B = p(7),v = p(k),6 = p(—1). Since pis a
homomorphism, we must have a? = 32 = 7? = affy = § (smce i j %, who generate (Jg, satisfy these relations
among themselves). Now, we must also have 52 =1,ie. 6 = £1. If § = —1, a little trial and error shows that no
a, 3,7y can satisfy the above relations. Thus, § = 1, which shows that «, 5,y = £1. A little fiddling then reveals the
4 irreducible representations to be:

{1 {1 {il} {iJ} {ik}

x1 /1 1

o [ 1 1 1 —1 —1
v | 1 1 -1 1 ~1
wlt 1 o1
X5 * * * X *

The irreducibility of the above representations may be checked by Corollary 2.12. We now have to find an irreducible
degree 2 representation of Qs. Consequently, we need matrices A, B,C, D € GLy(C) such that A> = B? = C? =
ABC = D, D? = I. Also note that without loss of generality we can choose A, B, C, D € Uy(C) since any represen-
tation is equivalent to a unitary one. As it turns out, the unitary representation(s) of (Js have a connection with the
so-called Pauli matrices: Indeed,

T 0 — = i T 0 -1 T NN —1 0 _
) i 0| T 0w 1 o | = "o 0 4| =t

gives a group homomorphism Qs — Uz(C), where ¢, 0y, 0. are the Pauli matrices. The above matrices also yield

that: )
L e I
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Thus, we can finally complete the character table as:

{1} {-1} {3} {j?} {il%}

i /1 1 1
o | 1 1 1 -1 -1
s | 1 1 1 1 -1
va | 1 1 -1 -1 1
s \ 2 -2 0 0 0

Note that we could have found the last row of the character table without calculating the degree 2 representation
explicitly: Indeed, first note that if p is an irreducible degree 2 representation of @5, then p(1) = I € GL2(C), and
thus x5(1) = tr(I) = 2. Thus, let the last row of the character table be [2 Tr1 To X3 ;1:4]. By the orthogonality
relations, we have 21 + 4 = 0,225 = 0, 223 = 0, 2z4 = 0, which yields the desired result.

2.5.2. The Dihedral Group

Recall the dihedral groups from Item 2, Item 3. We shall now calculate the irreducible representations of D,,.
Firstly, note that the degree 1 representation p : D,, — C*, p(g) := 11is always an irreducible representation. It is also
easy to verify that p(r) := 1, p(s) := —1 is also an irreducible representation.

Also, recall from Item 2, the representation:

it s RO (O

is irreducible for 1 < k < [(n —1)/2] °.

Thus, we already have 2 + | (n — 1)/2] representations for D,,. Now, recall from Item 3 that if n is odd, then it has
2+ [(n —1)/2] conjugacy classes, and thus for odd n we have described all irreducible representations.

For even n, we have n/2 + 3 conjugacy classes, which means that we're still missing 2 irreducible representations.
From Corollary 2.14, we obtain that the remaining representations must be of degree 1 each. Indeed, if n is even,
then note that r — —1,s — 1;7 +— —1, s — —1 are also inequivalent irreducible representations.

Thus, if n = 2¢ + 1, then the character table of D,, is:

{1} {r,r=1} {r2,r=2} {rt,r=4} {s,sr,...,sr%}
i /1 1 1 . 1 1
o [ 1 1 1 . 1 1
X3 2 2cos(2m/n)  2cos(dw/n) -+ 2cos(2¢m/n) 0
Xeez \ 2 2cos(2lm/n) 2cos(dlm/n) .- 2cos(20%m/n) 0

And if n = 2/, then the character table of D,, is:

{1} {r,r=1} {r2,r=2} {r*} {5,872, ..., 57272} Lsrsr®, ...

i /1 1 1 1 1 1
Yo [ 1 1 1 1 1 1
s |1 1 1 1 1 1
i |1 -1 1 -1 -1 1
X5 2 2 cos(2m/n) 2 cos(4m/n) 2cos(20m/n) 0 0
Xe+3 \ 2 2cos(2({ —1)w/n) 2cos(4({ — )m/n) --- 2cos(2(¢ — 1)lmw/n) 0 0

Remark. The character tables of D4 and Qg are isomorphic to each other, even though D, and @5 are not isomorphic
as groups.

Sby examining their characters, it is easy to check that they are inequivalent. Conversely, for k > |n/2], examining their characters shows
them to be equivalent to the aforementioned representations

, 87'2@_1}
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2.6. Dimension Theorem

As we have already seen before, the orthogonality relations severely restrict how representations and characters of
a group can behave. As it turns out, we can extract further mileage.

Definition 2.6 (Algebraic Integers). A complex number o € C is said to be an algebraic integer if it is the root of a
monic polynomial with integer coefficients.
We denote by A the set of algebraic integers.

Thus, v/2 is an algebraic integer, while 1/2 is not an algebraic integer. As it turns out, the only rational algebraic
integers are the actual integers:

Lemma 2.22. ANQ = Z.

Proof. By the rational root theorem, if a rational number is a root of a polynomial with integer coefficients, then the
denominator (in the reduced form) of the rational number must divide 1, i.e., it must equal £1. But that implies
that the rational number is actually an integer. u

We shall now prove that A is actually a subring of C. To do that, we need the following lemma:

Lemma 2.23. \ € A iff there exists a matrix A € Z"*" such that A is an eigenvalue of 4, i.e. there existsav € C"\ {0}
such that Av = Av.

Proof. Note that the eigenvalues of a matrix with integral entries are also algebraic integers, since det(A — zI) is a
monic polynomial in x with integral coefficients.

Conversely, suppose A € A. Then A" + Ay 1 A"+ -+ ay = 0 for some integers ag, ...,ap—1 € Z. Then:
0o 1 0 0o - 0o ] [ 1] 1]
0 0 1 0o - 0 A A
0 0 0 1 e 0 A2 A2
. = \-
0 0 0 0o .- 1 A" 2 A2
—ag —a; —az —asg --- —Qp—1 )\"_1 )\"_1

Remark. Also, note thatif o € A, then @ € A: Indeed, if Av = av for some A € Z"*", then AT = aw.

Theorem 2.24. A is a subring of C.

Proof. Suppose A1, A2 € A, with A\; being an eigenvalue of A; € Z"**"1, and A, being an eigenvalue of A, € Z™2*"2,
Then A; A2 is an eigenvalue of A1 ® Ay € Z™™2*™™"2 (in particular, if A € A, then —\ € A since —1 € A),and \; + A2
is an eigenvalue of A @ Ay := A1 ® Iy, + I, ® Ao. |

Remark. If the corresponding eigenvectors of A;, A2 are vy, vy respectively, then vy ® v, is the eigenvector for A; Az,
since (A1 X Ag)(vl ® 1}2) = (Aﬂ}l) X (AQUQ) = \v1 ® AUz = A1 \g (’Ul (24 ’Ug). v1 ® vq is also the eigenvector for Ay + \o,
since (Al & In2 + Inl ® A2)(v1 ® ’Ug) = (Alvl) & (InQ’UQ) + (Imvl) (24 (A2U2) = \1v1 @ Vg + Aav; ® V9, as desired.
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We finally link algebraic integers to representation theory.

Lemma 2.25. Let ¢ : G — GL,,(C) be a representation of a finite group G (with |G| = n), and let x be the corre-
sponding character. Then x(g) is the sum of m n*P-roots of unity, and consequently x(g) is an algebraic integer for
all g € G, since the roots of unity are algebraic integers.

Proof. Note that for any g, x,,(g) is the trace of ¢(g). Also recall that the trace of a matrix is the sum of its eigenvalues.
Furthermore, since |G| = n, g" = 1 for all g € G, and thus ¢(g)" = I. Now, WLOG we can assume ¢ to be unitary,
in which case ¢(g) is unitary and hence diagonalizable, and thus the eigenvalues of ¢(g) are the n'" roots of unity
since ¢(g)™ = I. Thus we're done. ]

We shall now establish a series of lemmata which will lead us to the so-called dimension theorem, which says that
the degree of an irreducible representation must divide the order of the group.

Let G be a group of order n, and let {C1, ..., Cs} be the conjugacy classes of G, with C; = {1}. Let n; be the size of
C;. Let ¢ be an irreducible representation of G, and write d := deg (), Xi := X (Ci), Ti == > e, Pa-

Lemma 2.26. T; = (n;x;/d) - I.

Proof. We will show that T; € Hom(y, ¢), which will imply (by Lemma 2.1) that T; = A for some A € C. But then:

dX = tr(A) = tr(T;) = Z tr(py) = Z Xo(z) = Z Xi =NiXi = A=mn;xi/d

zeC; zeC,; zeC;

as desired. Now, towards proving that T; € Hom(y, ), note that

T pg-1 = Z PgPaPg—1 = Z Pgag-r = Ti
zeC; zeC;

where the last line follows since C; is a conjugacy class, and hence gC;g~' = C; for any g. n
Lemma 2.27. There exists (a;;) € Z°**** such that for any i, j, k, T,T; = > 7 _; aijiTk-

Proof. Note that

TiTj = Z Pry = Z bijg@g

zeCy,yeCy geG

where b;;, is the number of ways to write g € G as xy with € C;,y € C;. Note that if we can prove b;j4, = b;jg,
for g1, 92 € G of the same conjugacy class, then we’d be done (with a;jx = ngb;;, for any g € Cj). But note that
if g1, g2 are conjugate, say as g1 = gg2g~ " for some g € G, then for every representation g = xy, we can write
g1 = gzyg~ ' = (gzg~")(gyg~'). Note that gzg~' € Ci,gyg~' € C;, and thus we have an injection (clearly, if
(w1,y1) # (m2,y2), then (gz1971, gy19™") # (922971, gyag~')) from the set of representations of g, as an element of
C;C; to the set of representations of g; as an element of C;C;. We can easily obtain a reverse injection too, showing
that these two sets are in bijection, and hence have the same cardinality. [ |

Lemma 2.28. n;x;/d is an algebraic integer for all i € [s].
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Proof. By Lemma 2.26, Lemma 2.27,

S
Xy MiXe _ - MEXE
d d ];“”’“ d

Thus if we define 4; := (a;ji)jr € Z°°°, and v = (n;X;/d);, then A;v = (n;x;/d)v, and thus n;x;/d € A by
Lemma 2.23. u

We can finally prove the promised ‘Dimension Theorem’.

Theorem 2.29. Let ¢ be an irreducible representation of degree d of a group G. Then d | |G|.

Proof. By Theorem 2.10, we have:

L= {xpXp) = ﬁ ngxm o % = z;xw(g)x“"d(g)

But

7)(4,0(9) _ : —NiXi
ZX«/D(Q) d —;Xz d

geG

By Lemma 2.28, ®4¢ ¢ A. Furthermore, since x; € A, X; € A. Thus, since A is a ring, |G|/d € A. But |G|/d is also a
rational number, and thus |G|/d € Z, i.e. d | |G]. [ |

While the dimension theorem is undoubtedly a great theorem in representation theory, one sees its greatest power
when it is used to prove group-theoretic statements which seem little to have to do with representation theory.

Theorem 2.30. Any group of order p?, where p is a prime, is abelian.

Proof. Letdy,...,d be the degrees of the inequivalent irreducible representations of the group. Note that the trivial
representation (which sends every element of the group to 1 € GL;(C)) is irreducible, and has degree 1. Thus,
WLOG d; = 1. Thus, d3 + - - - + d? = p? — 1. On the other hand, by the dimension theorem, d; | p*> = d; = 1,p, p*.
However, if d; > p, then d? > p? > p? — 1, which can’t be the case. Thus, d; = 1 for all i. But that means that G is
abelian. |

Turns out that one can extract even more information about representations from abstract properties of groups,
which in turn help us characterize and classify the groups themselves.

Let G be a group. Recall the commutator subgroup of G was defined tobe G’ := (zyz~'y~! | 2,y € G). From standard
group theory, we know that G’ is normal in G, the quotient G/G’ is abelian, and if N is any normal subgroup of G
such that G/N is abelian, then G’ < N, i.e. G’ is the smallest normal subgroup of G which makes the quotient G/G’
abelian.

Theorem 2.31. Any group G has |G/G’| many inequivalent degree 1 representations.

Proof. Let p : G — C* be a degree 1 representation of G. We will show that p ‘factors through’ G’. Now, C* >
im(p) = G/ ker(p), and thus G/ ker(p) is abelian. Consequently, G’ < ker(p). Now, consider the map ¢ : G/G’ — C*
defined as ¥ (gG’) := p(g). We claim that ¢ is well-defined, since if gG' = hG’, then g = hg' for some ¢’ € G, and
thus p(g) = p(h)p(g’) = p(h), since p(g’) = 1, since G’ < ker(p). It is also easy to verify that ¢ is a homomorphism,
and thus v is a representation of G/G".
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Conversely, for any representation ¢ : G/G’ +— C*, ¢ o : G — C* is a representation of G, where 7 : G — G /G’ is
the canonical projection. Thus, the degree 1 representations of G are in bijection with the degree 1 representations
of G/G'. But G/G is abelian, and thus only has degree 1 representations, and we’re done. |

Remark. Note that degree 1 representations are always irreducible.

Theorem 2.32. Any group of order pg, where p < g are primes such that p t (¢ — 1), is abelian.

Proof. Once again, we have pg = d3 + - -- + d2. By the dimension theorem, d; = 1,p, ¢, pq. However, since ¢ > p,
d; = 1,p. Now, let m be the number of inequivalent irreducible degree 1 representations. Then pg = m + (s — m)p>.
Thus, p | m. At the same time, m equals the cardinality of a quotient of our group, and thus m | pg. Thus, m = p, pq.

However, if m = p, then we have ¢ = 1 + (s — p)p, which is a contradiction, since p { (¢ — 1). ]
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§3. Fourier Analysis on Finite Abelian Groups

We explore the connections of Fourier analysis on finite groups with representation theory.

Let f : Z — C be a periodic function, i.e. there is some n € N for which f(x +n) = f(z) for all z € Z. Then note
that we can identify f with a function f : Z,, — C. Furthermore, since Z,, is abelian, Z(L(Z,,)) = L(Z,,), and thus
the characters of Z,, form an orthonormal basis for Z(L(Z,,)) = L(Z,), i.e. we can write:

f= o Fixo+ -+ Xn-1, [)Xn—1

The coefficients (x,,, f) are precisely the Fourier coefficients. We now present the definition for general finite abelian
groups.

Definition 3.1 (Fourier Transforms for abelian groups). Let G = {gi,...,9,} be a finite abelian group, and let
X1,---,Xn be some n inequivalent irreducible characters of G. Note that we are fixing an ordering on G and the
characters for this. R

Let f : G — C. Then the Fourier transform of f, denoted as f : G — C, is given by:

J/C\(gi) ="n Xw ZXZ

geG

Remark. A few remarks are due:
1. The Fourier transform is a linear transform L(G) — L(G).

2. (Fourier Inversion Formula) The Fourier transform is invertible, i.e.
n
Z f(gi)x

Since the Fourier transform is invertible, it is injective. Since the Fourier transform is an injective linear map
from a finite-dimensional vector space L(G) to itself, it is invertible, even as a linear transform.

3\'—'

3. For the group Z/nZ,

n—1

]?(m) _ Z 872iﬂmk/nf(l€)

k=0

1 n—1
_ 2immk/n 7y
== e F(k)
k=0

Note that for the group Z/nZ, there is a canonical ordering 0 < 1 < --- < n — 1 of the group, and a corre-
sponding canonical order of the characters.

4. (Plancherel’s Formula) For any a,b € L(G), we have

(a,6) = (3 5)

Indeed, by the Fourier Inversion Formula,
2 Z a(g:)b(g;) (x> X5) 2 Z a(gi)blg;)oi; = <A, b)

We also introduce the convolution product:
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Definition 3.2. Let G be a finite group, and let f1, fo € L(G). Then

(frx f2) (@) == filey ") faly

yeG

We wish to use * as an operator. For that, we first prove its associativity:

Proposition 15 (Associativity of ). Let G be any group, and let f1, fa, f3 € L(G) be arbitrary. Then
frx(fax f3) = (frx fa) * fs

Proof. Note that

(i (f2* f3))( Zfl (zy™") - (f2x f3)(y Zfl (zy~ 'Zf2(yz

yed yeG z€G
=SS Ay )y =Y D A fla w) | - falz) = Y (A fa) @z ) f(2)
zeG \yeqG z€G \a€eqG zeG
= ((f1* f2) * f3)(z)
]
Denote by ¢, the function d, : G — C, d,(h) := L4—p. Then:
Proposition 16. 0, * 6, = dgp.
Proof.
(69 % 0n)(x) = Y Sy~ ")on(y) = 6g(xh™") = Ggn(x)
yeG
]

Remark. The above proposition also immediately highlights that * is not a commutative operation for general groups
G.

Proposition 17. x; = nd,,.

Proof. Note that:
Xi(95) = n{xj, xi) = din

The reason the convolution product is so interesting is that it turns L(G) into a non-commutative ring. °

®note that there is another way to turn L(G) into a ring, namely, by addition and pointwise multiplication of functions.
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Lemma 3.1. (L(G), +, ,0, 61) is a ring.

Proof. Note that = is a bonafide multiplication operator since it is associative. Thus, to verify the ring structure, we
just need to verify the distributivity of * over 4+ and confirm that ¢, is indeed the multiplicative identity.
The distributivity is easy to verify. To note that ¢; is the identity, note that for any f € L(G), we have:

F=>f(9)d
geG
Thus,
Froi=2 f(9)8g 0= f(9)d, =
geG geqG
Sixf=2 f(9)8ixd,="Y flg)d,=
geG geqG
|
We can finally explain the notation Z(L(G)):
Lemma 3.2. Z(L(G)) is the center of the ring L(G), i.e.
Z(L(G))={f e L(G): f+xa=ax fforalla € L(G)}
Proof. Suppose f is a class function. Then
(f*a) Z flzy™YHaly
yeG
Substitute y = xz~': As z varies over G, y also varies over G. Thus,
S fay aw) = 3 alzz) flaza )
yeG z€G
Since f is a class function, f(zzz~!) = f(z). Substituting this above yields that f * a = a * f, as desired.
Conversely, suppose f *xa = a* f forall a € L(G). Set a = ¢, for some g € G. Then:
2) =Y flay ")o,(y) = flag™)
yeG
(6g % F)(@) =D dg(xy ") f(y) = flg~'x)
yeG
Set z = gh for any h € G. Then f(h) = f(ghg™") forall g,h € G. Thus f is a class function. |

Corollary 3.3. L(G) is a commutative ring if and only if G is an abelian group.

Proof. Note that dim(Z(L(G))) = |Cl(G)|. If G is abelian, then | C1(G)| = |G|, and we have Z(L(G)) = L(G), i.e
L(G) is a commutative ring. Conversely, if G is not abelian, then Z(L(G)) & L(G), i.e. L(G) is not commutative. B
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As mentioned above, there is another possible ring structure to L(G), namely, (L(G), +, -, 0,1), where 1(x) := 1 for
all z € G, and the multiplication is the usual pointwise multiplication:

(f-9)(@) == f(x)g(x)

Note that (L(G), +, -, 0, 1) is a commutative ring. One very surprising facet of Fourier analysis is the following result:

Theorem 3.4. The map f — f induces a ring isomorphism from (L(G), 4, *,0, 1) to (L(G), +, -, 0, 1). Equivalently,
fl * f2 = f1 o f2 for all fl,fg S L(G)

Remark. One may be puzzled as to how a non-commutative ring such as (L(G), +, *, 0, 1) is isomorphic to a com-
mutative ring such as (L(G), +, -, 0, 1). However, note that we have only defined the Fourier transform for abelian
groups, and for abelian groups, the ring (L(G), +, *,0, 1) is commutative.

Proof. Note that:
R alg) =nlxifixf2) = > i@ £2)0) =Y xi(@) Y filgh ™) fa(h) = S folh) D xilg) fgh™

geG geG heG heG geG

Put z = gh™!. As g varies over G, z also varies over G. Then:

S MY xi@filgh™) =D f2(h) Y xi(zh) f1(2)

heG geG heG zeG

By Proposition 9, x;(zh) = x;(2)x:(h). Thus,

S LMY xizh) fi(z) =D i) f2() Y xi(2) f1(2) = Y xi(2) f1(2) Y xi(h) fa(h)
heG z€G heG z€G z€G heG
= n{xi, f1) - n{xi, fo) = F1(9:) F2(9:)

Finally, we also verify that 0 — 0, 6; — 1: The first assertion is clear, and

(9:) = > _ xi(9)d1(g) = xi(1) =1

geG

Remark. A few remarks are due:

1. One ‘practical’ relevance of the above theorem is as follows: Note that computing f; * f2 is of great importance
in real life: Indeed, suppose >_ s fi1(9) = >_,cq f2(9) = 1, with fi(g), f2(9) > Oforall g € G. Let X; be a
random variable on G with distribution f;, i € {1,2}. Then f; * f; is the probability distribution of X; + Xo.
Then the above theorem suggests an alternative (to the usual summation) to computing f; * fo: We may first

calculate m = ]?1 . ]?2, and use the Fourier inversion formula to get f1 * fo. While this might seem needlessly
complicated at first, as it turns out, algorithmically this is the way to go, because Fourier transforms are very
efficiently calculated through Fast Fourier Transforms.

2. A parallel theory holds for the usual Fourier analysis on R: Indeed, recall that for Z/nZ, we have:

(f1 * f2)(m Zflm k) f2(k)

n—1

Fm) i= 37 em2immiin (1)

k=0
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n—1

Z e2z7rmk/nf

k=0

3\'—‘

f + [ induces a vector-space automorphism L(G) = L(G)

Similarly, for R, we define the so-called Schwartz space, i.e.:

S(R) :={f € CX(R) : z™ - f(™) () ﬂ 0¥n,m >0}

where recall that C2° (R) is the space of all smooth functions from R to C, and f(™) := is the m'" derivative

of f, where the zeroth derivative of f is defined to be f itself. Then we have:

dm
(fr* fo)(= / fi(z —y) fa(y)dy

7e) = / e )

f(x) = / " i o) de

f > f induces a vector-space automorphism S(R) — S(R)
One can even equip S(R) with a suitable topology such that the map f — f becomes a homeomorphism.

We will now use Fourier analysis for abelian groups to calculate eigenvalues of the Cayley graph.

3.1. Eigenvalues of the Cayley Graph

Definition 3.3 (Symmetric Subset). Let G be a finite group. A subset S C G is said to be symmetric if:
1.1¢€585,

2.geS<=gltecsS

Definition 3.4. Let G be a finite group, and let S C G be a symmetric subset. Then the Cayley graph of G w.r.t S,
denoted as Cay(G, S), is a graph with vertex set G, and two vertices g, h are adjacent if gh—! € S.

Remark. Since S is symmetric, gh~' € S implies that hg~! € S, and thus the above graph is undirected.
We now link the spectrum of Cayley graphs to the representations of the underlying group.

Lemma 3.5. Let G = {g1, ..., g} be an abelian group, and let x1, ..., x,, be its inequivalent irreducible characters.
Fix some a € L(G), and define the convolution operator F' : L(G) — L(G) as F(b) := a * b.
Then F is a linear operator, with eigenvectors xi, ..., Xx», and eigenvalues @(g1), ..., a(g,) respectively. Since

X1, - - -, Xn form an orthonormal system, we also have that F is a diagonalizable operator.
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Proof. The linearity of F is clear. Now, @ * x; = @ - X; = @ - nd,. Also, (@ - nd,,)(z) = na(z) - 6, (z) = na(g;) - 84, (),

and thus @ - ndy, = na(g;) - d4,. Now, for any function f, we know that:

f= %Zf(gi)Xi
i=1

n

Thus,
1 R .
axxi= > (nags) - 64,)(95)x; = alg:)xs
j=1
|

as desired.

We can finally calculate the desired eigenvalues:
., 9n} be an abelian group, and let

Theorem 3.6 (Spectrum of the Cayley graph of abelian groups). Let G = {g1,
, Xn be its inequivalent irreducible characters. Let S C G be a symmetric set, and let A be the adjacency matrix

X1, -

of Cay(@G, S). Then:
1. The eigenvalues of A are, for 1 <i < n,
A= xi(s)
i€s
2. The corresponding orthonormal basis of eigenvectors is given by v, . .., v,, where
Xi (grL)] !

v = [xi(91)  xi(g2)

-
U1

Note that
vy

T
Un

is just the character table of G! Also, note that the eigenvectors don’t depend on S.

Proof. Write dg for the function dg : G — C, where dg(s) = 1 forall s € S, and 0 otherwise.
d4, ) be a basis for L(G). We claim that [Fg, i.e. the

Let F : L(G) — L(G), F(a) := ds * a. Also, let B = (d,,
matrix F expressed in the basis B, is equal to the matrix A. Indeed,

F(3,,) = 6 8y, = (Z 58) %09, = ) 0y %0g, = Y s,
ses ses

seS

Now, note that the (i, j)™ entry of [F]g is the coefficient of dy, in F(d,, ), which is 1 if g; = sg; for some s € S, and 0

otherwise. In other words,
([FlB)ij = Lgi=sgises = Ly g 1eg = Aij

At this point, the eigenbasis part is done by Lemma 3.5. For the eigenvalues, note that:
3s(g:) = nlxi,0s) = >_ xi(9)3s(g) = Y xi(9)

geG geSs

By Proposition 9, x; : G — C* is a homomorphism. Furthermore, we can take the underlying representation of x;

to be unitary, i.e. xi(g)xi(g) = 1. Thus x;(9) = x:(9) ™" = x:(¢™'), and thus

> oxile) = D xile) =Y xilg)
geS

ges g—ltes
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where the last equality follows since S is symmetric. ]
Remark. A few remarks are due:

1. Alon and Roichman [ AR94] proved that for every § € (0, 1), there exists a constant ¢(d) > 0 such thatif Sisa
random subset of G (where G is any group, not necessarily abelian) of size 2¢(d) log n (we first sample ¢(d) logn
elements from G uniformly and independently, and then we add their inverses to S. Note that we retain
elements with multiplicity, i.e. S is a multiset. However, this is not a major issue.), then the expected value of
the second largest eigenvalue of the normalized adjacency matrix of Cay(G, S) is at most 1 — ¢. Furthermore,
for abelian groups, this result is optimal. Consequently, Cayley graphs of groups can be used to construct
expanders.

2. Similar results can be shown for Cayley graphs of non-abelian groups G if the set S is conjugate,ie. g € § =
zgr~l € Sforallz € G.
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§4. Fourier Analysis on Finite Non-Abelian Groups

Note that we can’t extend the usual definition of Fourier transforms on abelian groups to non-abelian groups, since
non-abelian groups don't have n inequivalent irreducible representations. Thus, we’ll first try to re-interpret the
Abelian case where a generalization becomes more apparent.

Let G be an abelian group, and let f : G — C be a function. Then define the map 7" : L(G) — C", where

Tf = (nlx1, ), n{xas s 0xns £)) = (F(91)s F(92)s -, F(gn))

Clearly, T is linear. By the Fourier inversion formula, it is also invertible. Since T is an invertible linear map between
two vector spaces, the vector spaces must be isomorphic, which is indeed the case since L(G) = C¢ = C".

Now, since all irreducible representations of abelian groups are one-dimensional, the Fourier transform T'f has
“one-dimensional components”. However, for a non-abelian group, we won't have one-dimensional, but rather
matrix-valued components. Putting it into words yields:

Definition 4.1 (Fourier Transforms on Non-Abelian Groups). Let G be any finite group, and let p(!), ..., ©(*) be the
inequivalent irreducible unitary representatives of all irreducible representations of G, and write d; := deg((?).
Then for any f € L(G), we define the Fourier transform of f to be:

T . L(G) — Cledl X oo X Cdsxds

~ ~

e (Fle), Flo®), ..., fle')

Fle®) =3 0P f(g)

geG

where

More explicitly,
e®)ii =3 B (9)1(9) = nie, ) (41)

geG
We now prove the Fourier inversion formula:

Theorem 4.1 (Fourier Inversion Formula). Let f : G — C be a function. Then

1 -~ 2
=~ > defle®)iel)

.5,k

Recall that @E;C) : G — C is the function such that @E;c) (9) = (@E,k))ij.

Proof. Recall from Corollary 2.15 that {\/@gog? 1k els],i, g€ [dk}} is an orthonormal basis for C% = L(G). Thus

F =Y (Vaol) naeelh) = den (), ppt Pl 1 =3 dfle®)e)

1,5,k 0,5,k 1,5,k

Corollary 4.2. If we regard both L(G) and C% ¥ x ... x C4:*%: a5 C-vector spaces, then T furnishes a vector space
isomorphism between these two.
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Proof. 1t is clear that T is linear. By Fourier inversion formula, it is also clear that 7" is injective. Now, note that

n

dimg (CHXM x - x Ch o) =Y " d? = |G| = dime (L(G))

Since T is an injective linear map between two finite-dimensional vector spaces of the same dimension, 7’ is actually
an isomorphism. |

We finish this chapter by proving a generalization of Theorem 3.4 for all finite groups.

Theorem 4.3 (Wedderburn’s Theorem). The Fourier transform
T : L(G) s CHXd1 i ... x CsXds

is a ring isomorphism between (L(G), +, x,0, d;) and the usual ring C41 %91 x ... x Cds*ds,

Proof. As with Theorem 3.4, the main statement to be shown is that T'(a xb) = T'a - T'h. Equivalently, we have to show
axb(p®) =a(*)b(™*)). Note that:

a*b () ng (a*b)( Z(pg Z 1)b(h)=Zb Z@(k)

geG geG heG heG geq

Set z = gh~!. Then

S o X2 falan ™) = 3600 3 ot = X o0 3 o fate) = X 3 atalel? s

heG geG heG z€G heG ze€G heG zeG

= (Za(x)soik)) : (Z b<h>so£f>) = A(pM)b(e™)
ze€G heG

Finally, we have to verify that J; gets sent to the multiplicative identity of C41*%1 x ... x C4:*4s: Indeed,

(k) Z(‘O gk):IdeCdedk
geG
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